用户名: 密码: 验证码:
廉价矿物原料水热法制备沸石分子筛的形成机理与晶体生长模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文在综合分析国内外有关沸石分子筛的合成与应用、形成机理、以及晶体生长理论等大量文献资料的基础上,运用现代材料测试分析技术对红辉沸石和玻屑凝灰岩等廉价矿物原料水热法制备沸石分子筛的形成机理和晶体生长模型进行了全面系统的研究,主要内容如下:
     通过广西资源红辉沸石和湖南临澧玻屑凝灰岩的矿物组成、化学成分和部分工艺性能的分析,对其资源特性进行了评价。并根据其资源特性,对这两种廉价矿物原料进行了预处理,使之成为沸石分子筛水热制备的合格原料。
     以红辉沸石或玻屑凝灰岩(经预处理)为原料,采用水热法制备了沸石分子筛系列产品。并在大量实验研究的基础上,深入探讨了反应混合物组成和水热条件对沸石分子筛制备的影响,确定了A型、X型和P型沸石水热制备的最佳工艺技术参数。
     结合水热反应过程中固相组分的化学成分及红外光谱变化特征,对沸石分子筛的形成条件、晶核的形成及其影响因素、晶体生长及其影响因素作了综合分析,指出水热反应体系沸石分子筛的形成机理为液相转化机理。
     运用FKM法对水热反应初期的反应混合物进行TEM制样,并在透射电镜下对所制样品进行TEM观察和电子衍射分析,发现水热反应初期,伴随着前驱物的溶解,沸石分子筛以成核作用为主,并形成粒度为几个纳米的小粒子,这些纳米小粒子迅速聚合生长成约50nm的纳米晶粒,从而为纳米晶粒的聚合生长提供了有力的证据。
     通过沸石分子筛的水热制备实验及其测试分析表征,结合沸石晶体生长动力学曲线,对水热条件下沸石的晶体生长过程作了深入的研究,提出了水热体系中存在着聚合生长和聚集生长两种生长方式,建立了晶体聚合生长模型。水热条件下聚合生长是小粒子之间相互作用形成粒度更大的粒子的过程;聚集生长则是物料从小尺寸粒子向大尺寸粒子输运的重结晶过程。两者的热力学驱动力都是粒子平均粒度的增大降低了体系总的表面自由能。水热条件下沸石晶粒的形成经历了前驱物溶解→成核并形成纳米小粒子→纳米晶粒和微米晶粒的聚合生长→微米晶粒的聚集生长这样四个阶段,最后得到的晶粒是以聚合生长为主,同时伴随着聚集生长的综合结果。
     廉价矿物原料水热法制备沸石分子筛的形成机理和晶体生长模型研究,从本质上揭示了水热条件下沸石晶体生长的基本规律,提高和发展了沸石的晶体生长理论。不仅对廉价矿物原料高层次开发利用和降低沸石制备成本有着很高的实用价值,而且对实现新型沸石分子筛和纳米沸石制备技术研究的指导和预言具有重要的理论意义,同时对水热条件下陶瓷粉体制备技术研究也有着重要的指导意义。
On basis of integrated analysis of a great deal of literatures and data about the synthesis and application and formation mechanism of zeolite molecular sieves as well as the theories of crystal growth model, This paper entirely and systematically studies the formation mechanism and crystal growth model of zeolite molecular sieves that are prepared in hydrothermal system of taking such cheap mineral materials as the stellerite and vitric tuff as the feedstock by using of modem material testing and analysing techniques. The main contents of the paper is as follows.
    The resource characteristics of the stellerite in Ziyuan county of Guangxi and the vitric tuff in Linli county of Hunan are evaluated after their mineral constitutes and chemical compositions and some technics performances are analyzed. According to their resource characteristics these two cheap mineral materials are pretreated adequately, then turned into eligible stocks that is used to prepare zeolite molecular sieves in hydrothermal method.
    Taking the stellerite or vitric tuff (pretreated) as the feedstock, a series of zeolite products are prepared by using the hydrothermal method. It is discussed in depth how the constitutes of the reaction mixture and hydrothermal conditions influence the hydrothermal preparation of zeolites, the best technical parameters of hydrothermal preparation of zeolite A and X and P are confirmed.
    Combining with the transformative characteristics of the chemical compositions and IR spectrum of the solid phases in the process of hydrothermal reaction, the author integratedly analyses the forming conditions of zeolite molecular sieves, formation of crystal nucleus and its influencing factors, crystal growth and its influencing factors. It is pointed out that the formation mechanism of zeolite molecular sieves hi hydrothermal system is the solution-mediated transformation crystallization mechanism.
    By using FKM method, the reaction mixture hi the earliest of hydrothermal reaction are made to the samples that can be used in TEM analysis. The TEM observation and electron diffraction analysis of these samples indicate that along with the dissolution of the feedstocks, zeolite nucleus are formed, simultaneously the small particles of several nanometer are formed, these small particles aggregate and form the crystal particles of about 50nm. These analytical results are the mighty evidences that are provided to prove that the nano-particles is formed by the aggregation of nano-small-particles.
    On basis of the hydrothermal preparation experiments of zeolite and its testing and analysing token as well as kinetics curve of crystal growth, the process of zeolite crystal growth hi hydrothermal conditon is investigated. It is put forward that there are such two kinds of growth mode as aggregation and coalescence. The crystal aggregation growth model is established. The aggregation growth is the process that the aggregation of small particles form big particles because the mutual action of the small particles. The
    
    
    
    coalescence growth is the recrystallizing process of particles because the small particles transport to big particles. The thennaldynamics drive force of the two growth is that the total surface free energy is reduced because the accretion of the average granularity of the particles. In hydrothermal condition, the formation of the zeolite crystal come through such four phases as from the dissolution of the feedstocks to the growth of nucleus and the formation of nano-small-particles to the aggregation growth of nano-crystal and micro-crystal to the coalescence growth of micro-crystal. The crystal that is prepared finally is the integrated results of aggregation and coalescence growth that aggregation growth give priority to coalescence.
    The study about the preparation and formation mechanism and crystal growth model of zeolite molecular sieves in hydrothermal system by taking the cheap mineral materials as the feedstock opens out the basic law of zeolite crystal growth in hydrothermal condition, improves and dev
引文
[1] 邱克辉.矿物材料的应用研究现状及发展[J].成都理工学院学报,1994,21(2):116-120.
    [2] F.E.Imbert,C.Moreno,A.Montero.Venezuelan natural alumosilicates as a feedstock in the synthesis of zeolite A[J].Zeolites,1994,14:374-378.
    [3] 张兆荣,索继明,张小明,等.介孔硅基分子筛研究新进展[J].化学进展,1999,11(1):11-20.
    [4] 曹勇.STPP对环境影响的研究进展(Ⅰ)[J].日用化学工业,1997,(5):29-31.
    [5] 曹勇.STPP对环境影响的研究进展(Ⅱ)[J].日用化学工业,1997,(6):30-31.
    [6] 胡宏杰,王立卓.世界洗涤剂无磷化的进程与展望[J].矿产保护与利用,1994,(1):35-39.
    [7] 陆用海.洗衣粉中STPP代用问题浅见[J].日用化工业,1995,(4):36-39.
    [8] 周德藻,李士杰.浅谈我国洗涤剂低(无)磷化[J].日用化学工业,1994,(5):21-24.
    [9] A.Corma,A.Martinez.Zeolites and Zeotypes as Catalysts[J].Advanced Materials,1995,7(2):137-143.
    [10] 沈晓洁.沸石分子筛的发展及在石油化工中的应用[J].辽宁化工,1997,26(3):139-140.
    [11] P.C.H.Mitchell.Zeolite-Encapsulated Metal Complexes:Biomimetic Catalysts[J].Chemistry & Industry,1991,6:308-311.
    [12] 张怀彬,贾同文,李赫咺,等.沸石催化剂在精细化工中的应用(Ⅰ)[J].精细石油化工,1993,(1):6-11.
    [13] 张怀彬,贾同文,李赫咺,等.沸石催化剂在精细化工中的应用(Ⅱ)[J].精细石油化工,1993,(2):41-45.
    [14] 张怀彬,张悝,袁忠勇,等.沸石催化剂在精细化工中的应用(Ⅲ)[J].精细石油化工,1997,(4):45-48.
    [15] 张怀彬,张悝,袁忠勇,等.沸石催化剂在精细化工中的应用(Ⅳ)[J].精细石油化工,1997,(4):48-53.
    [16] Armor J N.Environmental Catalysis[J].Appl.Catal.,1992,Bl:221-256.
    [17] Tabata T,Kokisu M,Okada Study on Patent literature of Catalysts for a New NO_x Removal Process[J].Catal.Today,1994,22:147-159.
    [18] 刘志强,吴锋,王国庆,等.沸石吸附式制冷技术的研究进展[J].材料导报,2000,14(4):34-36.
    [19] W.M.Meier,K.Siegman Significant reducation of carcinogenic compounds in tobacco smoke by the use of zeolite catalysts[J].Microporous and Mesoporous Materials,1999,33:307-310.
    [20] 朱建华,沈彬,王英,等.沸石对于亚硝胺的选择性吸附[J].科学通报,2000,45(9):2017-2019.
    [21] 徐如人.分子筛催化与分子筛基材料[J].科学,2000,50(1):12-15.
    [22] 中国科学院大连化学物理研究所分子筛组.沸石分子筛[M].北京:科学出版社,1978.
    [23] 徐如人,庞文琴,屠昆岗等.沸石分子筛的结构与合成[M].吉林:吉林大学出版社,1987.
    [24] 赵修松,王清遐,李宏愿.沸石合成进展[J].化工进展,1994,(3):32-35.
    [25] Biz S,Occelli M L Synthesis and Characterization of Mesostruetured Materials[J].Catal.Rev.-Sci.Eng.,1998,40(3):329-407.
    [26] 庞文琴,景晓燕,张密林,等.硼-硅PentasiI型沸石的晶化相区与导向剂[J].高等学校化学学报,1982,3(4):577-579.
    
    
    [27] Stephen T.Wilson,Brent M.Lok,Celeste A,et al.Aluminophosphate Molecular Sieves:A New Class of Microporous Crystalline Inorganic Solids[J].J.Am Chem Soc.,1982,104:1146-1147.
    [28] Lok B M,Messina C A,Lyle Patton,et al.Silicoaluminophosphate Molecular Sieves:Another New Class of Microporous Crystalline Inorganic Solids.J.Am.Chem.Soc.,1984,106:6092-6093.
    [29] 赵修松,李宏愿,王清遐.沸石新材料研究进展[J].无机材科学报,1994,9(1):1-6.
    [30] 王晓钟,窦涛,萧墉壮.新型中孔分子筛合成进展.化学通报,1997,11:16-20.
    [31] Dessau R M,Schlenker J L,Higgins J B.Framework Topology of ALPO_4-8:The First 14-Ring Molecular Sieve[J].Zeolites,1990,10:522-527.
    [32] Davis M E,Saldarriaga C,Montes C,et al.A Molecular Sieve with Eighteen-Membered Rings[J].Nature,1988,331:698-702.
    [33] Estermann M,Mccusker L B,Baerlocher Ch,et al.A Synthetic Gallophosphate Molecular Sieves with a 20-Tetrahedral-Atom Pore Opening[J].Nature,1991,352:320-323.
    [34] Jones R H,Thomas J M,Chen J,et al.Structure of an Unusual Aluminiam Phosphate([Al_5P_5O_(21)H]~2[N(C_2H_5)_3H]2H_2O)JDF-20with Large Elliptical Apertures[J].J.Solid State Chem.,1993,102:204-208.
    [35] Yanagisawa T,Shimuzu T,Kuroda K,et al.The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to mesoporous materials[J].Bull.Chem. Soc.Jpn.,1990,63:988-992.
    [36] Kresge C T,Leonowicz M E,Roth W J,et al.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J].Nature,1992,359:710-712.
    [37] Beck J S,Vartuli J C,Roth W J,et al.A new family of mesoporous molecular sieves prepared with liquid crystal templates[J].J.Am.Chem.Soc.,1992,114:10834-10843.
    [38] J.C.Varuli,K.D.Schmitt,C.T.Krege,et al.Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves:inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications[J].Chem.Mater.,1994,6:2317-2326.
    [39] Dubis M,Gulik-krzywicki Th,Cabane B.Growth of Silica Polymer in a Lamelar Mesophase[J].Langmuir,1993,9:673-680.
    [40] J.C.Varuli,K.D.Schmitt,C.T.Krege,et al.Development of formation mechanism for M41S materials[J].Stud.Surf.Sci.Catal.,1994,84:53-60.
    [41] Sayari A.Catalysis by crystalline mesoporous molecular sieves[J].Chem.Mater.,1996,8:1840-1852.
    [42] 张兆荣,索继栓,张小明,等.介孔硅基分子筛研究新进展[J].化学进展,1999,11(1):12-20.
    [43] 杜高辉,卫英慧,窦涛,等.纳米HS型沸石合成及长大机制的研究[J].无机材料学报,2000,15(16):1073-1076.
    [44] S.Ueda,H.Murata,M.Koizum,et al.Crystallization of mordenite from aqueous solutions[J].American Mineralogist,1980,65:1012-1019.
    [45] Leszek Gora,Kiril Streletzky,Robert w.Thompson,et al.Study of the crystallization of zeolite NaA by quasi-elastic light-scattering spectroscopy and electron microscopy[J].Zeolites,1997,18:119-131.
    
    
    [46] S.Ueda,N.Kageyama,K Koizumi.Role of Soluble Species in the Crystallization of Mordenites[J].J.Phys.Chem,1984,88:2128-2131.
    [47] Bibby D M,Dale M P.Synthesis of silica-sodalite from non-aqueous systems[J].Nature,1985,317:157-158.
    [48] 冯芳霞,窦涛,萧墉壮,等.分子筛特种合成路线[J].化工进展,1997,(1):64-65.
    [49] F.Crea,R.Aiello,A.Nastro,et al.Synthesis of ZSM-5 zeolite from very dense systems:Formation of pelleted ZSM-5 zeolite from(Na,Li,TPA,Si,Al)hydrogels[J].Zeolites,1991,11:521-527.
    [50] R.F.Li,W.B.Fan,J.H.Ma,et al.Synthesis and characterization of ZSM-48 in the pure solid system[J].Zeolites,1995,15:73-76.
    [51] 冯芳霞,窦涛,萧墉壮.干粉法合成中孔分子筛MCM-41[J].石油学报(石油加工),1998,14(3):89-92.
    [52] Xu W Y,Dong J X,Li J P,et al.A Novel Method for the Preparation of Zeolite ZSM-5[J].J.Chem.Soc.,Chem.Commun.,1990,755-756.
    [53] Huo Q S,Xu R R.A New Route of the Synthesis of Molecular Sieves:Crystallization of APO-5 at High Temperature[J].J.Chem.Soc.,Chem.Commun.,1992,168-169.
    [54] Gier T E,Stucky G D.Low-temperature synthesis of hydrated zinco(beryllo)-phosphate and arsenate molecular sieves[J].Nature,1991,349:508-510.
    [55] Edler K J,White J W.Room-temperature Formation of Molecular Sieves MCM-41[J].J.Chem.Soc.,Chem.Commun.,1995,155-156.
    [56] N. Kanno,M.Miyake,M Sato.Synthesis of ferrierite,ZSM-48,and ZSM-5 in glycerol solvent[J].Zeolites,1994,14:625-628.
    [57] Laudise R A.In:Dryburgh P M ed.Advanced Crystal Growth.New York,London,Sydney,Tokyo:Prentice Hall,1987,267.
    [58] 施尔畏,夏长泰,王步国,等.水热法的应用与发展[J].无机材料学报,1996,11(2):193-206.
    [59] Somiya S.In:Somiya S.ed.Advanced Ceramics 3(Meeting for Advanced Ceramics,Tokyo,Japan,1988).New York:Elsevier Scievier Science Publishing Co.,1990:207.
    [60] Maurizio de Gennaro,Alessio Langella,Piergiulio Cappelletti,et al.Hydrothemal conversion of trachytic glass to zeolite.3.Monocationic model glasses[J].Clay and Clay Minerals,1999,47(3):348-357
    [61] 中少华,王大伟,张术根.“酸处理红辉沸石-碱-铝酸钠-水”水热反应体系P型沸石的合成[J]中南工业大学学报,2001,23(4).
    [62] H.Ghobarkar,O.Schaf.Hydrothemal synthesis of laumontite,a zeolite[J].Microporous and Mesoporous Materials,1998,23:55-60.
    [63] 施尔畏,仲维卓,夏长泰,等.水热条件下钛酸钡粉体晶粒形成机理[J].硅酸盐学报,1996,24(1):45-52.
    [64] Lencka M M,Riman R E.Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders[J].Chem. Mater.,1993,5:61-70.
    [65] Lencka M M, Riman R E.Synthesis of Lead Titanate:Thermodynamic Modeling and Experimental Verification[J].J.Am Ceram Soc.,1993,76(10):2649-2659.
    [66] Chernov A A.In:Modern Crystallography Ⅲ,Crystal Growth.Berlin,Heidelberg,New York,Tokyo:Springe-Verlag,1984:381.
    
    
    [67] Eric N Coker,Jacobus C Jan-sen,Johan A Martens,et al.The synthesis of zeolites under micro-gravity conditions:a review[J].Microporous and Mesoporous.Materials,1998,23:119-136.
    [68] Popolitov V I.Hydrothermal growth of crystals under visual examination[J].Prog.Crystal Growth and Charact.,1990,21:255-296.
    [69] 胡宏杰,赵恒勤,王立卓,等.沸石分子筛的制备及应用[J].矿产保护与利用,1998,(5):10-13.
    [70] Howell P H,Acara N A,Towne M K Jr.Production of molecular sieve adsorbents from kaolin minerals[P].Brit Patent:(980),(891),1965.
    [71] Drag E B,Mieclnikowski A,Abolemon F,et al.Synthesis of A,X and Y zeolites from minerals[J].Stud.Surf.Sci.Catal.,1985:147-154.
    [72] 魏克武,刘慧纳,叶学龙.用高岭土合成洗涤剂助剂4A沸石的回顾和现状[J].非金属矿,1992,(4):52-57.
    [73] 肖林久,刘秉新,何晓林.高岭土合成4A沸石用晶化导向剂的制备及应用研究[J].沈阳化工学院学报,1997,11(3):161-166.
    [74] 易发成.利用四川膨润土制备5A分子筛[J].中国矿业,1998,8(1):19-21.
    [75] 陈忠善.铝土矿生产洗涤剂用4A沸石工艺[J].日用化学工业,1996,(2):20-21.
    [76] 薛茹君,张得祥,陈晓铃.低品位铝矾石制取洗衣粉用4A沸石[J].淮南矿业学院学报,1998,18(1):43-47.
    [77] 韩效钊,徐超,许民才,等.以明矾石为原料合成4A沸石的研究[J].非金属矿,1997,(2):31-32.
    [78] 杨慧芬.纯化大然斜发沸石合成4A沸石工艺研究[J].建材地质,1997,(6):20-23.
    [79] 陈开惠,刘秉光,戴长禄.利用叶蜡石合成A型分子筛的实验研究[A].中国科学院地质研究所.沸石矿物与应用研究(论文集)[C].北京:科学出版社,1979,161-172.
    [80] 陈泉水.粉煤灰制备4A分子筛工艺研究[J].化工矿物与加工,2001,(1):9-11.
    [81] 申少华,王大伟,张术根.天然红辉沸石合成4A沸石工艺优化研究[J].桂林工学院学报,2001,待刊.
    [82] 张术根,申少华,王大伟.临澧玻屑凝灰岩合成4A沸石工艺研究[J].非金属矿,2000,(5):23-25.
    [83] Murat M,Amokrane A,Bastide J P,et al.Synthesis of zeolites from thermally activated kaolinite,some observations on nucleation and growth[J].Clay Minerals,1992,27:119-130.
    [84] 黄焱球,程守田,高广立.“偏高岭石-碱-水”体系中4A沸石晶体生长规律及其机理探讨[J].矿物岩石,1997,17(1):17-22.
    [85] 申少华,张术根,王大伟.酸处理红辉沸石-碱-铝酸钠-水的水热反应体系A型沸石的晶化合成[J].硅酸盐学报,2001,待刊.
    [86] 茅祖兴,杨华蕊.利用珍珠岩合成13X型分子筛的实验研究[A].中国科学研究院地质研究所.沸石矿物与应用研究(论文集)[C].北京:科学出版社,1979.
    [87] 金为群,权新军,蒋引珊,等.利用浮岩合成13X型分子筛最佳工艺条件的研究[J].长春地质学院学报,1997,27(2):236-239.
    [88] C.de L.Pozas,D.D.Quintanilla,J.Perez-Pariente,et al.Hydrothermal transformation of natural clinoptilolite to zeolites Y and P_1:Influence of the Na,K content[J].Zeolites,1989,9:33-39.
    [89] 陶红,马鸿文.钾长石合成13X分子筛的实验研究[J].无机材料学报,2001,16(1):63-68.
    
    
    [90] 刘新锦,黄铁钢.用叶蜡石合成Y型沸石的研究[J].砖酸盐通报,1996,(3):61-64.
    [91] 谢大卫,邵曼君.改性天然沸石制作P型沸石洗涤助剂研究[J].非金属矿,1993,(2):30-33.
    [92] N.Giodano,V.Recupero,L.Pino,et al.Zeolitisation of perlite[J].Industrial Minerals,1987,(9):83-95.
    [93] 申少华,张术根,王大伟.红辉沸石合成P型沸石实验研究[J].矿物学报,2001,待刊.
    [94] 申少华,张术根,王大伟.玻屑凝灰岩合成P型沸石工艺优化研究[J].中国非金属矿工业导刊,2001,待刊.
    [95] 冯芳霞,窦涛,石岩峻,等.用天然矿物煤矸石合成丝光沸石[J].石油学报(石油加工),1999,15(1):75-77.
    [96] 冯芳霞,窦涛,石岩峻,等.以煤矸石为原料合成ZSM-5沸石[J].石油学报(石油加工),1997,13(4):104-107.
    [97] 焦庆祝,庞文琴,霍启升.用英安岩和粉煤灰合成ZSM-5分子筛研究[J].硅酸盐通报,1996,(4):29-31.
    [98] Xu W Y,Li J Q,Li W Y,et al.Nonaqeous synthesis of ZSM-35 and ZSM-5[J].Zeolites,1989,9:468-473.
    [99] M.E Davis,R.F.Lobo.Zeolite and Molecular Sieve Synthesis[J].Chem Mater.,1992,4:756-768.
    [100] 马淑杰,刘孔凡,崔美珍等.A型沸石的生成机理[J].高等学校化学学报,1984,5(2):158-162.
    [101] 徐如人,李守贵.沸石分子筛的生成机理与晶体生长(V)—L型沸石晶体生长动力学[J]高等学校化学学报,1983,4(1):1-6.
    [102] 施其宏,曹建湘,徐经纬.A型分子筛—催熟合成技术及其动力学研究[J].湘潭大学自然科学学报.1986,(4):44-53.
    [103] Gabelica Z,et al.Zeolites Synthesis,Structure,Technology and Application Abstract,1984:20.
    [104] X.S.Zhao,G.Q.Lu,G.J.Millar.Advances in Mesoporous Molecular Sieve MCM-41[J].Ind.Eng.Chem. Res.,1996,35:2075-2090.
    [105] Attard G S,Glyde J C,Goltner C G.Liquid-crystalline phases for the synthesis of mesoporous silica.Nature,1995,378:366-369.
    [106] Vartuli J C,Kresge C T,Leonowicz M E,et al.Synthesis of mesoperous materials:liquid-crystal templating versus intercalation of layered silicates[J].Chem.Mater.,1994,6:2070-2077.
    [107] Huo Q S,Margolese D I,Ciesla U,et al.Organization of organic molecules with inorganic molecular species into nanocompesite biphase arrays[J].Chem.Mater.,1994,6:1176-1191.
    [108] Ying J Y,Mehnert C P,Wong M S.Synthesis and applications of supermolecular-templated mesoporous materials[J].Angew Chem.Int.Ed.Engl.,1999,38:56-77.
    [109] Subotic B,et al.Zeolites,Synthesis,Structure Technology and Application[J].Studies in Surface Science and Catalysis,1985,24:199.
    [110] 马跃龙,陈诵英,彭少逸.分子筛成核与晶体生长动力学研究V.自成核体系中修正的Avrami模型[J].石油学报(石油加工),1997,13(4):54-61.
    [111] 冯守华,李守贵,徐如人,等:沸石分子筛的生成机理与晶体生长(XⅢ)—M-Si-ZSM-5型沸石自发成核晶化动力学模型[J].高等学校化学学报,1985,6(10):855-860.
    
    
    [112] S.Mintova,V.Valtchev.On the crystallization mechahism of zeolite ZSM-5:Part 1.Kinetic compensation effect for the synthesis with some diamines[J].Zeolites,1993,13:299-304.
    [113] 徐如人,李守贵,韩淑芸,等.沸石分子筛的生成机理与晶体生长(Ⅶ)—非自发成核体系中沸石分子筛的晶体生长模型[J].高等学校化学学报,1985,6(9):765-770.
    [114] 马跃龙,陈诵英,彭少逸,等.分子筛成核与晶体生长动力学研究Ⅰ.非成核体系中修正的Lechert模型[J].石油学报(石油加工),1997,13(2):47-54.
    [115] 马跃龙,陈诵英,彭少逸,等.分子筛成核与晶体生长动力学研究Ⅱ.非成核体系中修正的徐如人模型[J].石油学报(石油加工),1997,13(2):55-59.
    [116] 马跃龙,陈诵英,彭少逸.分子筛成核与晶体生长动力学研究Ⅳ.非成核体系中修正的Avrami模型[J].石油学报(石油加工),1997,13(3):53-57.
    [117] Thompson R W,Huber M J.Analysis of the growth of molecular sieves zeolite NaA in a batch precipitation system[J].J.of Crystal Growth,1982,56:711-722.
    [118] 曹惠,徐如人.沸石分子筛的生成机理与晶体生长Ⅷ.Ω型沸石的晶化[J].化学学报,1983,41(10):916-926.
    [119] 施尔畏,夏长泰,王步国,等.水热法制备陶瓷粉体中的聚集生长[J].中国科学(E辑),1997,27(2):126-133.
    [120] 李酽.A型沸石纳米晶及其组装介孔SiO_2复合膜的研究[D].湖南:中南大学资源环境与建筑工程学院,2000.
    [121] 仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社,1999.
    [122] 闵乃本.实际晶体的长大机制[J].人工晶体学报,1992,21(3):217-229.
    [123] 姚连增.晶体生长基础[M].北京:中国科学技术出版社,1995.
    [124] 郑燕青,施尔畏,李汶军,等.晶体生长理论研究现状与发展[J].无机材料学报,1998,14(3):321-331.
    [125] Hartman P.Modern PBC theory.In:Ichiro Sunagawa ed.Morphology of Crystals.Tokyo:Terra Scientific Publishing Company,1987:269.
    [126] Van de Leemput L E C,Van Bentum P J M,Driessen F A J M,et al.Morphology and surface topology of YBa_2Cu_3O_(7x)crystals[J].J.Cryst.Growth,1989,98:551-560.
    [127] Sun B N,Hartman P,Woensdregt C F.Structural morphology of YBa_2Cu_3O_(7x)[J].J.Cryst.Growth,1990,100:605-614.
    [128] Kramer M,Wttm(?)ss D,K(?)pper H,et al.Relations between crystal structure and growth morphology of β-Si_3N_4[J].J.Cryst.Growth,1994,140:157-166.
    [129] 施尔畏,仲维卓,华素坤,等.关于负离子配位多面体生长基元模型[J].中国科学(E辑),1998,28(1):37-45.
    [130] 仲维卓,刘光照,施尔畏,等.在热液条件下晶体的生长基元与晶体形成机理[J].中国科学(B辑),1994,24(1):349-350.
    [131] 仲维卓,华素坤,唐鼎元,等.晶体生长基元与晶体结晶习性[J].结构化学,1995,14(5-6):463-467.
    [132] 仲维卓,华素坤.负离子配位多面体生长基元与晶体的结晶习性[J].硅酸盐学报,1995,23(4):464-470.
    [133] 李汶军,施尔畏,仲维卓,等.水热合成中负离子配位多面体生长基元模型与粉体的晶体粒度[J].硅酸盐学报,1999,27(2):164-171.
    
    
    [134] 元如林,施尔畏,夏长泰,等.水热条件下钛酸钡晶粒生长基元模型研究[J].物理学报,1996,45(12):2082-2090.
    [135] 施尔畏,元如林,夏长泰,等.水热条件下钛酸钡晶粒生长基元模型研究(Ⅱ)[J].物理学报,1997,46(1):1-11.
    [136] 田明原,施尔畏,元如林,等.铝氢氧化物和氧化物晶粒的水热法制备及其形成机理[J].中国科学(E辑),1998,28(2):113-118.
    [137] 元如林,施尔畏,王步国,等.氧化锌晶粒生长基元与生长形态的形成机理[J].中国科学(E辑),1997,27(3):229-236.
    [138] 元如林,施尔畏,王步国,等.硫化锌晶粒生长基元稳定能及生长形态[J].物理学报,1997,46(10):2071-2079.
    [139] 元如林,施尔畏,李汶军,等.钨酸铅晶粒生长基元及水热制备研究[J].中国科学(E辑),2000,30(1):22-28.
    [140] 仲维卓,于锡铃,罗豪苏,等.KDP晶体生长基元与形成机理[J].中国科学(E辑),1998,28(4):320-324.
    [141] 仲维卓,罗豪苏,华素坤.铌酸锂(LN)晶体生长基元与结晶形貌[J].人工晶体学报,1994,23(4):255-258.
    [142] 仲维卓,洪慧聪,路治平,等.三硼酸锂(LBO)晶体生长基元与形貌[J].人工晶体学报,1996,25(2):89-95.
    [143] 郑燕青,施尔畏,元如林,等.二氧化钛晶粒的水热制备及其形成机理研究[J].中国科学(E辑),1999,29(3):206-213.
    [144] 于锡玲,孙毅.亚稳相DKDP晶体生长动力学的全息研究[J]人工晶体学报,1995,24(4):265-271.
    [145] 贾新年.广西车田脉状沸石矿区域及矿床地质特征[J].非金属矿,1993,(3):8-10.
    [146] 赵临远,崔天顺,杨燕.桂北沸石矿开发利用方向探讨[J].矿产与地质,2001,15(1):40-43.
    [147] 申少华,王大伟,张术根.广西资源红辉沸石合成4A沸石工艺研究[J].矿产与地质,2001,15(3).
    [148] 张术根,彭美勋.某矿物改性无机抗菌剂的研制[A].湖南矿物岩石地球化学论丛[C].长沙:中南工业大学出版社,1999:166-169.
    [149] 李酽.建筑用沸石杀菌涂料研制[J].非金属矿,1999,22(2):18-19.
    [150] 李酽,张术根.利用红辉沸石合成4A沸石分子筛试验研究[J].非金属矿,2000,(3):19-20.
    [151] 彭美勋.红辉沸石无机抗菌剂及其杀菌涂料的开发研究[D].湖南:中南工业大学资源环境与建筑工程学院,2000.
    [152] 彭美勋.天然沸石改型无机抗菌剂及其杀菌涂料研制[J].非金属矿,2001,24(1):18-19.
    [153] 申少华,张术根,王大伟.天然红辉沸石合成P型沸石工艺优化研究[J].非金属矿,2001,(3).
    [154] 张良钜.广西资源车田红辉沸石特征的初步研究[J].矿物学报,1997,17(1):231-238.
    [155] 申少华,张术根,王大伟.天然沸石及其开发利用研究进展[J].矿产保护与利用,2000,(4):34-38.
    [156] 权升五.应积极开发新型洗涤剂助剂—4A沸石[J].日用化学工业,1988,(1):48-52.
    [157] 朱中行,赵德章.浅议临澧县白土坡玻屑凝灰岩的岩石学特征[J].湖南地质,1994,13(2):94-98.
    [158] 木士春,汪灵.湖南临澧水化流纹质玻屑凝灰岩矿物岩石学特征[A].湖南矿物岩石地球化学论丛[C].长沙:中南工业大学出版社,1999,174-177.
    
    
    [159]木士春.玻屑凝灰岩开发利用初步研究[J].非金属矿,2000,(2):18-20.
    [160]申少华,张术根,王大伟.湖南临澧玻屑凝灰岩的资源特性评价[J].湖南地质,2000,19(4):246-250.
    [161]申少华,王大伟,张术根.临澧玻屑凝灰岩合成P型沸石[J].中南工业大学学报,2001,23(专辑1):85-88.
    [162]闵乃本.晶体生长的物理基础[M].上海:上海科学技术出版社,1982:345.
    [163]S.D.Kinrade,T.W.Swaddle.Silicon-29 NMR Studies of Aqueous Silicate Solutions.1.Chemical Shifts and Equilibria[J].Inorg.Chem.,1988,27:4253-4259.
    [164]S.D.Kinrade,T.W.Swaddle.Silicon-29 NMR Studies of Aqueous Silicate Solutions.2.Transverse~(29) Si Relaxation and the Kinetics and Mechanism of Silicate Polymerization[J].Inorg.Chem,1988,27:4259-4264.
    [165]A.V.McCormick,A.T.Bell.The solution chemistry of zeolite precursors[J].Catal.Rev.Sci.Eng.,1989,31:97-127.
    [166]T.W.Swaddle,J.Salerno.P.A.trgloan. Aqueous Aluminates,Silicates and Aluminosilicates[J].Chem. Soc.Rev.,1994:319-325.
    [167]D.Mueller,D.Hoebbel,W.Gessner.~(27)Al NMR studies of aluminosilicate solutions.Influences of the second coordination sphere on the shielding of aluminium[J].Chem.Phys.Lett.,1981,84(1):25-29.
    [168]Smith J V.Topochemistry of Zeolites and Related materials.1.Topology and Geometry[J].Chem. Rev.,1988,88:149-182.
    [169]李汶军,施尔畏,田明原,等.水热法制备氧化锌纤维及纳米粉体[J].中国科学(E辑),1998,28(3):212.
    [170]S.Ueda,H.Murata,M.Koizum,et al.Crystallization of mordenite from aqueous solutions[J].American Mineralogist,1980,65:1012-1019.
    [171]Persson A E,Schoeman B J,Sterte J,et al.The synthesis of discrete colloidal particles of TPA-silicalite-1[J].Zeolite,1994,14:557-567.
    [172]张克丛.近代晶体基础.北京:科学出版社,1987.
    [173]周公度,段连运.结构化学基础(第二版).北京:北京大学出版社,1995:417.
    [174]朱履冰.表面与界面物理[M].天津:天津大学出版社,1992:167-178.
    [175]Ball W J,Dwyer J,Garforth A A,et al.The synthesis and characterization of iron silicate molecular sieves[A].Proc.7th int.zeolite conf.[C],1986:137-144.
    [176]E.I.Basaldella,R.M.Torres,J.C.Tara.Iron influence in the aluminosilicate zeolites synthesis[J].Clays and Clay Minerals,1998,46(5):481-486.
    [177]徐文畅,曹景慧,窦涛.洗涤剂用4A沸石的研究[J].日用化学工业,1988,(1):5-9.
    [178]Dawson W J.Hydrothermal Synthesis of Advanced Ceramic Powders[J].Am.Ceram.Soc.Bull.,1988,67(10):1673-1678.
    [179]施尔畏,栾怀顺,仇海波,等.水热法制备超细Zro_2粉体的物理-化学条件[J].人工晶体学报,1993,22(1):80-86.
    [180]施尔畏,仲维卓,栾怀顺,等.水热法制备α-Al_2O_3微粉中氢氧化铝变成氧化铝的过程[J].无机材料学报,1992,7(3):300-306.
    [181]夏长泰,施尔畏,仲维卓,等.水热法制备BaTiO_3粉体[J].无机材料学报,1995,10(3):293-299.
    
    
    [182]施尔畏,夏长泰,仲维卓,等.水热条件下钛酸钡粉体晶粒形成机理[J].硅酸盐学报,1996,24(1):45-52.
    [183]W.H.Dokter,H.F.Van Garderen,et al.Homogenous versus Heterogeneous Zeolite Nucleation[J].Angew.Chem.Int.Ed.Engl.,1995,34:73-75.
    [184]W.H.Dokter,T.P.M.Beelen,H.F.Van Garderen,et al.Simultaneous Monitoring of Amorphous and Crystalline Phases in Silicate Precursor Gels,An In Situ Hydrothermal and Times-Resolved Small-and Wide-Angle X-ray Scattering Study[J].Appl.Cryst.,1994,27:901-906
    [185]W.H.Dokter,T.P.M.Beelen,H.F.Van Garderan,et al.The hydrothermal synthesis of silicate—an in situ.,small-angle neutron scattering study[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1994,85:89-95.
    [186]B.J.Schoeman.Analysis of the nucleation and growth of TPA-silicate-1 at elevated.temperatures with the emphasis on colloidal stability[J].Microporous and Mesoporous Materials,1998,22:9-22.
    [187]仲维卓,夏长泰,施尔畏,等.热液条件下BaTiO_3,纳米晶的形成机理[J].中国科学(E辑),1997,27(1):9-17.
    [188]Wang Y S,Bennema P,Van der Linden,et al.Enlargement of the cross section of KDP crystals by splicing techniques[J].J.of Crystal Growth,1987,83:471-480.
    [189]Waldemar P,Krzysztof H,Miroslaw M.Hydrothemal Crystallization of Zirconia and Zirconia solid solutions[J].J.Am Ceram Soc.,1991,74(10):2622-2629.
    [190]施尔畏,夏长泰,王步国.水热法制备的陶瓷粉体晶粒粒度[J].硅酸盐学报,1997,25(3):287-293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700