钙钛矿结构微波陶瓷介电机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微波技术不断发展及其应用领域的不断扩大,对微波器件的要求向高性能、高品质和小型化的方向展开,微波陶瓷介质以其优异的微波介电性质作为微波器件的重要组成,正在发挥越来越重要的作用,并被国际和国内的研究领域视为研究的热点和重点。钙钛矿结构微波介质陶瓷在微波频段下仍具有高相对介电常数、低介电损耗和接近零的介电温度系数,采用经典电介质物理理论很难解释其优异性能的由来,有必要从理论上研究钙钛矿结构微波陶瓷的介电机理和结构之间的相互关系,从而为材料的研究提供改性基础和设计指导。
    本论文以国家863高科技重大研究项目:高介电常数微波介质陶瓷及其器件的研制(2001AA-ZB3201-02)为依托,主要从以下四个方面进行了研究,取得初步成果,为进一步的研究奠定了基础。利用量子力学的微扰理论研究钙钛矿结构微波介质陶瓷的极化机理,进而解释高介电常数的由来;利用缺陷化学理论,研究钙钛矿结构微波介质陶瓷的损耗机理;通过分解钙钛矿结构微波介质陶瓷的缺陷来源和作用机理,探索降低非本征损耗的有效途径;探讨了在钙钛矿结构中掺入稀土元素显著提高微波介电性能的原因是由于稀土元素的活性对微波介质陶瓷进行了结构梳理。
    论文围绕钙钛矿结构微波介质陶瓷的结构和性能的关系,对介质极化和损耗机理展开了研究,主要内容包括:
    在总结实验事实的基础上,提出类钙钛矿钨青铜结构系列,复合钙钛矿系列以及铅基钙钛矿等系列材料的微波特性是由结构中都存在基于顶角相连的氧八面体所决定的。
    利用内电场理论,参考洛仑兹模型得到钙钛矿结构微波陶瓷的极化方程,通过有效化简得到可以说明极化能力的近似方程,该方程可以在一定程度上解释本征钙钛矿结构微波介质的极化能力,但由于微波介质陶瓷的离子组成很复杂,通常在晶格点上存在的离子不止一个,而且晶体结构也不是单纯的立方体等复杂因素将导致内电场理论具有局限性,另外内电场考察的是离子在静电场下的平均极化效果,当外界电场为高频的微波电场时,以上简单的计算得出的结论尚待进一步实验证实。
    利用量子力学的微扰理论研究电子和离子极化过程。在微波电场作用下,把钙钛矿结构氧八面体内B-O离子链中的B离子的振动与O离子的振动之间相互作用看成
    
    
    是一种微扰量,分别计算微扰对两个离子系统能量简并造成的影响,根据Jahn-Teller效应,氧八面体的B-O链将产生畸变,首先是O离子的电子云畸变,可使氧八面体极化率增高,如果消除简并的能量降低超过O离子格点位置的改变造成的晶格能量增加,将会使得O离子格点位置畸变导致氧八面体极化率进一步增高。
    利用缺陷化学的方法研究了电导损耗。通过分析钙钛矿结构微波陶瓷在本征状态、施主掺杂和受主掺杂状态下的缺陷模型,研究陶瓷的电导率与结构成分的关系,从而揭示在不同成分的结构中电导损耗的产生规律。从晶粒缺陷、粒界缺陷和杂相缺陷三个角度研究缺陷的产生来源、相关规律及与损耗的关系等。还进行了点缺陷控制、晶体生长模型控制和工艺控制等与降低缺陷损耗密切相关的实验研究工作。
    从微波介质陶瓷的制作过程中加入镧()系稀土元素微波介电性能显著提高这一现象出发,结合目前高微波介质陶瓷研究中三个主要体系的改性实验结果,初步探讨了稀土元素对微波介质陶瓷结构的“催化”活性作用,结果表明结构梳理是提高微波性能的主要原因,稀土元素的引入是提高微波介质陶瓷介电性能的有效途径。
    黄昆方程是研究晶格振动比较有效的方法,它将离子自身的振动与外电场作用下的激发振动合起来考虑,符合晶体中离子的实际振动形态。本论文对比黄昆方程对晶格振动的研究,采用量子力学方法对钙钛矿结构陶瓷的晶格振动进行分析,得到描述晶格系统的哈密顿方程,通过分析能量状态的改变,获得晶格振动引起本征损耗的状况。
With the development of microwave technology, its application has been found in every relative part of science and technology. The development of microwave devices trends to high quality, high performance and miniaturization, and the microwave dielectric ceramics are playing more and more important role in microwave technology.
    The microwave dielectric ceramics with perovskite structure have the characteristics of high dielectric constant, low dielectric loss as well as temperature coefficient in high frequency, however the coexistence of the above parameters was difficult to explain when by the classic dielectric physics theory. So it was necessary to investigate the relationship between dielectric principles and the microstructure of ceramics in order to provide the basic theory of improving performance and the principle of design.
    In the present dissertation, we have conducted the investigation from the following four respects :
    Firstly the dielectric polarization theory in perovskite ceramics based on the perturbation theory of quantum was researched in order to explain the source of high dielectric constant; secondly the dielectric loss theory was investigated using the defect chemistry; thirdly the effective ways to reduce the non-intrinsic loss was investigated by resolving the source of defects in microwave dielectric ceramics and its affecting principles; lastly the reason of the significant improvement of microwave dielectric performance in perovskite ceramics doped by rare-earth elements was primarily investigated.
    The relationship between properties and structures in microware dielectric ceramics with perovskite structure was discussed in the total dissertation, as well as the principle of dielectric polarization and loss mechanism.
    On the base of summarizing the experiment data, it was proposed that the microware characters in perovskite-like tungsten bronze type structure BaO-Ln2O3-TiO2 series, complex perovskite CaO-Li2O-Ln2O3-TiO3 series and Pb-based perovskite Pb-Ca-Fe-Nb series were decided by the structure of BO6 octahedron connected each other through the point angle.
    By use of the in-electric field theory and Lorentz Model, the polarization equation of perovskite structure microware ceramics was obtained, and the approximate equation to explain polarization can be got by proper simplifying, with which the polarization of intrinsic perovskite structure microware ceramics can be explained at a certain degree.
    
    
    However, the ion structure of microware dielectric ceramics was so complicated that the result of the simplified calculation would be confirmed further by experiment.
    The electronic and ionic polarizing process were researched by the perturbation theory of quantum mechanics. In microwave field, when B-O ion polarized in BO6 octahedral, the field can be taken as the electron movement of B ion acting with O ion, if the interaction between B ion and O ion vibration was treated as a perturbation quantity and the impact of this perturbation quantity on the degenerate energy was evaluated. According to Jahn-Teller effect, the B-O chain in octahedral would be changed: the electron cloud of O ion would firstly be distorted and the polarization of octahedral increased, if the amount of the decreasing energy was greater than the amount of degenerate energy increase caused by the replacement of O ion, and the O ion replacement distortion would result in higher polarization of Octahedral.
    The dielectric loss in ceramics was investigated by defect chemistry. Through analyzing the defect model of microwave ceramics in intrinsic, donor and acceptor doping situation, the relationship between conductivity and structure in ceramics was investigated in order to study the regularity of conductive loss. The relationship of the source of defect、regularity and the loss was investigated from the grain defect, crystal edge and miscellaneous aspects. The research of point defect controlling, grain growth model controlling and process controlling were initially studied in this work.
    Base on the micr
引文
[1] 张绪礼. 电介质物理与微波介质陶瓷[J]. 压电与声光, 1997, 19(5): 315-320
    [2] 李标荣, 王筱珍, 张绪礼. 无机电介质[M]. 武汉: 华中理工大学出版社, 1995
    [3] 韩家平. 微波介质陶瓷的研究. [硕士学位论文]. 华中理工大学图书馆, 1994
    [4] Teoreanu I., Andronescu E., Folea A. Microwave Processing of Ba2Ti9O20 Ceramic. Ceramics International, 1996, 22(4): 305-307
    [5] Agrawal, Dinesh K. Microwave processing of ceramics. Current Opinion in Solid State & Materials Science, 1998, 3(5): 480-485
    [6] 王典成. 电磁场理论与微波技术[M]. 北京: 科学出版社, 1986, 5
    [7] 牛中奇等. 电磁场理论基础[M]. 北京: 电子工业出版社, 2001, 1
    [8] Klein N., Schuster M., Vitusevich S., et al. Novel dielectric resonator structures for future microwave communication systems. J. Europ. Ceram. Soc., 2001, 21(15): 2687-2691
    [9] Kim E. S., Jeon J. S., Yoon K. H.. Effect of sintering method on the microwave dielectric properties of (Pb0. 45Ca0. 55)(Fe0. 5Nb0. 5)O3 ceramics. J. Europ. Ceram. Soc., 2003, 23(14): 2583-2587
    [10] Hyun Y. K., Soo K. E., Jeon Jong-Suk. Understanding the microwave dielectric properties of (Pb0. 45Ca0. 55) [Fe0. 5(Nb1-xTax)0. 5]O3 ceramics via the bond valence. J. Europ. Ceram. Soc., 2003, 23(14): 2391-2396
    [11] Kim W. S., Yoon K. H., Kim E. S.. Far-infrared reflectivity spectra of CaTiO3–Li1/2Sm1/2TiO3 microwave dielectrics. Materials Research Bulletin, 1999, 34(14-15): 2309-2317
    [12] Klein N., Schuster M., Parkot D.. Ceramic electromagnetic bandgap structures for microwave and millimetre wave applications. J. Europ. Ceram. Soc., 2003, 23(14): 2449-2453
    [13] Hu M. Z., Zhou D. X., Zhang D. L.. Microwave dielectric properties of (PbCa)(FeNbZr)O3 ceramics. Materials Science and Engineering (B), 2003, 99(1-3): 403-407
    
    [14] Huang G. H., Zhou D. X., Xu J. M., et al. Low-temperature sintering and microwave dielectric properties of (Zr, Sn)TiO4 ceramics. Materials Science and Engineering (B). 2003, 99(1-3): 416-420
    [15] Bijumon P. V., Mohanan P., Sebastian M. T.. High dielectric constant low loss microwave dielectric ceramics in the Ca5Nb2-xTaxTiO12 system. Materials Letters, 2003, 57(8): 1380-1384
    [16] Bijumon P. V., Mohanan P., Sebastian M. T.. Microwave dielectric properties of LaMgAl11O19. Materials Research Bulletin, 2002, 37(13): 2129-2133
    [17] Wang Z. W., Yao Xi, Zhang L. Y.. CeO2-modified BiNbO4 microwave ceramics sintered under atmosphere. Ceramics International, 2004, 30(7): 1329-1333
    [18] Huang C. L., Weng M. H.. Low-fire BiTaO4 dielectric ceramics for microwave applications. Materials Letters, 2000, 43(1-2): 32-35
    [19] Sebastian M. T., Santha N., Bijumon P. V., et al. Microwave dielectric properties of (1-x)CeO2–xCaTiO3 and (1-x)CeO2–xSm2O3 ceramics. J. Europ. Ceram. Soc., 2004, 24(9): 2583-2589
    [20] Ding S. H., Yao Xi, Yang Yong. Dielectric properties of B2O3-doped BiNbO4 ceramics. Ceramics International, 2004, 30(7): 1195-1198
    [21] Sebastian M. T., Solomon S., Sreemoolanadhan H., et al. Microwave dielectric resonators based on Ba[(Bi0. 2 D3+0. 3)] Nb0. 5]O3 (D3+ = Y, Pr, Sm, Gd, Dy Er). Materials Letters, 1996, 28(1-3): 107-111
    [22] Ogawa H., Kan A., Ishihara S., et al. Crystal structure of corundum type Mg4(Nb2–xTax)O9 microwave dielectric ceramics with low dielectric loss. J. Europ. Ceram. Soc., 2003, 23(14): 2485-2488
    [23] Huang C. L., Chiang K. H., Chuang S. C. Influence of V2O5 additions to Ba(Mg1/3Ta2/3)O3 ceramics on sintering behavior and microwave dielectric properties. Materials Research Bulletin, 2004, 39(4-5): 629-636
    [24] Krupka J., Weil C.. Recent advances in metrology for the electromagnetic characterization of materials at microwave frequencies. 12th International conference on microwave and radar(Mikon’98), Krakow, Poland, 1998. New Jersey, IEEE Press, 1998: 243-253
    
    [25] Xie Z. P., Yang J. L., Huang X. D., et al. Microwave processing and properties of ceramics with different dielectric loss. J. Europ. Ceram. Soc., 1999, 19(3): 381-387
    [26] Richtmyer R. D.. Dielectric resonators. J. Appl. Phys., 1939, 15: 391-398
    [27] Okaya A.. The Rutile microwave resonator. Proc. IRE, 1960, 48: 1921
    [28] Okaya A., Barash L. F.. The dielectric microwave resonator. Proc. IRE, 1962, 50: 2081-2092
    [29] Cohn S. B.. Microwave bandpass filters containing high Q dielectric resonatoers. IEEE Trans. Microwave Theory Tech., 1968, MTT-16: 218-227
    [30] 肖定全, 杜若昕, 熊雅玲. 微波介质陶瓷的近期研究进展. 功能材料, 1995, 1: 20-23
    [31] Masse D. J.. A new low loss high-k temperature compensated dielectric for microwave applications. Proc. IEEE, 1971, 59: 1628-1629
    [32] Plourde J. K., Linn D. F., O’Bryan H. M., et al. Ba2Ti9O20 as a microwave dielectric resonator. J. Am. Ceram. Soc., 1975, 58: 418-420
    [33] Wakino K., Katsube M., Tamura H., et al. Microwave dielectric materials. (in Japanese). IEE Four Joint Conv, 1977, 235
    [34] Wakino K., Nishikawa T., Tamura H., et al. microwave bandpass filers containing dielectric resonator with improved temperature stability and spurious response. IEEE MTT-% Int. Microwave Symp. dig, 1975: 63-65
    [35] 杨辉, 张启龙, 王家邦等. 微波介质陶瓷及器件研究进展. 硅酸盐学报, 2003, 10: 970-980
    [36] 吕文中, 张道礼, 黎步银等. 高εr微波介质陶瓷的结构、介电性质及其研究进展. 功能材料, 2000, 31(6): 572-576
    [37] Kawashima S., Nishida M., Ueda I, et al. Sol-Gel processing and microwave characteristics of Ba(Mg1/3Ta2/3)O3. dielectrics. J. Am. Ceram. Soc., 1983, 66: 421-424
    [38] Sagala D. A., Nambu S.. Microscopic calculation of dielectric loss at microwave frequencies complex perovskite Ba(Zn1/3Ta2/3)O3. J. Am. Ceram. Soc., 1992, 75(9): 2573-2577
    [39] Matsumoto H., Tamura H., Wakino K.. Ba(Mg, Ta)O3- BaSnO3 high-Q-dielectric
    
    
    resonator. Jpn. J. Appl. Phys. 1991, 30: 2347-2349
    [40] Youn H J., Kim K Y., Kim H. Microstructural characteristics Of Ba(Mg1/3Ta2/3)O3 ceramics and its related microwave dielectric properties. Jpn. J. Appl. Phys., 1996, 35: 3947-3953
    [41] Kim S Y., Lee H Y., C K. Effect of perovskite impurity addition on microware dielectric properties of Ba(Mg1/3Ta2/3)O3- Ba(Ni1/3Ta2/3)O3 ceramics. IEEE Inter. Symp. Appl. Ferroelectrics, 1994, 2: 617-621
    [42] Barber D J., Moulding K M., Zhou J i. Structural order in Ba(Zn1/3Ta2/3)O3, Ba(Zn1/3Nb2/3)O3 and Ba(Mg1/3Ta2/3)O3 microwave dielectric ceramics. J. Mater. Sci., 1997, 32: 1531-1544
    [43] Cheng W X., Ding A L., Qiu H. Properties of preferential (Zr0. 8Sn0. 2)TiO4 thin films prepared by rf magnetron sputtering for microwave application. Microelectronic Engineering, 2003, 4: 648-653
    [44] Chen Y C., Cheng H F., Wang G. Microwave dielectric imaging of Ba2Ti9O20 materials with a sanning-tip microwave near-field microscope. J. Europ. Ceram. Soc., 2003, 6: 2671-2675
    [45] Huang G H., Zhou D X., Xu J M. et al. Low-temperature sintering and microwave dielectric properties of (Zr, Sn)TiO4 ceramics. Mater. Sci&Engin. B, 2003, 99: 416-420
    [46] 姚尧, 赵梅瑜, 王依琳等. 固相合成制备单相Ba2Ti9O20粉体及陶瓷. 硅酸盐学报, 1998, 26(6): 787-801
    [47] 韩家平, 张绪礼, 王筱珍等. BaO- TiO2系中Ba2Ti9O20相形成的研究. 硅酸盐学报, 1996, 24(2): 173-178
    [48] kameyama I., Kagata H., Kato J. Low-fire Bi-Based dielectric ceramics for microwave use. J. Japan Soc. Powder&Powder Metallurgy, 1993, 40: 669-672
    [49] Kim J. S., Kim J. W., Cheon C. I.. Effect of chemical element doping and sintering atmosphere on the microwave dielectric properties of barium zinc tantalates. J. Europ. Ceram. Soc.. 2001, 21: 2599-2604
    [50] Barber D. J., Moulding K. M., Zhou J. I.. Structural order in Ba(Zn1/3Ta1/3)O3, Ba(Zn1/3Nb1/3)O3 and Ba(Mg1/3Ta1/3)O3 microwave dielectric ceramics. J. Mater. Sci..
    
    
    1997, 32: 1531-1544
    [51] 倪尔瑚. 材料科学中的介电谱技术[M]. 北京: 科学出版社, 1999, 9
    [52] Hakki B. W., Colemn P. D.. A dielectric resonator method of measuring inductive capacities in the millimeter range, IRE Trans. On Microwave Theory and Techniques. 1960, MTT-8: 402
    [53] Courtney W. E.. Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. IEEE Trans. Microwave Theory Tech.. 1970, MTT-18: 476
    [54] 金霞. 高微波介质陶瓷材料的研制及其极化、损耗机理的研究[硕士学位论文]. 华中理工大学图书馆, 1998
    [55] Gurevich V L., Tagantsev A K.. Intrinsic dielectric loss in crystals. Advances Phys, 1991, 40(6): 719-767
    [56] Wersing W.. Microwave ceramics for resonators and filters. Current Opinion in Solid State & Mater. Sci., 1996, 1(5): 715-731
    [57] Zurmuhlen R., Petzelt J., Kamba S., et al. Dielectric spectroscopy of Ba(B’1/2B”1/2)O3 complex perovskite ceramics: correlations between ionic parameters and microwave dielectric properties. J. Appl. Phys., 1995, 77(10): 5341-5350
    [58] Sawada A., Kuwabara T.. Infrared study of Ba(Mg1/3Ta2/3)O3 ceramics for microwave resonators. Ferroelectrics, 1989, 95: 205-208
    [59] Mhaisalkar S. G., Jreadey D. W., Akbar S. A., et al. Infrared reflectance spectra of doped BaTi4O9. J. Solid State Chem, 1991, 95: 275-282
    [60] Fukuda K., Kitoh R., Awai I.. Far-Infrared reflection spectra of dielectric ceramics for microwave applications. J. Am. Ceram. Soc., 1994, 77(1): 149-154
    [61] sgala D., Koyasu S.. Infrared reflection of Ba(Mg1/3Ta2/3)O3 ceramics. J. Am. Ceram. Soc., 1993, 76(10): 2433-2436
    [62] Wakino K., Murata M., Tamura H.. Far Infrared reflection spectra of Ba(Zn, Ta)O3-BaZrO3 dielectric resonator material. J. Am. Ceram. Soc., 1986, 69(1): 34-37
    [63] Q’Bryan H. M., Thomson J., Plourde J. K. Microwave properties of BaTi4O9 and Ba2Ti9O20 dielectric resonators. J. Mater. Sci. 1998, 33: 3012-3015
    
    [64] Kolar D., Stadler Z., Gaberscek S., et al. Ceramic and dielectric properties of selected compositions in the BaO-TiO2-Nd2O3 system. Ber. Dt. Keram. Ges., 1978, 55: 346-347
    [65] Bolton R.. Temperature compensating ceramic capacitors in the system baria-rare-earth-oxide titamia. PhDthesis. Ceramic engineering, University of Illinois, Urbana, IL, (University Microfilms International, A Bell&Howell Information Company). 1968
    [66] Kolar D., Gaberscek S., Volavsek B., et al. Synthesis and crystal chemistry of BaNd2Ti3O10, BaNd2Ti5O14, Nd4Ti9O24. J. Solid State Chemistry, 1981, 38: 158-164
    [67] Suvorov D., Valant M., Kolar D.. The role of dopants in tailoring the microwave properties of Ba6–3xR8+2xTi18O54 (R=La-Gd)ceramics. J. Materials science. 1997, 32: 6483-6488
    [68] Matveeva R. G., Varforomeev M. B. and Iiyuschenko L. S.. Refinement of the composition crystal structure of Ba3. 75Nd9. 5Ti18O54. Zh. Neorg. Khim.. 1984, 29: 31-34 (trans Russ. J. Inorg. Chem.. 1984, 29: 17-19)
    [69] Ohsato H., Ohhashi T., Kato H., et al. Microwave dielectric properties and structure of the Ba6–3xR8+2xTi18O54 solid solution. Jpn. J. Appl. Phy., 1995, 34: 187-191
    [70] Fukuda K., Kitoh R., Awai I.. Microwave characteristics of mixed phases of BaPr2Ti4O12 - BaRNd2Ti5O14 ceramics. J. Mater. Res.. 1995, 10: 312-319
    [71] Ubic R., Reaney I. M., Lee W., et al. Ba6–3xR8+2/3xTi18O54 microwave dielectric resonators. Ferroelectrics. 1999, 223: 293-300
    [72] Varfolomeev M. B., Kostomarov A. S., Golubtsova V. S., et al. The synthesis and homogeneity ranges of the phases Ba6–3xR8+2/3xTi18O54. Russ. J. Inorg. Chem.. 1988, 33: 607-608
    [73] Ohsato H., Ohhashi T., Nishigaki S., et al. Formation of solid solution of new tungsten bronze-type microwave dielectric compounds Ba6–3xR8+2/3xTi18O54 (R=Nd and Sm, ). Jpn. J. Appl. Phys.. 1993, 32: 4323-4326
    [74] Negas T., Davies P. K.. Influence of chemistry and processing on the electrical properties of solid solutions. Mater. & proc. for wire. comm.. Ceramic Trans.. 1995, 53: 196-197
    
    [75] Suvorov D., Valant M., Kolar D.. Materials and processes for wireless communications. Westerville, OH, American Ceramic Society. 1995: 197-207
    [76] Katayama K., Azuma Y., Takahashi Y.. Molten salt synthesis of single-phase BaNd2Ti5O14 powder. J. Materials Science. 1999, 34: 301-305
    [77] Ratheesh R., Sreemoolanadhan H., Sebastian M. T., et al. Preparation characterization and dielectric properties of ceramics in the BaO-Nd2O3-TiO2 system. Ferroelectrics. 1998, 211: 1-8
    [78] Ohsato H.. Science of tungstenbronze-type like Ba6-3xR8+2xTi18O54 (R=rare earth) microwave dielectric solid solutions. J. Europ. Ceram. Soc. 2001, 21: 2703-2711
    [79] Ota Y., Kakimoto K., Ohsato H., et al. Low-temperature sintering of Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics by B2O3 and GeO2 addition. J. Europ. Ceram. Soc. 2004, 24: 1755-1760
    [80] Ubic R., Reaney I. M., Lee W. E., et al. Effect of divalent dopants on propertir of Ba3. 75Nd9. 5Ti18O54 microwave dielectric resonators. Mater. Res. Soc. Symp. -Proc. Solid-State Chem. Inorg. Mater. 1997, 1: 495-500
    [81] Ubic R., Reaney I. M., Lee W. E.. Microwave dielectric solid-solution phase in system BaO-Ln2O3-TiO2(Ln=lanthanide cation). Inter. Mater. Rev. 1998, 43: 205-219
    [82] Jawahar I. N., Sebastian M. T., Mohanan P.. Microwave dielectric properties of Ba5-3xSrxTa4O15, Ba5NbxTa4-xO15 and Sr5NbxTa4-xO15 ceramics. Mater. Sci. &Engin. B.. 2004, 106: 207-212
    [83] Sebastian M. T.. New Low loss Microwave dielectric ceramics in the BaO-TiO2-Nb2O5s/Ta2O5 system. J. Mater. Sci. (Materials in Electronics). 1999, 10: 475-478
    [84] Higuchi Y., Tamura H.. recent progress on the dielectric properties of dielectric resonator materials with their applications from microwave to optical frequencies. J. Europ. Ceram. Soc.. 2003, 23: 2683-2688
    [85] Kim W. S., Yoon K. H., Kim E. S.. Mirowave dielectric characteristics of the Ca2/5Sm2/5TiO3-Li1/2Nd1/2TiO3 ceramics. Jpn. J. Appl. Phys.. 2000, 39: 5650-5653
    [86] Kim E. S., Yoon K. H., Kim W. S.. Effect of bond valence on microwave dielectric
    
    
    properties of Ca2/5Sm2/5TiO3-Li1/2Nd1/2TiO3 ceramics. Key Engin. Mater.. 2002, 228: 43-48
    [87] Kim I. S., Jung W. H., Inaguma Y., et al. Dielectric properties of a-site deficient perovskite-type lanthanum-calcium-titanium oxide solid solution system [(1-x)La2/3TiO3-xCaTiO3(0. 1≤x≤0. 96)]. Mater. Res. Bull, 1995, 30(3): 307-316.
    [88] Yoshida M, Hara N, Takada T, et al. Structure and dielectric properties of (Ca1-xNd2x/3)TiO3. Jpn. Appl. Phys, 1997, 36(11): 6818-6823
    [89] Kim W. S., Kim E. S., Yoon K. H. Effects of Sm3+ substitution on dielectric properties of Ca1-xSm2x/3TiO3 ceramics at microwave frequencies. J. Am. Ceram. Soc., 1999, 82(8): 2111-2115
    [90] Ezaki K., Baba Y., Takahashi H.. Microwave doelectric properties of CaO-Li2O- Ln2O3-TiO2 ceramics. Jpn. J. Appl. Phys.. 1993, 32: 4319-4322
    [91] Takahashi H., Baba Y., Ezaki K.. Microwave dielectric properties and crystal structure of CaO-Li2O-(1-x)Sm2O3-xLn2O3-TiO2 (Ln: lanthanide) ceramics system. Jpn. J. Appl. Phys.. 1996, 35: 5069-5073
    [92] kato J., Kagata H., Nishimoto K. Dielectric properties of lead alkaline-earth zirconate at microwave frequencies. Jpn. J. Appl. Phys.. 1991, 30: 2343-2346
    [93] kato J., Kagata H., Nishimoto K. Dielectric properties of (PbCa)(MgNb)O3 at microwave frequencies. Jpn. J. Appl. Phys.. 1992, 31: 3144-3147
    [94] Kameyama I., Kagata H., Kato J. Low-fire Bi-based dielectric ceramics for microwave use. J. Japan Soc. Powder&powder Metallurgy. 1993, 40: 669-672
    [95] Kucheiko S., Choi J. W., Kim H. J., et al. Microwave characteristics of (Pb, Ca)(Fe, Nb, Sn)O3 dielectric materials. J. Am. Ceram. Soc.. 1997, 80: 2937-2940
    [96] Choi J. W., Ha J. Y., Kang C. Y., et al. Microwave dielectric properties of (Pb, Ca)(Mg, Nb, Sn)O3 Ceramics. Jpn. J. Appl. Phys.. 2000, 39: 5923-5926
    [97] Liu C. L., Wu T. B.. Effects of calcium substitution on the structural and microwave dielectric characteristics of [(Pb1-xCax) 1/2La1/2] (Mg1/2Nb1/2)O3 ceramics. J. Am. Ceram. Soc.. 2001, 84(4): 1291-1295
    [98] Hu X., Chen X. M., Wu S. Y.. Preparation, properties and characterization of CaTiO3-modified Pb(Fe1/2Nb1/2)O3 dielectrics. J. Euro. Ceram. Soc.. 2003, 23(11):
    
    
    1919-1924
    [99] Hu X., Chen X. M., Lu X. J.. Temperature-stable dielectric ceramics in Pb(Mg1/3Nb2/3)O3–CaTiO3–Bi4Ti3O12 pseudo-ternary system. Ceramics International. 2002, 28(1): 69-73
    [100] Yang Q. H., Kim E. S., Xu J., et al. Effect of La3+ and Nd3+ on the microwave dielectric properties of (Pb0. 5Ca0. 5)(Fe0. 5Nb0. 5)O3 ceramics. Materials Science and Engineering. B99. 2003, 25(1-3): 259-261
    [101] Yang Q. H., Kim E. S., Xu J., et al. Microwave dielectric properties of (Pb, Ca, La)(Fe, Nb)O3+δ ceramics substituted by Ti for B-site. Materials Science and Engineering. B99. 2003, 25(1-3): 332-335
    [102] Ohsato H., Imaeda M.. The quality factor of the microwave dielectric materials based on the crystal structure-as an example: the Ba6-3xR8+2xTi18O54 (R=rare earth)solid solutions. Mater. Chem. &Phys.. 2003, 79: 208-212
    [103] Ohsato H., Imaeda M., Takagi Y., et al. Microwave quality factor improved by ordering of Ba and rare-earth on the tungsten bronze-type Ba6-3xR8+2xTi18O54 (R=La, Nd, and Sm)solid solutions. IEEE Trans. Microwave Theory Tech.. 1998, 8: 509-512
    [104]Smolensky G. A., Isupov V. A., Agranaovska A. I, et al. Ferroelectrics with Diffuse phase transitions. Sco. Phys. Solid. State. 1961, 2(11): 2584-2594
    [105] Smolensky G. A. Physical phenomena in ferroelectrics with diffused phase trausition. J. Phys. Soc. Jpn. 1970, 28(supple): 26-27.
    [106] 方俊鑫, 殷之文主编. 电介质物理学[M]. 北京: 科学出版社, 1989
    [107] 张良莹, 姚熹. 电介质物理[M]. 西安: 西安交通大学出版社, 1989
    [108] 方俊鑫, 陆栋. 固体物理学[M]. 上海: 上海科学技术出版社, 1980
    [109] 黄昆. 固体物理学[M]. 北京: 高等教育出版社, 1988
    [110] 曾谨言. 量子力学(第二版)[M]. 北京: 科学出版社, 1990
    [111] Kohn W. Density Functional Theory: Fundamentals and Applications In: F. Bassani, F. Fumi, M. P. Tosi. Highlights of Condensed Matter Theory. North Holland, 1985, 1.
    [112] Sham L. Density Functional Theory and Computational Materials Physics, In: Chelikowsky J. R., Louie S. G. Quantum Theory of Real Materials, Amsterdam: Kluwer Academic Publishers, 1996, 13
    [113] Hybertsen M. S., Louie S. G. Electron Correlation in Semiconductors and Insulators:
    
    
    Band Gaps and Quasiparticle Energies. Phys. Rev. B, 19986, 34: 5390-5397
    [114] Louie S. G. Quasiparticle Theory of Electron Excitations in solid. In: Chelikowsky J. R., Louie S. G. Quantum Theory of Real Materials. Amsterdam: Kluwer Academic publishers, 1996, 83
    [115] [荷]Frenkel &Smit. 汪文川等译. 分子模拟——从算法和应用[M]. 北京: 化学工业出版社, 2002, 9
    [116] 恩格斯著, 曹葆华, 于光远译. 自然辩证法. 北京: 人民出版社, 1956
    [117] 何进等. 微波介质陶瓷材料综述. 电子元件与材料[J], 1995(4): 7-13
    [118] 高春华, 黄新友. 微波介质陶瓷及其展望. 陶瓷[J], 2002
    [119] 高瑞平, 李晓光, 施剑林等. 先进陶瓷物理与化学原理及技术[M]. 北京: 科学出版社, 2001
    [120] [波]R. 帕姆普奇. 陶瓷材料性能导论[M]. 北京: 中国建筑工业出版社, 1984
    [121] [德]H. 萨尔满, H. 舒尔兹著, 黄照柏译. 陶瓷学上册: 基本理论及重要性质[M]. 北京: 轻工业出版社, 1989
    [122] [美]W·D·金格瑞. 陶瓷导论[M]. 北京: 中国建筑工业出版社, 1982
    [123] 徐政, 倪宏伟. 现代功能陶瓷[M]. 北京: 国防工业出版社, 1998
    [124] 钟维烈. 铁电体物理学[M]. 北京: 科学出版社, 1996
    [125] Wu Y. J., Chen X. M. Dielectric ceramics of Ba6-3xR8+2xTi18O54 microwave dielectric ceramics. J. Am. Soc., 2002, 85(3): 579-584
    [126] Kim I. T. Ordering and microwave dielectric properties of Ba(Zn1/3Ta2/3)O3 ceramics. J. Mater. Res. 1997, 12: 518-524
    [127] Venkatesh J., Sivasubramanian V., Subramannian V. Far-IR reflectance study on B-site disordered Ba(Zn1/3Ta2/3)O3 dielectric resonator. Mater. Res. Bull. 2000, 35: 1325-1332.
    [128] Kim I. T., Kim Y. H., Chung S. J. Effects of liquid phase formation on the order-disorder behavior of Ba(Ni1/3Nb2/3)O3. Ferroelectrics. 1995, 173: 125-132.
    [129] Iddles D. M., Bell A. J., Moulson A. J.. Relationships between dopants microstructure and the microwave dielectric properties of ZrO2-TiO2-SnO2 ceramics. J. Mater. Sci., 1992, 27: 6303-6309
    [130] Azough F. The relationship between the microstructure and microwave dielectric properties of zirconium titanate ceramics. J. Mater. Sci. 1996, 31: 2593-2602
    
    [131] Okawa T., Utaki H., Takada T. The application of microwave ceramics. Application of Ferroelectrics. Proceedings of the Ninth IEEE international Symposium on Ferroelectrics. 1994, 7: 367-371
    [132] Ichinose N.. Advances in electronic ceramic materials in Japan. IEEE Electrical Insulation Magazine.. 1988, 4: 24-30
    [133] Nenasheva E. A., Kartenko N. F.. High dielectric constant microwave ceramics. J. Europ. Ceram. Soc.. 2001, 21: 2697-2701
    [134] Wolfram W. Microwave ceramics for resonators and filters. IEEE MTT-S Inter. Microwave Sympo. Digest.. 1999, 3: 13-19
    [135] J. K. Plourde, C. L. Ren. Application of Dielectric Resonators in Microwave Components, IEEE Trans. on MTT-1981, 29: 754
    [136] Wersing W.. High Frequency Ceramic Dielectrics and their Application for Microwave Components, Electric Ceramics, B. C. H. Steele, Elseevier Applied, London, U. K., 1991
    [137] Chen Y C., Huang C. L.. microwave dielectric properties of Ba2-xSm4+2/3xTi9O20 ceramics with zero temperature coefficient. Mater. Sci&Engin. A. 2002, 334: 250-256
    [138] Li Y., Chen X M. Effects of sintering conditions on microstructures and microwave dielectric properties of Ba6-3x(Sm1-yNdy)8+2xTi18O54 ceramics(x=2/3). J. Europ. Ceram. Soc.. 2002, 22: 715-719
    [139] 周公度, 段连运编著. 结构化学基础(第2版). 北京: 北京大学出版社, 1995
    [140] 邵美成. 鲍林规则与键价理论[M]. 北京: 高等教育出版社, 1993
    [141] Kim E. S., Kim Y. H., Chun B. S., et al. Effects of Ti4+ substitution on microwave dielectric properties of (Pb0. 2Ca0. 8)[(Ca1/3Nb2/3)1?xTix]O3 ceramics. Materials Chemistry and Physics. 2003, 79(2-3): 233-235
    [142] Cao H., Fang B. J., Luo H. S., et al. Dielectric and piezoelectric properties for 0. 62Pb(Mg1/3Nb2/3)O3–0. 38PbTiO3 single crystals. Ceram. Int.. 2003, 29(2): 145-150
    [143] Sebastian M. T., Solomon S., Sreemoolanadhan H., et al. Microwave dielectric resonators based on Ba[(Bi0. 2D0. 33+)]Nb0. 5]O3 (D3+ = Y, Pr, Sm, Gd, Dy Er). Materials Letters. 1996, 28(1-3): 107-111
    
    [144] Levin I., Chan J. Y., Geyer R. G., et al. Cation Ordering Types and Dielectric Properties in the Complex Perovskite Ca(Ca1/3Nb2/3)O3. Journal of Solid State Chemistry. 2001, 156(1): 122-134
    [145] Pardo L., Jiménez B., Mercurio J. P., et al. Temperature behaviour of structural, dielectric and piezoelectric properties of sol-gel processed ceramics of the system LiNbo3-NaNbO3. Journal of Physics and Chemistry of Solids. 1997, 58(9): 1335-1339
    [146] Ohsato H., Futamata Y., Kakimoto K. I., et al. Microwave dielectric properties of Ba6–3xEu8+2x/3Ti18O54. Ferroelectrics. 2002, 272: 249-254
    [147] Ohsato H., Imaeda M., Tagagi Y., et al. Microwave quality factor improved by ordering of Ba and rare-earth on the tungstenbronze-type Ba6–3xR8+2/3xTi18O54 (R=La, Nd and Sm) solid solution. In proceeding of the Xith IEEE International Symposium on Applications of Ferroelectrics, 1998, IEEE catalog 1998, 36: 509-512.
    [148] Ubic R., Reaney I. M., Lee W. Space group determination of Ba6–3xR8+2/3xTi18O54. J. Am. Ceram. Soc.. 1999, 82(5): 1336-1338
    [149] Ubic R., Reaney I. M., Lee W., et al. Poperties of the microwave dielectric phase Ba6–3xR8+2xTi18O54. Ferroelectrics. 1999, 228: 271-282
    [150] Wu Y. J., Chen X. M.. Modified Ba6–3xR8+2/3xTi18O54 microwave dielectric ceramics. J. Europ. Ceram. Soc.. 1999, 19: 1123-1126
    [151] Yoon K. H., Chang Y. H., Kim W. S., et al. Dielectric properties of Ca1-xSm2x/3TiO3-Li1/2Sm1/2TiO3 ceramics. Jpn. J. Appl. Phys.. 1996, 35(9B): 5145-5149
    [152] Yoon K. H., Park M. S., Kim E. S.. Microwave dielectric properties and Far-IR reflectivity of (Ca0. 275Sm0. 4Li0. 25)(Ti1-xMnx)O3 ceramics. Ferroelectrics. 2001, 262: 173-178
    [153] Kim J. S., Cheon C. I., Kang H. I., et al. Crystal structure and microwave dielectric properties of CaTiO3-( Li1/2Nd1/2) TiO3-( Li1/3Nd1/3) TiO3 (Ln=La, Dy)ceramics. Jpn. J. Appl. Phys.. 1999, 38(9B): 5633-5637
    [154] Huang C. L., Tsai J. T., Li J. L.. Microwave dielectric properties of (1-x)CaO-xBaO-Li2O-(1-y)Sm2O3-yNd2O3-TiO2 ceramics system. J. Mater. Sci..
    
    
    2000, 35: 4901-4905
    [155] Huang C. L., Tsai J. T., Chen Y. b.. Dielectric properties of (1-y)Ca1-xLa2x/3TiO3-(Li, Nd)1/2TiO3 ceramics system at microwave frequency. Mater. Res. Bull. 2001, 36: 547-556
    [156] Chen H. L., Huang C. L.. Microwave dielectric properties and microstructures of Ca1-xNd2x/3TiO3-Li1/2Nd1/2TiO3 ceramics. Jpn. J. Appl. Phys.. 2002, 41(9): 5650-5653
    [157] Chen Y. C., Cheng P. S., Yang C. F., et al. Substitution of CaO by BaO to improve the microwave dielectric properties of CaO-Li2O-Sm2O3-TiO2 ceramics. Ceram. Int.. 2001, 27: 809-813
    [158] Sumi K., Qiu H., Kamei H., et al. Structural compositional and piezoelectric properties of the sol-gel, Pb(Zr0. 56Ti0. 44)-0. 80(Mg1/3Nb2/3)0. 20O3/ Pb(Zr0. 56Ti0. 44) composite films. Thin Solid Films. 1999, 349: 270-275
    [159] Lejeune M., Boilot J. P.. Influence of ceramic processing on dielectric of perovskite type compound: Pb(Mg1/3Nb2/3)O3. Ceram. Int. 1983, 9: 119-122
    [160] Lejeune M., Boilot J. P.. Formation mechanism and ceramic process of the ferroelectric perovskites: Pb(Mg1/3Nb2/3)O3 and Pb(Fe1/3Nb2/3)O3. Ceram. Int. 1982, 8: 99-103
    [161] Lejeune M., Boilot J. P.. Ceramics perovskite lead magnesium niobate. Ferroelectrics, 1984, 54: 191-194
    [162] Kato J., Fuji M., Kagata H.. Crystal structure refinement of (Pb1-xCax)ZrO3 by the Rietvelt method. Jpn. J. Appl. Phys. 1992, 32: 4356-4359
    [163] Inada M.. Analysis of the form action process of the piezoelectric. PCM ceramics Jap. Nationl. Tech. Rep. 1997, 23(1): 95-102
    [164] Jang S. L., chino K. U., Nomura S., et al. Electrostrictive behavior of lead magnesium niobate based ceramic dielectrics. Ferroelectrics. 1980, 27: 31-35
    [165] Swart S. L., Shrout T. R.. Schulze W., et al. Dielectric properties of lead magnesium niobate ceramics. J. Am. Ceram. Soc.. 1984, 67: 311-315
    [166] Kang D. H., Yon K. H.. Dielectric properties due to exess PbO and MgO in lead magnesium niobate ceramics. ferroelectrics, 1988, 87: 225-264
    
    [167] Sebastiana M. T., et al. Microwave dielectric properties of (1-x)CeO2–xCaTiO3 and (1_x)CeO2–xSm2O3 ceramics Journal of the European Ceramic Society 2004, 24: 2583-2589
    [168] Kim D. H., Lim S. K., An C.. The microwave dielectric properties of xTiO21-x CeO2 ceramics. Materials Letters 2002, 52: 240-243
    [169] [日]塩川二朗. 稀土的最新应用技术. 北京: 化学工业出版社, 1993, 8
    [170] 上海市化工局科学技术情报研究所. 稀土在催化剂上的应用. 上海: 上海科学技术文献出版社, 1982, 7
    [171] 邱关明. 稀土对生物机体剂量效应机理的研究进展. 稀土, 2003, 2: 49-56
    [172] 李洪钧, 潘晓明, 虞孝栋. 稀土对PbTiO3陶瓷各向异性的影响. 中国稀土理论与应用研究[M], 298-303
    [173] 徐建梅, 水热法合成以BaO-TiO2为基础成分的微波介质陶瓷的研究[博士学位论文]. 华中科技大学图书馆, 2004
    [174] 胡明哲, 铅基钙钛矿高介电常数微波介质陶瓷的改性研究[博士学位论文]. 华中科技大学图书馆, 2004
    [175] Bersuker J. B., Vekhter B. G.. Ferroelectrics 1978, 19: 137
    [176] Jahn H. A., Teller E.. Proc. Roy. Soc., 1937, A161: 220
    [177] Eliott R. J., Harley R. T., Hayes W., et al. Proc. Roy. Soc.. 1972, A328: 217
    [178] 河岛俊一郎. マィクロ波誘導体陶瓷の応用. ェレクトロニクス. セラミクス[J], 1993, 24 (6): 4-8
    [179] 沈继耀, 胡宗民, 谈家琪. 电子陶瓷[M]. 北京: 国防工业出版社, 1979
    [180] 江茂, 张栋梁. 缺陷化学理论及其发展. 华南师范大学学报(自然科学版)[J], 1994, 1: 74-79
    [181] 陆佩文. 无机材料科学基础[M]. 武汉: 武汉工业大学出版社, 1996
    [182] 周亚栋. 无机材料物理化学[M]. 武汉: 武汉工业大学出版社, 1992
    [183] 李标荣, 张绪礼. 电子陶瓷物理[M]. 武汉: 华中理工大学出版社, 1991
    [184] 郭景坤. 对21世纪材料研究的一些看法. 物理, 1999, 28(4) : 198-200
    [185][德]D. 罗伯 著, 项金钟, 吴兴惠译. 计算材料学[M]. 北京: 化学工业出版社, 2002, 9
    [186] 周东祥, 张绪礼, 李标荣. 半导体陶瓷及应用. 武汉: 华中理工大学出版社,
    
    
    1991
    [187] 周东祥, 龚树萍. PTC材料及应用. 武汉: 华中理工大学出版社, 1989, 61-66
    [188] Moulso A. J., Herbert J. M. Electroceramics Materials, Properties, Application(中译本). 武汉: 武汉工业大学出版社, 1993: 81-83
    [189] 吴人洁. 复合材料. 天津: 天津大学出版社, 2000, 12
    [190] 周桃生, 彭炜, 苗君等. 低温烧结压电陶瓷材料及应用, 湖北大学学报(自然科学版). 2000, 22(1): 49-53
    [191] 黄国华, 聚合物前驱体法合成CaTiO3基微波介质陶瓷的研究[博士学位论文]. 华中科技大学图书馆, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700