TiC颗粒增强镁基复合材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首次采用XD 法并结合半固态搅熔工艺成功地制备出TiC 颗粒增强镁基复合材料,很好地解决了镁基复合材料制备过程中存在的由于传统外加陶瓷颗粒润湿性差而难以直接加入到金属熔体中以及界面污染等关键科学问题。
    在将TiC/Al 中间合金加入到纯镁熔体中进行重熔实验时,首次发现了在Al-Ti-C 体系SHS 反应过程中残留下来的针状Al3Ti 亚稳相向TiC+Al 转变的动态过程,并建立了Al3Ti 向TiC+Al 演变的动力学模型,为进一步深入揭示Al-Ti-C 体系的SHS 反应机理提供了直观形象的科学依据。
    首次在Al-Ti-C 体系SHS 反应形成的TiC 中发现了TiC 生长条纹,并通过对TiC 生长条纹的研究,提出了TiC 二维晶核台阶侧向生长机制,并给出了年轮状层层包裹与金字塔状层层堆积这两种TiC 晶体生长模型。Al-Ti-C 体系SHS 反应形成的圆整光滑近球形TiC 宏观上虽然具有按粗糙界面连续长大的的特征,但由于TiC 的Jackson 因子高达5~7,其微观生长机制始终为二维晶核台阶侧向生长,并未发生由侧向生长机制向连续生长机制的转化。另外,用现代PBC 理论比较成功地解释了Al-Ti-C 体系SHS 反应形成的八面体TiC晶体生长形貌,是以{111}面为外表面的八面体。
    对TiC/Al 中间合金在纯镁熔体中进行的重熔及脱粘研究表明,TiC/Al 中间合金中的Al 与熔体中的Mg 可以发生互扩散, TiC/Al 中间合金中的Al 最后几乎完全扩散到镁熔体中而成为镁的合金化元素,同时熔体中的Mg 也充分扩散到中间合金中,此时TiC/Al 中间合金已经完全转变为TiC/Mg 中间合金,TiC 颗粒在AZ91 镁合金中能稳定存在,说明是AZ91 镁合金合适的增强体,这为XD 法制备TiCp/AZ91 镁基复合材料的可行性提供了科学理论依据。
    在Al-Ti-C 体系SHS 反应形成TiC 颗粒的动力学影响因素中, Al 含量对TiC 颗粒尺寸影响最大。C 粉粒度和C/Ti 比对SHS 反应产物相组成及TiC 颗粒形貌有着重要的影响。
    对TiC 颗粒在AZ91 镁合金熔体中均匀分布的动力学影响因素(搅拌温度、搅拌速度和搅拌时间等)进行了详细研究,并优化出半固态机械搅拌制备TiCp/AZ91 镁基复合材料的较佳工艺参数,成功地制备出TiC 颗粒在AZ91镁合金基体中均匀分布的TiCp/AZ91 镁基复合材料。最后,对TiC 颗粒增强镁基复合材料的室温拉伸强度和硬度以及磨粒磨损行为进行了测试,为TiC颗粒增强镁基复合材料的制备提供了可供参考的数据与依据。开辟了一条制备颗粒增强镁基复合材料的新途径。
With the entrance to 21st century the resource and environment problemshave become the principle problems in the sustainable development of humanbeings. Therefore in the long term, the trends of the industrial development allover the world can be reduced to the saving of energy and resource, what is more,the pursuit of natural production. Magnesium alloys are kind of the lighteststructural metal alloys, which have many excellent and unique properties, such ashigh specific strength and stiffness, high heat and electrical conductivity, gooddamping and shock absorption, excellent electromagnet shielding capability andeasy processing, as well as a good recovery capability, and therefore, increasingattention has been paid to magnesium and its alloys in automotive, communicationapparatus and aerospace applications. Consequently, it is considered thatmagnesium alloys are the most worthy and exploitative “natural engineeringmaterials”with greatly potential application in this century.
    With the development of the lightweight automotive and aerospace industries,the application of magnesium alloys depends mainly on their high tensile strengthat the ambient and elevated temperature, erosion resistance, wear resistance and onsuperior machinability. Currently, however, each of the most widely usedmagnesium alloys has its own advantages and limitations, which limit itsapplication to the above areas of advanced technology. For example, the tensilestrength, die-castability and the erosion resistance of the AZ91D magnesium alloyis excellent, but creep resistant properties are poor; the creep resistance of theAS41B magnesium alloy is higher, while both the tensile strength and hardness arelower. Conventional alloying technology do not meets the demands for higher
    properties of magnesium alloys. It is interesting to fabrication of magnesiummatrix composites with an optimum set of mechanical properties, such as highstrength, modulus, and thermal stability. According to the morphological feature of reinforcement, magnesium MMCscan be grouped under three heads, i.e. fiber, whisker and particulate reinforcedmagnesium matrix composites. The strengthening effect of fibre reinforcedcomposites is evident along the fiber direction, attracting more extensive interest;however, the fabrication processing is very complex and the production can not bereutilized. Although, the strength of whisker reinforced magnesium MMCs is veryhigh and the production with excellent fabricating and reprocessing properties canbe reutilized, the range of application of the composite has been limited due to ahigh cost starting material. Recently, the particulate reinforced magnesium matrixcomposites have been becoming one of the hotspot in the research field ofmagnesium MMCs due to its significant inherent simplicity and potentialcost-effectiveness in scale-up manufacturing, as well as its isotropy properties. Presently, the particulate reinforced magnesium MMCs are mainly fabricatedby ex situ manner. In this case, the size of the reinforcement is large and irregular,which easily lead to the local stress concentration, and to gas entrapment. Othermain drawbacks that have to be overcome are the interfacial reactions between thereinforcement and the matrix, and poor wettability between the reinforcement andthe matrix due to surface contamination of the reinforcements. Therefore, ceramicparticles are notoriously difficult to add directly to metal melts. In order to improve ofwettability, some processes, such as preheating, degassing in vacuum, surfaceprocessing by high-temperature oxidation or coating are needed, thus, theprocessing technology is complex. TiC can be formed in situ by SHS reaction inthe magnesium melt. In this case, however, the “inert”matrix acts as a diluent,which may make the propagation of the combustion wave unstable owing to thestrong heat dissipation in the “inert”metal matrix. XD technology is employed in this dissertation. In this technology, firstly, aTiC/Al master alloy with as high as 50~70 wt.% TiC particulates was fabricatedby SHS reaction in the Al-C-Ti system. Secondly, the master alloy could be addedeasily and economically to an AZ91 magnesium alloy matrix to achieve acomposite reinforced with the desired volume fraction of TiC particulates. Lastly,with the master alloy remelting in AZ91 magnesium alloy matrix, TiC particulatereinforced magnesium matrix composites was successfully fabricated bymechanical stirring in the semi-solid AZ91 magnesium alloy melt. Compared withthe conventional PRMMCs(particulate reinforced magnesium matrix composites)
    fabricated by ex situ methods, the in situ PRMMCs exhibit the followingadvantages: ①the in situ formed reinforcement is thermodynamically stable atthe matrix, leading to the less degradation in elevated-temperature service; ②thereinforcement-matrix interface is clean, resulting in a strong interfacial bonding;③the in situ formed reinforcing particulate is finer in size and their distributionin the matrix is more uniform, yielding better mechanical properties. The majorresearch efforts of the present study are as follows:1. Influencing factors of kinetics of SHS reaction to form the TiC/Al master Influencing factors of kinetics of SHS reaction to form the TiC/Al masteralloy were detailedly investigated by experimental research. Some newphenomenons and laws are found, what is more, the experimental parameters offabrication techniques which are appropriate for the SHS reaction to form theTiC/Al master alloy are optimized and suggested respectively.(1) In the influencing factors of kinetics of SHS reaction to form a TiC/Almaster alloy, Al contents have a decisive effect on the size of TiC particle. As theamount of aluminum incorporated was increased over the range 20 to 50 wt.%, theTiC size decreased from approximately 5~7μm to 0.7~0.8μm.(2) In the influencing factors of kinetics of SHS reaction to form a TiC/Almaster alloy, the size of graphite powders and C/Ti ratio have an important effecton the morphologies of TiC particles and construction of phases in the finalproduct. A number of octahedral TiC particles besides spherical TiC particles existin the TiC/Al master alloy when graphite powders with the size of 75 μm and amolar ratio of C/Ti=1 were used. In addition, there are quantities of plate-like andneedle-like Al3Ti metastable phases besides Al and TiC in the final SHS reactionproduct.(3) An addition of TiC dilution agent leads to forming TiC particles ofdifferent size during SHS reaction. On the one hand, the TiC particle additiveplays an role of nucleation, which makes itself spherical and enlarged; On theother hand, TiC additions as a dilution make the size of TiC particles formed insitu during SHS reaction be finer. In addition, TiC additions postulate thetransformation from Al3Ti to Al and TiC.(4) TiC/Al master alloys with the size of 5~7μm and 0.7~0.8μm, arefabricated through SHS reaction in the Al-Ti-C system, respectively, such as theAl-Ti-C system (30 wt.%Al, Al, Ti, C powders with the size of 29, 75, 50μm,respectively) and the Al-Ti-C system (50 wt.%Al, Al, Ti, C powders with the sizeof 29, 15, 0.5μm, respectively).
    (5) The reaction between Al3Ti and C during the SHS reaction in the Ti-C-Alsystem, i. e. Al3Ti + C= TiC + Al, was confirmed experimentally when a TiC/Almaster alloy was remelted in pure magnesium melt, which provide directconclusive evidence for understanding deeply the reaction mechanism of the SHSreaction in the Al-Ti-C system.2. The growth mechanism of TiC crystal was proposed through study on thegrowth striations of TiC crystal The growth striations of TiC crystal formed during the SHS reacion in the Al-Ti-Csystem were found for the first time. From the growth striations of TiC crystal, thegrowth mechanism of TiC crystal is postulated to be lateral growth from thetwo-dimentional-nucleus steps. In addition, TiC grows mainly by Multilayer stacks orwrapping. TiC is regarded as a typical faceted crystal due to its high Jackson factor, which wasestimated to be between 5 and 7, thus, the growth mechanism transition from lateral tocontinuous growth modes, which is hypothesized by the classical crystal growththeory, is not observed for the TiC crystal during the SHS reacion in the Al-Ti-Csystem. The morphology of octahedral TiC crystal enclosed by {111} planes isexplained based on the PBC theory.3.Influencing factors of kinetics of remelting in pure magnesium for theTiC/Al master alloy The remelting of the TiC/Al master alloy in pure magnesium was conducted,the results show that diffusion reciprocally between Al in the TiC/Al master alloyand Mg in magnesium melt occurs. Al in the TiC/Al master alloy diffuse intomagnesium melt thoroughly, which results in the alloying of the magnesium melt.At the same time, Mg in magnesium melt diffuse into the TiC/Al master alloy,which made the TiC/Al master alloy change into the TiC/Mg master alloy, thus,TiC can exist stably in the magnesium melt. No product of the oxidation reactionwas found at the interface between the TiC particulate and the matrix. TiCparticles are suitable reinforcement for fabrication of the magnesium matrixcomposites. Preheating temperature in vacuum, remelting temperature and timehave an obvious effect on the remelting of the TiC/Al master alloy in puremagnesium.4. Influencing factors of kinetics of TiC uniformly distribution inAZ91magnesium alloy matrix Influencing factors of kinetics of TiC particulates uniformly distribution inAZ91magnesium alloy matrix were detailedly investigated by experimentalresearch. The experimental parameters of fabrication techniques which are
引文
[1] B.L. Mordike, T. Ebert, Magnesium, properties-applications-potential, Mater. Sci. Eng., 2001; A302: 37-45.
    [2] G.Y. Yuan, M. P. Liu, W. J. Ding, I. Akihisa, Microstructure and mechanical properties of Mg-Zn-Si-based alloys, Mater. Sci. Eng., 2003; A357: 314-320.
    [3] 刘正,王越,王中光,李锋,申志勇,镁基轻质材料的研究与应用, 材料研究学报,2000;14:449-456.
    [4] H.Y. Wang, Q.C. Jiang, X.L. Li, J.G. Wang, Q.F. Guan, H.Q. Liang, In-situ synthesis of TiC from nanopowders in a molten magnesium, Mater. Res. Bull., 2003; 38: 1387-1392.
    [5] M.Y. Zheng, K. Wu, M. Liang, S. Kamado, Y. Kojima, The effect of thermal exposure on the interface and mechanical properties of Al18B4O33w/AZ91 magnesium matrix composite, Mater. Sci. Eng., 2004; A372: 66-74.
    [6] 汤彬,李培杰,曾大本,刘树勋,刘明星,镁基复合材料研究的现状和展望,特种铸造及有色合金,2002;3:34-37.
    [7] 李新林,王慧远,姜启川,颗粒增强镁基复合材料的研究现状及发展趋势,材料科学与工艺,2001;9:219-224.
    [8] F. Wu, J. Zhu, Morphology of second-phase precipitates in carbon-fiber and graphite-fiber-reinforced magnesium-based metal-matrix composites, Comp. Sci. Tech., 1997; 57: 661-667.
    [9] M. Svoboda, M. Pahutova, K. Kucharova, V. Skleni ka, T. G. Langdon, The role of matrix microstructure in the creep behaviour of discontinuous fiber-reinforced AZ91 magnesium alloy, Mater. Sci. Eng., 2002; A324: 151-156.
    [10] S.Y. Chang, J. C. Sung, S. K. Hong, H. S. Dong, Microstructure and tensile properties of bi-materials with macro-interface between unreinforced magnesium and composite, J. Alloys. Compd., 2001; 316: 275-279.
    [11] M.Y. Zheng, K. Wu, C. K. Yao, Effect of interfacial reaction on mechanical behavior of SiCw/AZ91 magnesium matrix composites, Mater. Sci. Eng., 2001; A318: 50-56.
    [12] K.N. Braszczynska, L. Litynska, A. Zyska, W. Baliga, TEM analysis of the interfaces between the components in magnesium matrix composites reinforced with SiC particles, Mater. Chem. Phys., 2003; 81: 326-328.
    [13] H.Y. Wang, Q.C. Jiang, X.L. Li, J.G. Wang, In situ synthesis of TiC/Mg composites in molten magnesium, Scripta. Mater., 2003; 48: 1349-1354.
    [14] H.Y. Wang, Q.C. Jiang, Y.Q. Zhao, F. Zhao, B.X. Ma, Y. Wang, Fabrication of TiB2 and TiB2-TiC particulates reinforced magnesium matrix composites, Mater. Sci. Eng., 2004; A372: 109-114.
    [15] S.C. Tjong, Z.Y. Ma. Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng., 2000; A29: 49-113.
    [16] M.A. Matin, L. Lu, M. Gupta. Investigation of the reactions between boron and titanium compounds with magnesium, Scripta Mater., 2001; 45(4): 479-486.
    [17] H.Z. Ye, X.Y. Liu. Review of recent studies in magnesium matrix composites, J. Mater. Sci., 2004; 39: 6153-6171.
    [18] H.Z. Ye, X.Y. Liu, B. Luan, In situ synthesis of AlN particles in Mg-Al alloy by Mg3N2 addition, Mater. Lett., 2004; 58(19): 2361-2364.
    [19] M. Mabuchi, K. Higashi, Strengthening mechanisms of Mg-Si alloys, Acta Mater., 1996; 44(11): 4611-4618.
    [20] M. Mabuchi, K. Kubota, K. Higashi, Elevated temperature mechanical properties of magnesium alloys containing Mg2Si, Mater. Sci. Tech., 1996; 12: 35-39.
    [21]蔡叶,苏华钦,镁基复合材料研究的回顾与展望,特种铸造及有色合金,1996,3:17-19.
    [22] A. Luo, Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites, Metall. Mater. Trans., 1995; 26A: 2445-2455.
    [23] R.A. Saravanan, M.K. Surappa, Fabrication and characterization of pure magnesium-30vol.%SiCp particle composite, Mater. Sci. Eng., 2000; A276: 108 ~ 116.
    [24] A. Martin, J. Llorca, Mechanical behaviour and failure mechanisms of a binary Mg-6%Zn alloy reinforced with SiC particulates, Mater. Sci. Eng., 1995; 201A: 77-87.
    [25] B. Inem, G. Pollard, Interface structure and fractography of a magnesium-alloy, metal-matrix composite reinforced with SiC particles, J. Mater. Sci., 1993; 28: 4427-4434.
    [26] B. Inem, Crystallography of the second phase/SiC particles interface, nucleation of the second phase at β-SiC and its effect on interfacial bonding, elastic properties and ductility of magnesium matrix composites, J. Mater. Sci., 1995; 30: 5763-5769.
    [27] A. Luo, Development of matrix grain structures during the solidification of a Mg(AZ91)/SiCp composite. Scripta Metall. Mater., 1994; 31(3): 1253-1258.
    [28] V. Laurent, P. Jarry, G. Regazzoni, D. Apelian., Processing-microsructure relationships in compocast magnesium/SiC, J. Mater. Sci., 1992; 27: 4447-4459.
    [29] A. Luo, Heterogeneous nucleation and grain refinement in cast Mg (AZ91) /SiCp metal matrix composites, Can Metall Q., 1996; 35: 375-383.
    [30]蔡叶, 苏华钦. SiCp/AZ80 镁基复合材料的界面与断口特征. 复合材料学报. 1997;14(2): 76-79.
    [31] Cai Y, Tan M J, Shen G J, et al. Microstructure and heterogeneous nucleation phenomena in cast SiC particles reinforced magnesium composite, Mater. Sci. Eng., 2000; A282: 232–239.
    [32] S.F. Hassan, M. Gupta, Development of a novel magnesium–copper based composite with improved mechanical properties, Mater. Res. Bull., 2002; 37: 377-389.
    [33] S.F. Hassan, M. Gupta, Development of a novel magnesium/nickel composite with improved mechanical properties, J. Alloys. Compd., 2002; 335: L10-L15.
    [34] S.F. Hassan, M. Gupta, Development of ductile magnesium composite materials using titanium as reinforcement, J. Alloys. Compd., 2002; 345: 246-251.
    [35] W. Zhou, Z.M. Xu, Casting of SiC reinforced metal matrix composites, J. Mater. Process. Tech., 1997; 63: 358-363.
    [36] A. Luo, J. Renaud, I. Nakatsudawa, J. Plourde., Magnesium Castings for Automotive Applications, JOM. July 1995; 28-31.
    [37] K. Wu, M.Y. Zheng, C.K. Yao. Crystallographic orientation relationship between SiCw and Mg in squeeze-cast SiCw/Mg composites. J. Mater. Sci. Lett., 1999; 18:1301-1303.
    [38] M.Y. Zheng, K. Wu, C.K. Yao. Characterization of interfacial reaction in squeeze cast SiCw/Mg composites. Mater. Lett., 2001; 47: 118-124.
    [39] L.X. Hu, E.D. Wang. Fabrication and mechanical properties of SiCw/ZK51A magnesium composite by two-step squeeze casting, Mater. Sci. Eng., 2000; A278: 267-271.
    [40] 胡连喜,李小强,王尔德,丛飞,挤压变形对SiCw/ZK51A 镁基复合材料组织和性能的影响,中国有色金属学报,2000;10(5):680-683.
    [41] K. Wu, M.Y. Zheng, M. Zhao, C.K. Yao. Interfacial reaction in squeeze cast SiCw/AZ91 magnesium alloy composite. Scripta Mater., 1996; 35(4): 529-534.
    [42] M.Y. Zheng, K. Wu, C.K. Yao. Microstructure and mechanical behavior of squeeze cast SiCw/AZ91 magnesium matrix composites. J. Mater. Sci. Tech., 2001; 17(1): 21-22.
    [43] 严峰,吴昆,赵敏,杨德庄,热挤压对SiCw/MB15 镁基复合材料组织和性能的影响,稀有金属材料与工程,2003;32(8):647-649.
    [44] S. Jayalakshmi, S.V. Kailas, S. Seshan. Tensile behaviour of squeeze cast AM100 magnesium alloy and its Al2O3 fibre reinforced composites, Comp., 2002; A33: 1135-1140.
    [45] V. Sklenicka, M. Svoboda, M. Pahutova, K. Kucharova, T.G. Langdon. Microstructural processes in creep of an AZ91 magnesium-based composite and its matrix alloy, Mater. Sci. Eng., 2001; A319-321: 741-745.
    [46] 郝元恺,姜冀湘,赵恂,碳化硼颗粒/镁合金复合材料的工艺与性能. 复合材料学报,1995;12(4):8-11.
    [47] Kee-Sun Sohn, Kwangjun Euh, Sunghak Lee, Mechanical property and fracture behavior of squeeze-cast Mg matrix composites, Metall. Mater. Trans., 1998; 29A: 2543-2554.
    [48] V. Kevorkijan, T. Smolar, M. Jelen, Fabrication of Mg-AZ80/SiC composite bars by pressureless and pressure-assisted infiltration, Am. Ceram. Soc. Bull., 2003, July, 9201-9208.
    [49] M.Y. Gu, Z.G. Wu, Y.P. Jin. The interfacial reaction and microstructure in a ZK60-based hybrid composite. J. Mater. Sci., 2000; 35: 2499-2505.
    [50] X.N. Zhang, D. Zhang, R.J. Wu, Z.G. Zhu, C. Wang. Mechanical properties and capacity of (SiCw+B4Cp)/ZK60A Mg alloy matrix composite. Scripta Mater., 1997; 37(11): 1631-1635.
    [51] A. Contreras, V.H. Lopez, E. Bedolla. Mg/TiC composites manufactured by pressureless melt infiltration. Scripta Mater., 2004; 51: 249-253.
    [52] B.Q. Han, D.C. Dunand. Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersions. Mater. Sci. Eng., 2000; A277: 297-304.
    [53]郝元恺,赵恂,杨盛良,杨广平,纯镁对碳化硼颗粒的常压浸渗,复合材料学报,1995; 12(3): 12-16.
    [54] Hiromitsu Kaneda, Takao Choh. Fabrication of particulate reinforced magnesium composites by applying a spontaneous infiltration phenomenon. J. Mater. Sci., 1997; 32: 47-56.
    [55] D.M. Lee, B.K. Suh, B.G. Kim, J.S. Lee, C.H. Lee. Fabrication, microstructures, and tensile properties of magnesium alloy AZ91/SiCp composites produced by powder metallurgy. Mater. Sci. Technol., 1997; 13: 590-595.
    [56] Chua B W, Lu L, Lai M. Influence of SiC Particles on Mechanical Properties of Magnesium Based Composite, Compos Struct. 1999; 47: 595-601.
    [57] H. Ferkel, B.L. Mordike. Magnesium strengthened by SiC nanoparticles. Mater. Sci. Eng., 2001; A298: 193-199.
    [58] L. Li, M.O. Lai, M. Gupta, B.W. Chua, A. Osman. Improvement of microstructure and mechanical properties of AZ91/SiC composite by mechanical alloying. J. Mater. Sci., 2000; 35: 5553-5561.
    [59] H.Y. Wang, Q.C. Jiang, Y. Wang, B.X. Ma and F. Zhao, Fabrication of TiB2 particulate reinforced magnesium matrix composites by powder metallurgy, Mater. Lett., 2004, 58: 3509-3513.
    [60] C. Badini, F. Marino, M. Montorsi, X.B. Guo. Precipitation phenomena in B4C-reinforced magnesium-based composite. Mater. Sci. Eng., 1992; A15: 53-61.
    [61] Q.C. Jiang, H.Y. Wang, B.X. Ma, Y. Wang, F. Zhao, Fabrication of B4C particulate reinforced magnesium matrix composites by powder metallurgy, J. Alloy. Compd., 2004; 386: 177-181.
    [62] R.T. Whalen, G.G. Doncel, S.L. Robinson. Mechanical properties of particulate composites based on a boby-centered-cubic Mg-Li alloy containing boron. Scripta Mater., 1989; 23(1): 137-140.
    [63] M. Y. Gu, Z.G. Wu, Y.P. Jin. The interfacial reaction and microstructure in a ZK60-based hybrid composite. J. Mater. Sci., 2000; 35: 2499-2505.
    [64] Z. Trojanova, P. Lukac, H. Ferkel, B.L. Mordike, W. Riehemann. Stability of microstructure in magnesium reinforced by nanoscaled alumina particles. Mater. Sci. Eng.. 1997; A234–236: 798-801.
    [65] Pérez, P.; Garcés, G.; Adeva, P., Mechanical properties of a Mg–10 (vol.%)Ti composite, Comp. Sci. Technol., 2004; 64: 145-151.
    [66] 郑明毅,吴昆,赵敏,姚忠凯,不连续增强镁基复合材料的制备和应用,宇航材料工艺,1997:12(6): 6-10.
    [67] 孙国雄, 廖恒成, 潘冶. 颗粒增强金属基复合材料的制备技术和界面反应与控制. 特种铸造及有色合金. 1998; (4): 12-17.
    [68] P. Vervoortz. Extrusion of spray deposited QE22 magnesium alloy and composite. Powder Metall., 1995; 38(2): 98-102.
    [69] L.M. Tham, M. Gupta, L. Cheng. Influence of processing parameters during disintegrated melt deposition processing on near net shape synthesis of aluminium based metal matrix composites. Mater. Sci. Technol., 1999; 15: 1139-1146.
    [70] 王慧远,原位颗粒增强镁基复合材料的制备,吉林大学博士学位论文, 2004;12.
    [71] A.G. Merzhanov, Self-propagating high-temperature synthesis: Twenty years of search and findings, Combustion and Plasma Synthesis of High-temperature materials, edited by Z.A. Munir and J.B. Holt, VCH, Weinheim, New York, 1990; 1-53.
    [72] J.J. Moore, H.J. Feng, Combustion synthesis of advanced materials: Part Ⅰ. Reaction parameters, Prog. Mater. Sci., 1995; 39(4-5): 243-273.
    [73] D. Horvitz, I. Gotman, Pressure-assisted SHS synthesis of MgAl2O4-TiAl in situ composites with interpenetrating networks, Acta Materialia, 2002; 50(8): 1961-1971.
    [74] C. Curfs, I.G. Cano, G.B.M. Vaughan, X. Turrillas, Kvick, M. A. Rodríguez, “TiC-NiAl composites obtained by SHS: a time-resolved XRD study”, J. Eur. Ceram. Soc., 2002; 22(7): 1039-1044.
    [75] Y. Kopit, The ability of systems based on Ni, Al and Ti to be synthesized by self-propagating high-temperature synthesis (SHS), Intermetallics, 2001; 9(5): 387-393.
    [76] D. Horvitz, I. Gotman, E. Y. Gutmanas and N. Claussen, In situ processing of dense Al2O3-Ti aluminide interpenetrating phase composites, J. Eur. Ceram. Soc., 2002; 22(6): 947-954.
    [77] K. Uenishi, K. F. Kobayashi, Processing of intermetallic compounds for structural applications at high temperature, Intermetallics, 1996; 4(Supp.1): S95-S101.
    [78] Wang H Y, Jiang Q C, Li X L. In Situ Synthesis of TiC From Nanopowders in A Molten Magnesium Alloy, Mater Res Bull, 2003, 381: 1387-1392.
    [79] Wang H Y, Jiang Q C, L X Li, Zhao F. Effect of Al Content on The Self-Propagating High-Temperature Synthesis Reaction of Al-Ti-C System in Molten Magnesium, J. Alloys. Compd, 2004, 366: L9-L12.
    [80] Wang H Y, Jiang Q C, Li X L. In Situ Synthesis of TiC/Mg Composites in Molten Magnesium, Scripta Mater, 2003, 48: 1349-1354.
    [81] Jiang Q C, Wang H Y, Guan Q F, Li x L. Effect of The Temperature of Molten Magnesium on The Thermal Explosion Synthesis Reaction of Al-Ti-C System for Fabricating TiC/Mg Composite, Adv. Eng. Mater., 2003; 5 (10): 722-725.
    [82] Jiang Q C, Wang H Y, Wang J G. Fabrication of TiC/Mg Composites by The Thermal Explosion Synthesis Reaction in Molten Magnesium, Mater. Lett., 2003, 57: 2580-2583.
    [83] Wang H Y, Jiang Q C, Zhao Y Q, Zhao F, Ma B X, Wang Y. Fabrication of TiB2 and TiB2-TiC Particulates Reinforced Magnesium Matrix Composites, Mater. Sci. Eng., 2004; A372: 109-114.
    [84] 姜启川,王慧远,关庆丰,李新林,赵玉谦,王金国,赵宇光,王树奇,王春生,颗粒增强镁基复合材料的制备方法,发明专利号: 01128168.5.
    [85] L. Lu, K.K. Thong, M. Gupta, Mg-based Composite Reinforced by Mg2Si. Compos. Sci. Technol., 2003; 63: 627-632.
    [86] L. Lu, M.O. Lai, M.L. Hoe, Formation of Nanocrystalline Mg2Si and Mg2Si Dispersion Strengthened Mg-Al Alloy by Mechanical Alloying. Nanostructured Materials. 1998; 10(4): 551-563.
    [87] M. Riffel, J. Schilz, Mechanical Alloying of Mg2Si. Scripta Metall. Mater., 1995; 32(12): 1951-1956.
    [88] L. Wang, X.Y. Qin, The Effect of Mechanical Milling on The Formation of Nanocrystalline Mg2Si through Solid-State Reaction. Scripta Mater. 2003; (49): 243-248.
    [89] G.H. Li, H.S. Gill, R.A. Varin, Magnesium Silicide Intermetallic Alloys. Metall Trans. 1993; A24: 2383-2391.
    [90] S. Hwang, C. Nishimura, Compressive Mechanical Properties of Mg-Ti-C Nanocomposite Synthesised by Mechanical Milling. Scripta Mater. 2001; 44: 2457-2462.
    [91] Yamada, Kazuloshi, Takahashi, Teruo, Moloyama, Muneyuki. EPMA State and Analysis of Formation of TiC During Mechanical Alloying of Mg, Ti and Graphite Powder Mixture. Nppon Kinzoku Gakkaishi/J. Jap. Inst. Metals. 1996; 60(1): 100-105.
    [92] Q. Dong, L.Q. Chen, M.J., Zhao, J. Bi, “Synthesis of TiCp reinforced magnesium matrix composites by in situ reactive infiltration process”, Mater. Lett., 2004; 58(6): 920-926.
    [93] A. Contreras, C.A. Leon, R. A. L Drew, E. Bedolla, Wettability and Spreading Kinetics of Al and Mg on TiC. Scripta Mater. 2003; 48: 1625-1630.
    [94] H.S. Yu, R.L. Gao, G.H. Min, Z.F. Wang, X.C. Chen, “Mechanical properties and creep resistance of Mg-Li composites reinforced by MgO/Mg2Si particles”, Trans. Nonferr. Metals Soc. China, 2002; 12(6): 1154-1157.
    [95] Martin Marietta Corp.:US Pat. 4 710 348, 1987.
    [96] Martin Marietta Corp.:US Pat. 4 915 908, 1990.
    [97] 陶春虎,王守凯,张少卿,制备金属间化合物的XD 合成法,航空制造工程,1994;(2):35-36.
    [98] 陶春虎,张少卿,王守凯等,XD 工艺-金属基复合材料制备新技术, 材料工程,1994;(11):10-12.
    [99] S.L. Kampe, J. Christodoulou, C.R. Feng, The effect of matrix microstructure and reinforcement shape on the creep deformation of near-γtitanium aluminide composites, Acta mater., 1998; 46(8):2881-2894.
    [100] A.K. Kuruvilla, K.S. Prasad, V.V. Bhanuprasad, Y.R. Mahajan, Microstructure-property correlation in Al/TiB2 (XD) composites, Scripta Metall. Mater., 1990; 24(5): 873-878.
    [101] R. Mitra, W.A. Chiou, J.R. Weertman, M.E. Fine, Relaxation mechanisms at the interfaces in XDTM Al/TiCp metal matrix composites, Scripta Metall. Mater., 1991; 25: 2689-2694.
    [102] A.R.C. Westwood, Materials for advanced studies and devices, Metall. Trans., 1988; A19: 749-758.
    [103] D.C.V. Aken, P.E. Krajewski, G.M. Vyletel, J.E. Allison, J.W. Jones, Recrystallization and grain growth phenomena in a particle-reinforced aluminum composite, Metall. Mater. Trans., 1995; 25A: 1395-1405.
    [104] G.M. Vyletel, J.E. Allison, and D.C. Van Aken, The effect of matrix microstructure on cyclic response and fatigue behavior of particle-reinforced 2219 aluminum: Part I. Room temperature behavior, Metall. Mater. Trans., 1995; 26A: 3143-3154.
    [105] Y. Liu, B. Xu, W. Li, X. Cai, Z. Yang, The effect of rare earth CeO2 on microstructure and properties of in situ TiC/Al-Si composite, Mater. Lett., 2004; 58(3-4): 432-436.
    [106] X. Xie, D. Zhang, J. Liu, Thermal expansion properties of TiC particle reinforced ZA43 matrix composite, Mater. Design, 2001; 22(3): 157-162.
    [107] C. Mayencourt, R. Schaller, Development of a high-damping composite: Mg2Si/Mg, Physica Status Solid, 1997; A163: 357-368.
    [108] M. Mabuchi, K. Kubota, K. Higashi, Tensile strength, ductility and fracture of magnesium-silicon alloys, J. Mater. Sci.,1996; 31: 1529-1535.
    [109] M. Mabuchi, K. Kubota, K. Higashi, Effect of hot extrusion on mechanical properties of a Mg-Si-Al alloy, Mater. Lett., 1994; 19(5-6): 247-250.
    [110] Q.C. Jiang, H.Y. Wang, Y. Wang, B.X. Ma, J.G. Wang, Modification of Mg2Si in Mg-Si alloys with yttrium, Mater. Sci. Eng., 2005;A 392:130-135.
    [111] H.Y. Wang, Q.C. Jiang, B.X. Ma, Y. Wang, J.G. Wang, J.B. Li, Modification of Mg2Si in Mg-Si alloy by K2TiF6, KBF4 and K2TiF6+KBF4, J. Alloy. Compd., 2005; 387: 105-108.
    [112] 王怀国,张景新,张奎,徐骏,石力开,高硅镁合金的制备工艺及显微组织分析,稀有金属,2003;27:500-502.
    [113] 陈晓,傅高升,钱匡武,Sr 对原位自生Mg2Si/ZM5 复合材料组织和性能的影响,中国有色金属学报,2002;12(Al spesial):241-245.
    [114] 张二林,杨波,曾松岩等,Al-Ti-C 系中反应生成TiC 机理研究,材料工程,1998;2:3-5.
    [115] M.G. Chu, M.K. Premkumar, Mechanism of TiC formation in Al/TiC in situ metal-matrix composite, Metall. Trans., 1993, A24, 2803-2805.
    [116] M.K. Premkumar, M.G. Chu, Al-TiC particulate composite produced by a liquid state in situ process, Mater. Sci. Eng., 1995; A202(1-2): 172-178.
    [117] Y. Choi, S.W. Rhee, Effect of aluminium addition on the combustion reaction of titanium and carbon to form TiC, J. Mater. Sci. 1993; 28: 6669-6675.
    [118] W.C. Lee, S.L. Chung, Ignition phenomena and reaction mechanisms of the self-propagating high-temperature synthesis reaction in the titanium-carbon-aluminum system, J. Am. Ceram. Soc., 1997; 80(1): 53-61.
    [119] T. Nukami, M.C. Flemings, In situ synthesis of TiC particulate-reinforced aluminum matrix composites, Metall. Mater. Trans., 1995; A26, 1877-1884.
    [120] I. Gotman, M. J. Koczak E. Shtessel. Fabrication of Al matrix in situ composites via self-propagating synthesis. Mater. Sci. Eng., 1994; A187:189-199.
    [121] Y. Khoptiar, I. Gotman, Ti2AlC ternary carbide synthesized by thermal explosion. Mater. Lett., 2002; 57:72-76.
    [122] Z.B. Ge, K. X. Chen, J. M. Guo et al. Combustion synthesis of ternary carbide Ti3AlC2 in Ti-Al-C system. J. Eur. Ceram. Soc., 2003; 23:567-574.
    [123] 王慧远,镁基复合材料内生TiC 颗粒自蔓延形成反应,吉林大学硕士学位论文,2002:1-70.
    [124] R.C. Dorward, Discussion of “Comments on the solubility of carbon in molten aluminum”, Metall. Trans., 1990; 21A: 255-257.
    [125] X.M. Wang, A. Jha, R. Brydson, In situ fabrication of Al3Ti particle reinforced aluminum alloy metal-matrix composites, Mater. Sci. Eng., 2004; A364: 339-345.
    [126] 张二林,Al/TiCp 复合材料反应生成热力学和动力学过程的研究, 哈尔滨工业大学博士学位论文,1996:1-125.
    [127] 曾晓春,原位反应法制备Al/TiCp 复合材料的工艺及组织的研究,哈尔滨工业大学硕士学位论文,1995:1-73.
    [128] S.D. Dunmead, D. W. Readey, C. E. Semler, and J. B. Holt, Kinetics of Combustion Syhthesis in the Ti-C and Ti-C-Ni Systems, J. Am. Ceram. Soc., 1989; 72(12):2318-24.
    [129] J.B. Holt. Z. A. Munir. Combustion synthesis of titanium carbide: theory and experiment. J. Mater. Sci., 1986; 21:251-259.
    [130] I.H. Song, D. K. Kim, Y. D. Hahn, H. D. Kim. The effect of a dilution agent on the dipping exothermic reaction process for fabrication ahigh-volume TiC-reinforced aluminium composite. Scripta Mater., 2003; 48:413-418.
    [131] C.R. Chen, S. Y. Qin, S. X. Li, J. L. Wen. Finite element analysis about effects of particle morphology on mechanical response of composites. Mater. Sci. Eng., 2000; A278:96-105.
    [132] D. Strzeciwilk, Z. Wokulski, and P. Tkacz, “Microstructure of TiC Crystals Obtained from High Temperature Nickel Solution,”J. Alloys Compd., 2003; 350:256-63.
    [133] 赵颖华,王金忠,复合材料的界面损伤过程与弹塑性本构关系,复合材料学报,1999;16(4):130-135.
    [134] 傅恒志,刘林,方晓华.镍基高温合金中MC 碳化物生长规律研究.西北工业大学学报,1987;5(3):282.
    [135] L. Chen, E. Kny, Reaction hot-pressed sub-micro Al2O3+TiC ceramic composite, Inter. J. Refractory metals and hard mater., 2000; 18:163-167.
    [136] N. Zarrinfar, P.H. Shipway, A.R. Kennedy, A. Saidi “Carbide stoichiometry in TiCx and Cu-TiCx produced by self-propagating high-temperature synthesis”, Scripta Mater., 2002; 46(2): 121-126.
    [137] H.M. Wang, L. G. Yu, X. X. Li, P. Jiang, Growth morphology and mechanism of MC carbide under quasi-rapid solidification conditions, Sci. and Technol. Adv. Mater., 2001; (2):173-176.
    [138] H.M. Wang, J. H. Zhang, Y. J. Tang and Z. Q. Hu, Rapidly solidified MC carbide morphologies of a laser-glazed single-crystal nickel-base superalloy, Mater. Sci. and Eng., 1992; A156:109-116.
    [139] 陈瑶,王华明,MC 碳化物非平衡凝固液/固界面结构及生长机制,金属学报,2003;39(3):254-258.
    [140] 闵乃本著.晶体生长的物理基础,上海科学技术出版社,1982;第1 版: 419.
    [141] J.W. Cahn, W. B. Hillig and G. W. Sears, The molecular mechanism of solidification, Acta Metall., 1964; 12:1421-1439
    [142] Y. Chen, H. M. Wang Growth morphologies and mechanism of TiC in the laser surface alloyed coating on the substrate of TiAl intermetallics, J. Alloy. Compd., 2003; 351:304-308.
    [143] 常国威,王建中, 金属凝固过程中的晶体生长与控制,冶金工业出版社,2002,第1 版:45-46.
    [144] 张克从,张乐潓, 晶体生长科学与技术,科学出版社, 1997;第2 版:57-70.
    [145] 姚连增,晶体生长基础,中国科学技术大学出版社,1995;第1 版:360.
    [146] 严有为,魏伯康,傅正义等,Fe-Ti-C 熔体中TiC 颗粒的原位合成及长大过程研究,金属学报,1999;35(9):909-912.
    [147] S.C. Deevi, Structure of the combustion wave in the combustion synthesis of titanium carbides, J. Mater. Sci., 1991; 26: 2662-2670.
    [148] T. Nukami, The growth of TiC particles in an Al matrix, J. Mater. Sci. Lett., 1998, 17: 267-269.
    [149] I. Higashi, Y. Takahashi, and T. Atoda, “Crystal Growth of Borides and Carbides of Transition Metals from Molten Aluminum Solutions”J. Crystal Growth 1976; 33:207-11.
    [150] X.C. Tong, H.S. Fang, “Al-TiC composite in situ processed by ingot metallurgy and rapid solidification technology: Part 1 Microstructural evolution”, Metall. Mater. Trans., 1998; 29A: 875-891.
    [151] R. Fernandez, J.C. Lecomte, and T.Z. Kattamis, Effect of soloidification parameters on the growth geometry of MC carbide in IN-100 dendritic monocrystals, Metall. Trans. A, 1978; 9:1381-1386.
    [152] K.A. Jackson, Crystal growth kinetics, Mater. Sci. Eng., 1984; A65:7-13.
    [153] 刘林,傅恒志,史正兴. 高温合金中碳化物的初生形貌与晶体结构的关系. 金属学报,25(1989)4:282~287.
    [154] 仲维卓,华素坤, 晶体生长形态学,科学出版社,1999,第1 版:205.
    [155] P. Hartman, In: Hartman P ed, Crystal Growth: an Introduction, Amsterdam: North-Holland, 1973:367.
    [156] P. Hartman, P. Bennema. The Attachment Energy as a Habit Controlling Factor, J. Crystal Growth, 1980; 49:145~156.
    [157] 刘林,傅恒志,Ni 基高温合金中MC 碳化物生长的理论形貌,材料科学进展,1989,3(5):396-400.
    [158] 陆树荪,顾开道和郑来苏,有色铸造合金及熔炼,国防工业出版社, 1983;第1 版:64.
    [159] 曾小勤,王渠东和丁文江,镁合金熔炼阻燃方法及进展,轻合金加工技术,1999;27(9):5-8.
    [160] Maiss M Et, et al. Atmospheric SF6 : trends and prospects, Enviromental Sci. Technol., 1998;32(20):3077-3086.
    [161] 王益志,镁合金熔体表面防护技术述评,铸造,2002;51(10):579-582.
    [162] A.R. Kennedy, D.P. Weston, M.I. Jones, Reaction in Al-TiC metal matrix composites, Mater. Sci. Eng., 2001; A316: 32-38.
    [163] A.R. Kennedy, D.P. Weston, M.I. Jones, and C. Enel, Reaction in Al-Ti-C powders and its relation to the formation and stability of TiC in Al at high temperatures. Scripta Mater. 2000; 42:1187-1192.
    [164] D.J. Lloyd, Particle reinforced aluminium and magnesium matrix composites, Inter. Mater. Rev., 1994; 39(1):1-23.
    [165] J.C. Viala, M. Peronnet, F. Bosselet, J. Bouix. In: Proc.ICCM12, Paris, July 1999,739, ISBN 2-9514526-2-4.
    [166] H. Yokokawa, N. Sakai, T. Kawada and M. Dokiya, Chemical potential diagram of Al-Ti-C system: Al4C3 formation on TiC formed in Al-Ti liquids containing carbon, Metall. Trans., 1991; 22A: 3075-3076.
    [167] R. Mitra, M.E. Fine and J.R. Weertman, Chemical reaction strengthening of TiC/ Al metal matrix composites by isothermal heat treatment at 913K, J. Mater. Res., 1993; 8(9):2370-2379.
    [168] I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia. Particulate reinforced metal matrix composites-a review. J. Mater. Sci., 1991; 26:1137-1156.
    [169] 王建安,金属学与热处理,机械工业出版社,1980;第1 版:1-191.
    [170] 于丽娜,王海梅,刘相法等,微量TiC、TiB2 引起铝熔体粘度的突变现象,铸造,2002;51(11):687-689.
    [171] 陈文梅,流体力学基础,化学工业出版社,1995,第1 版:2-3.
    [172] M. Hirai, K. Takebayashi, Y. Yoshikawa, and R. Yamaguchi, Apparent viscosity of Al-10 mass%Cu semi-solid alloys, ISIJ Inter., 1993; 33(3):405-412.
    [173] S.K. Kim, Y.J. Kim. Rheological behaviour and fluidity of SiCp+ AZ91HP magnesium composites, Mater. Sci. Technol., 2000;16:877-881.
    [174] 王俊,陈锋,孙宝德等,微细颗粒对复合材料熔体表观粘度的影响. 复合材料学报,2001;18(1):58-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700