掺杂TiO_2薄膜的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,二氧化钛(Ti02)由于在很多方面实际的和潜在的应用而备受关注。许多研究表明混晶Ti02(含有锐钛矿相和金红石相)具有比锐钛矿相更高的活性,而且对混合介质光学性质的研究能为制备渐变折射率材料提供借鉴,所以对混晶Ti02的制备和物性研究显得很有意义。混晶Ti02可以通过控制锐钛矿相向金红石相的转变获得。许多因素影响着Ti02从锐钛矿相到金红石相的转变(以下简称相变),如反应气氛、退火温度、颗粒尺寸、退火时间和掺杂等。掺杂对Ti02相变的研究虽然很多,但是还存在一些问题,例如杂质对相变的影响和机制还存在争议;许多研究是以粉体为研究对象,而对Ti02薄膜中的相变研究较少;混晶Ti02薄膜的光学性质的研究也较少等。
     在本文中,我们用溶胶凝胶法制备了Ti02薄膜、掺杂Ti02薄膜、BaTiO3薄膜和BaTiO3/doped-TiO2/LaNiO3多层薄膜,开展了一些工作,取得了一些成果,主要内容如下:
     1.石英衬底上Ti1-xCoxO2(0≤x≤0.1)薄膜(金红石相)的光学性质研究。实验发现,随着Co掺杂的增加,光学禁带宽度先增加后减小,这是由于光学禁带宽度增加和光学禁带宽度减小两种机制的竞争引起的。
     X射线衍射(XRD)结果表明所有薄膜是金红石相;原子力显微镜(AFM)结果表明,随着Co的增加,晶粒变小,薄膜表面变得致密和平滑;随着Co的增加,金红石相的主要Raman模式峰位向低频移动;在透射光谱中发现,随着Co掺杂的增加,薄膜的吸收边先“蓝移”后“红移”;根据Tauc law得到光学禁带宽度(以下简称禁带宽度),其值在3.10和3.26eV之间变化,在Co掺杂为0.03左右时禁带宽度达到最大值为3.26eV左右;用Swanepeol方法对透射光谱处理得到膜的厚度、折射率,折射率随着Co掺杂的增加而增加;由于Co掺杂引起薄膜中的压应力增加,晶粒尺寸效应以及金红石相Ti02的减少而促使禁带变宽;另一方面,Co掺杂引起带隙中的杂质带和缺陷能级而使带隙变窄,这两种机制的竞争导致了带隙先增加后减小
     2.Si衬底上Co、Ni和Fe掺杂TiO2薄膜的制备和相变研究。Co、Ni和Fe都加速了Ti02薄膜的相变,金红石相含量随掺杂的增加呈”s”形变化。相同掺杂量时,Co掺杂Ti02薄膜的相变激活能最小,Fe掺杂Ti02薄膜的相变激活能最大。
     利用XRD和Raman光谱研究Ti02薄膜中的相变。首先研究了退火温度、退火时间和旋涂层数对Ti02薄膜相变的影响,三个因素都可以加速相变。接着研究了Co、Ni和Fe掺杂Ti02薄膜中的相变,三种掺杂都能够加快相变,随着掺杂量的增加,金红石相含量先是缓慢增加,接着快速增加,然后又变缓,即变化呈现“S”形;掺杂引入的氧空位以及晶格畸变使相变激活能降低,因此掺杂加速了相变。然后比较了相同含量的Co、Ni和Fe掺杂对Ti02薄膜相变的差异,Co掺杂对相变的加速大于Fe和Ni掺杂,而Ni掺杂对相变的加速大于Fe掺杂,这是由于掺杂离子的半径和化合价的差异引起的。最后研究了薄膜表面形貌随掺杂量的变化。AFM结果显示随着掺杂增加,薄膜的表面首先逐渐变得粗糙,接着变得平整,然后又变得粗糙,这可能与相变过程中锐钛矿相和金红石相的晶格膨胀和收缩有关。
     3.BaTiO3/Ti0.9Co0.1O2/LaNiO3(BTO/TCO/LNO)多层薄膜的制备和研究。实验发现,TCO的存在可以明显降低介电损耗。
     首先研究了600、650、700和750℃退火温度对Si衬底上BaTiO3(BTO)薄膜的结构和形貌的影响,AFM结果显示退火温度升高,钙钛矿BTO结晶更好,但750℃退火的薄膜表面因大颗粒出现而变粗糙;采用椭圆偏振光谱研究了不同退火温度对BTO薄膜光学性质的影响;介电函数实部随光子能量的增加先增加后减小;在光子能量小于禁带宽度的区域,介电函数的虚部几乎是零,当光子能量大于光学禁带宽度,随着光子能量的增加介电函数的虚部快速增加,然后又变为缓慢增加;随着退火温度升高,BTO的禁带宽度从4.21eV减小到3.69eV,这可能与温度升高引起的晶粒变大和氧缺陷增加有关。接着研究了BTO/LNO薄膜和BTO/TCO/LNO薄膜的电学性质。与BTO/LNO薄膜相比,复合薄膜的剩余极化没有很大的变化,但复合薄膜的矫顽电压增加和介电损耗降低。TCO的位置对多层薄膜的性能有很大影响,BTO/TCO/LNO薄膜的介电损耗最小
     4. Co、Ni和Fe掺杂Ti02混晶薄膜的光学性质。掺杂Ti02薄膜的介电函数实部和虚部随光子能量的变化规律是一般介电材料的色散行为。随着掺杂的增加,禁带宽度先是缓慢减小,接着快速减小,然后又变为缓慢减小,这是一个与Ti02相变有关的现象。
     首先利用透射光谱研究了石英衬底上Ni掺杂Ti02混晶薄膜的光学性质,获得了紫外-近红外区域的介电函数、禁带宽度和薄膜厚度;介电函数实部随着光子能量的增加先增加后因为Van Hove奇点的存在而减小;介电函数的虚部在光子能量小于禁带宽度的区域几乎是零,随着光子能量增加到大于禁带宽度,介电函数的虚部快速增加,然后又变为随光子能量缓慢增加;随着Ni掺杂的增加,禁带宽度从3.65eV缓慢变为3.64eV,接着快速减小为3.45eV,然后又缓慢减小,这与薄膜中相的成分有关。然后对Si衬底上Co、Ni和Fe掺杂Ti02混晶薄膜进行了椭圆偏振光谱研究,得到了薄膜的厚度、介电函数和禁带宽度;介电函数随光子能量的变化关系和禁带宽度随掺杂量的变化关系同石英衬底上Ni掺杂Ti02混晶薄膜的结果是相似的。
In recent years, Titanium dioxide (TiO2) has been intensively studied because of its actual and potential application in many fields. Many studies show that the mixed crystalline TiO2with anatase and rutile phase (M-TiO2) has higher activity than anatase phase, and study on optical properties of mixed media is beneficial to the preparation of the graded-index films, so a study on the M-TiO2is very meanful. The M-TiO2may be fabricated by controlling anatase to rutile phase transformation (ART). Many factors influence the ART, such as atmosphere, temperature, grain size, time, and dopant. The influence of dopant on the ART has been widely investigated; however, the mechanism of dopant catalyzing the ART is disputed. In addition, many studies have focused on the ART of powders TiO2, whereas very limited research has been reported regarding the ART in Tio2films and optical properties of M-TiO2films. This is detrimental to the research and application of TiO2. In this study, metal ion doped TiO2(MI-TiO2) films were fabricated by sol-gel method, and influence of dopant on the ART and optical properties of M-TiO2films were investigated and discussed. Additionally, BaTiO3film and BaTiO3/(rutile MI-TiO2) multilayer films were fabricated and studied. The main work and results are as follows:
     1. Optical properties of rutile Ti1-xCoxO2films (0≤x≤0.1) on quartz substrates. The OBG first increase and then decreases with higher Co content, reaching its maximum value when x is about0.03. The competition between increasing and decreasing mechanisms of OBG leads to the phenomena.
     X-ray diffraction (XRD) pattern indicate all films are rutile phase. Atom force microscope (AFM) results show that with increasing Co content, surface of the films becomes smooth and compact. Raman spectra indicate Raman bands slightly shift low frequency with increasing Co content. It can be seen from transmittance spectra that the fundamental absorption edge first shows the blue shift and then the red shift. According to Tauc's law, the optical band gap (OBG) was got from transmittance spectra. The OBG varies between3.10and3.26eV. The OBG increase and then decreases with higher Co content, reaching its maximum value when x is about0.03, which was not reported by other groups. Refractive index and thickness of Ti1-xCoxO2films were obtained by fitting transmittance spectra with Swanepoel method. Refractive index value increases with increasing Co content. Decrease of grain size, compressive stress, and reduction of rutile TiO2increase OBG; and defect and impurity decrease the OBG. The competition between increasing and decreasing mechanisms of OBG leads to the strange change of OBG.
     2. Fabrication and the ART of MI-TiO2films on Si substrates. Co, Ni and Fe doping catalyze the ART. The evolution of rutile content with dopant content is an "S" shape. At the same dopant content, the active energy of the ART of Co-doped TiO2film is the least.
     XRD results show that annealing temperature, annealing time and spin-coating layers catalyze the ART of TiO2films. XRD and Raman results indicate that Co, Ni and Fe doping catalyze the ART. With increasing dopant content, rutile content first increases slowly, then quickly, and finally slowly again, i.e. the evolution of rutile content with dopant content is an "S" shape. The doping decreases the active energy of the ART due to oxygen vacancies and lattice deformation, and then catalyzes the ART. By comparison of influence of Fe, Co and Ni doping on the ART, Co's accelerating effect is the best and Fe's effect is the worst. This may be related to difference between ion radius and valence of doped ions. AFM results show that with increasing dopant content, the surface of the films first become rough and then smooth, finally rough again, which may be related to the expansion and shrinkage of anatase and rutile unit cells.
     3. Study on BaTiO3/Ti0.9Co0.102/LaNiO3(BTO/TCO/LNO) multilayer film. The existence of TCO layer is good for decreasing dielectric loss.
     BaTiO3films (BTO) were deposited on Si substrates, and annealing temperature was600,650,700and750℃, respectively. AFM results indicate that with increasing temperature, BTO with perovskite crystallizes well, but the surface of BTO at750℃becomes rough due to big grain. The optical properties of BTO in the wavelength of visible and ultraviolet were investigated by spectroscopic ellipsometry technique (SE). With increasing temperature, OBG decreases from4.21eV to3.69eV due to the increase of grain size and oxygen vacancies. BTO and BTO/TCO films were deposited on LaNiO3(LNO) substrates. Compared with pure BTO thin films, the remnant polarization of multilayer films had no obvious variety, but the coercive voltage of multilayer films had great increase. The dielectric loss of multilayer films was lower than that of pure BTO thin films. A sandwich structure like BTO/TCO/LNO has the smallest dielectric loss.
     4. Optical properties of MI-TiO2mixed crystalline films. With increasing dopant content, OBG first decreases, then quickly decrease and gradually decrease again in the end. This may be related to phase composition of the MI-TiO2films.
     Firstly, dielectric function, OBG and thickness of Ni-doped TiO2films on quartz substrates at UV-visible range were investigated by using the transmittance spectrum technique. In general, with increasing photon energy, the real part of dielectric function increases and gradually nears the maximum, and then decreases due to the Van Hove singularities. And the imaginary part of dielectric function nears to zero in the transparent region and sharply increases further increasing photon energy in the absorption region. With increasing Ni content, OBG slowly decrease from3.65eV to3.64eV, then quickly decrease to3.45eV, and gradually decrease again in the end. This may be related to phase composition of the Ni-doped TiO2films. Secondly, dielectric function, OBG and thickness of MI-TiO2mixed crystalline films were investigated by SE. The evolution of dielectric function with photon energy and the change of OBG with dopant content are similar to those of Ni-doped TiO2films.
引文
[1]G. Pfaff and P. Reynders, Angle-dependent optical effects deriving from submicron structures of films and pigments [J]. Chem. Rev.99 (1999) 1963-1982.
    [2]A. Salvador, M.C. Pascual-Marti, J.R. Adell, A. Requeni and J.G. March, Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen creams [J]. J. Pharm. Biomed. Anal.22 (2000) 301-306.
    [3]R. Zallen and M.P. Moret, The optical absorption edge of brookite TiO2 [J]. Solid State Commun.137(2006) 154-157.
    [4]J.H. Braun, A. Baidins and R.E. Marganski, TiO2 pigment technology:a review [J]. Prog. Org. Coat.20(1992)105-138.
    [5]S.A. Yuan, W.H. Chen and S.S. Hu, Fabrication of TiO2 nanoparticles/surfactant polymer complex film on glassy carbon electrode and its application to sensing trace dopamine [J]. Mater. Sci. Eng. C 25 (2005) 479-485.
    [6]A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode [J]. Nature 238 (1972) 37-38.
    [7]A. Fujishima, T.N. Rao and D.A. Tryk, Titanium dioxide photocatalysis [J]. J. Photochem. Photobiol.C1 (2000)1-21.
    [8]D.A. Tryk, A. Fujishima and K. Honda, Recent topics in photoelectrochemistry:achievements and future prospects [J]. Electrochim. Acta 45 (2000) 2363-2376.
    [9]M. Gratzel, Photoelectrochemical cells [J]. Nature 414 (2001) 338-344.
    [10]A. Hagfeldt and M. Gratzel, Light-induced redox eeactions in nanocrystalline systems [J]. Chem. Rev.95(1995)49-68.
    [11]A.L. Linsebigler, G. Lu and J.T. Yates, Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J]. Chem. Rev.95 (1995) 735-758.
    [12]A. Millis and S. Le Hunte, An overview of semiconductor photocatalysis [J]. J. Photochem. Photobiol.108(1997)1-35.
    [13]R.J. Gonzalez and R. Zallen, A morphous in sulators and semiconductors, (Kluwer, Dordrecht,1997).
    [14]K.M. Glassford and J.R. Chelikowsky, Optical properties of titanium dioxide in the rutile structure [J]. Phys. Rev. B 45 (1992) 3874-3877
    [15]J. Papp, H.S. Shen, R. Kershaw, K. Dwight, and A. Wold, Titanium(IV) oxide photocatalysts with palladium [J]. Chem. Mater.5 (1993) 284-288.
    [16]B.O. Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature 353 (1991) 737-740.
    [17]B.T. Holland, C.F. Blanford and A. Stein, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids [J]. Science 281 (1998) 538-540.
    [18]F.H. Jones, Teeth and bones:applications of surface science to dental materials and related biomaterials [J]. Surf. Sci. Rep.42 (2001) 75-205.
    [19]U. Diebold, The surface science of titanium dioxide [J]. Surf. Sci. Rep.48 (2003) 5-8.
    [20]X. Chen and S.S. Mao, Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications [J]. Chem. Rev.107 (2007) 2891-2959.
    [21]F.A. Grant, Properties of rutile [J]. Rev. Mod. Phys.31 (1959) 646-674.
    [22]G.V. Samsonov, The Oxide Handbook, IFI/Plenum Press, New York,1982.
    [23]J.F. Mammone, M. Nicol and S.K.Sharma, Raman spectra of TiO2-Ⅱ, TiO2-Ⅲ, SnO2, and GeO2 at high pressure [J]. J. Phys. Chem. Solids.42 (1981) 379-384
    [24]A. Sclafani, L. Palmisano, and M. Schiavello, Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion [J]. J. Phys. Chem.94(1990)829-832.
    [25]M.V. Rao, K. Rajeshwar, V.R. Pai Verneker and J. Dubow, Photosynthetic production of hydrogen and hydrogen peroxide on semiconducting oxide grains in aqueous solutions [J]. J. Phys. Chem.84(1980) 1987-1991.
    [26]T. Ohsaka, Temperature dependence of the Raman spectrum in anatase TiO2 [J]. J. Phys. Soc. Jpn.48(1980)1661-1668
    [27]T. Ohsaka, F. Izumi and Y. Fujiki, Raman spectrum of anatase TiO2 [J]. J. Raman Spectrosc. 7(1978)321-324.
    [28]S.P.S. Porto, P.A. Fleury and T.C. Daman, Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2 [J]. Phys. Rev.154 (1967) 522-526.
    [29]S.M. Vovk, M.Y. Tsenter, S. Bobovich, and L.M. Sharygin, [J]. Opt.Spectro.55(1983) 476.
    [30]王晖,吕德义,郇昌永,周春晖,葛忠华,金红石型纳米Ti02的制备[J].化学通报67(2004) w036; X. Chen and S.S. Mao, Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications [J]. Chem. Rev.107 (2007) 2891-2959.
    [31]肖奇,邱冠周,胡岳华,纳米Ti02制备及其应用新进展[J].材料导报14(2000)35-37.
    [32]S.T. Martin, C.L. Morrison and M.R. Hoffmann, Photochemical mechanism of size-quantized vanadium-doped TiO2 particles [J]. J. Phys. Chem.98 (1994) 13695-13704.
    [33]Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara and H. Koinuma, Room temperature ferromagnetism in transparent transition metal-doped titanium dioxide [J]. Science Express 291 (2001) 854-856.
    [34]王鲁蕉,不同结构纳米TiO2-SiO2复合氧化制备、表征和比较研究[D].太原理工大学硕士学位论文,2008
    [35]赵敬哲,王子悦,王莉玮,薛丽晶,刘艳华,杨桦,赵慕愚,超细多孔Ti02的制备及机理研究[J].高等学校化学学报20(1999)115-118.
    [36]R.J. Berry and M.R. Mueller, Photocatalytic decomposition of crude oil slicks using TiO2 on a floating substrate [J]. Microchem.50 (1994) 28-32.
    [37]孙丽萍,高山,赵辉,霍丽华,赵经贵,纳米二氧化钛的晶型转变及光催化性能研究[J].功能材料35(2005)632-634.
    [38]符春林,魏稀文,二氧化钛晶型转变研究进展[J].财料导报13(1999)45-47.
    [39]J.Y. Shi, J. Chen, Z.C. Feng, T. Chen, Y.X. Lian, X.L. Wang and C. Li, Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water methanol mixture [J]. J. Phys. Chem. C 111 (2007) 693-699.
    [40]J. Zhang, Q. Xu, Z.C. Feng, M.J. Li and C. Li, Importance of the relationship between surface phases and photocatalytic activity of TiO2 [J]. Angew. Chem. Int. Ed. 47 (2008) 1766-1769.
    [41]X.R. Zhang, Y. H. Lin, D.Q. He, J.F. Zhang, Z.Y. Fan and T.F. Xie, Interface junction at anatase/rutile in mixed-phase TiO2:Formation and photo-generated charge carriers properties [J]. Chem. Phys. Lett.504 (2011) 71-75.
    [42]Y. Ma, Q. Xu, X. Zong, D. Wang, G.P. Wu, X. Wang and C. Li, Photocatalytic H2 production on Pt/TiO2-SO42- with tuned surface-phase structures:enhancing activity and reducing CO formation [J]. Energy Environ. Sci. DOI:10.1039/clee02053f
    [43]W.F. Sullivan and S.S. Cole, Thermal chemistry of colloidal titanium dioxide [J]. J. Am. Ceram. Soc.42 (1959) 127-133.
    [44]X.Z. Ding, X.H. Liu and Y.Z. He, Grain size dependence of anatase-to-rutile structural transformation in gel-derived nanocrystalline titania powders [J]. J. Mater. Sci. Lett.15 (1996) 1789-1791.
    [45]H. Zhang and J.F. Banfield, J. Mater. Chem.1998,8,2073; H. Zhang, J. F.Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates:Insights from TiO2 [J]. J. Phys. Chem. B 104 (2000) 3481-3487.
    [46]H. Zhang and J.F. Banfield, Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation [J]. J. Mater. Res.15 (2000) 437-448.
    [47]Y.U. Ahn, E.J. Kim, H.T. Kim and S.H. Hahn, Variation of structural and optical properties of sol-gel TiO2 thin films with catalyst concentration and calcination temperature [J]. Mater. Lett. 57 (2003) 4660-4666.
    [48]J. Yang, S. Mei and J.M.F. Ferreira, Hydrothermal synthesisof nanosized titania powders: influence of peptization andpeptizing agents on the crystalline phases and phase transitions [J]. J. Am. Ceram. Soc.83 (2000) 1361-1368.
    [49]J.L. Hebrard, M. Pijolat, and M. Soustelle, Kinetic data and mechanistic model for initial sintering of TiO2 [J]. Solid State Ionics 26 (1988) 159.
    [50]M.A. Barakat, G. Hayes and S.I. Shah, Effect of cobalt doping on the phase transformation of TiO2 nanoparticles [J]. J. Nanosci. Nanotechnol.5 (2005) 759-765.
    [51]Y.H. Zhang and A. Reller, Phase transformation and grain growth of doped nanosized titania [J]. Mater. Sci. Eng. C 19 (2002) 323-326.
    [52]J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet and J. R. Morante, Effects of Nb doping on the TiO2 anatase-to-rutile phase transition [J]. J. Appl. Phys.92 (2002) 853-861.
    [53]Z.M. Shi and L.N. Jin, Influence of La/Ce-doping on phase transformation and crystal growth in TiO2-15 wt% ZnO gels [J]. J. Non-Cryst. Solids 355 (2009) 213-220.
    [54]Y.M. Wang, S.W. Liu, M.K. Lu, S.F. Wang, F. Gu, X.Z. Gai, X.P. Cui and J. Pan, Preparation and photocatalytic properties of Zr4+-doped TiO2 nanocrystals [J]. J. Molec. Catal. A Chem.215(2004)137-142.
    [55]X.Z. Ding, L. Liu, X.M. Ma, Z.Z. Qi and Y.Z. He, The influence of alumina dopant on the structural transformation of gel-derived nanometre titania powders [J]. J. Mater. Sci. Lett.13 (1994)462-466.
    [56]S.H. Othman, S. Abdul Rashid, T.I. Mohd Ghazi and N. Abdullah, Effect of Fe doping on phase transition of TiO2 nanoparticles synthesized by MOCVD [J]. J. Appl. Sci.10 (2010) 1044-1051.
    [57]T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light [J], Appl. Catal., A 265(2004) 115-121.
    [58]Y. Iida and S. Ozaki, Grain growth and phase transformation of titanium oxide during calcination [J]. J. Am. Ceram. Soc.44 (1961) 120-127.
    [59]许可,吕德义,郇昌永,郑遗凡,葛忠华,离子掺杂对纳米二氧化钛晶型转变的影响[J].材料科学与工程学报23(2005)629-632.
    [60]J.L. Gole, M.P. Sharka and J.G. Orest, Efficient room-temperature conversion of anatase to rutile TiO2 induced by high-spin ion doping [J]. J. Phys. Chem. C.112 (2008) 1782-1788.
    [61]S.Li and P. Jena, Origin of the anatase to rutile conversion of metal-doped TiO2 [J]. Phys. Rev. B79(2009)201204-1-4.
    [62]R. Rodriguez-Talavera, S. Vargas, R. Arroyo-Murillo, R. Montiel-Campos and E. Haro-Poniatowski, Modification of the phase transition temperatures in titania doped with various cations [J]. J. Mater. Res.12 (1997) 439-443.
    [63]S. Vargas, R. Arroyo, E. Haro and R. Rodriguez, Effects of cationic dopants on the phase transition temperature of titania prepared by the sol-gel method [J]. J. Mater. Res.14 (1999) 3932-3937.
    [64]V. Subramanian, N. Zheng and E.G. Seebauer, Synthesisof high-temperature titania-alumina supports [J]. Ind. Eng. Chem. Res.45 (2006) 3815-3820
    [65]赵春,钟顺和,V2O5-TiO2复合半导体光催化材料结构及光响应性能研究[J].无机化学学报22(2006)238-242.
    [66]王艳芹,张莉,程虎民,马季铭,掺杂过渡金属离子的TiO2复合纳米粒子光催化剂-罗丹明B的光催化降解[J].高等学校化学学报21(2000)958-960.
    [67]K.J.D. Mackenzie, [J].Trans &J.Br.Ceram.Soc.74 (1975) 29-34.
    [68]D. Robert and J.P. Shannon, Kinetics of the anatase-rutile transformation [J]. J. Am. Ceram. Soc.48(1965)391-398.
    [69]M.C. Carotta, M. Ferroni, D. Gnani, V. Guidi, M. Merli, G. Martinelli, M.C. Casale and M. Notaro, Nano-structured pure and Nb doped TiO2 as thick film gas sensors for environmental monitoring [J]. Sens. Actuators B,58 (1999) 310-317.
    [70]J. Tian, H. Deng, L. Sun, H. Kong, P. Yang and J. Chu, Influence of Ni doping on phase transformation and optical properties of TiO2 films deposited on quartz substrates by sol-gel process [J]. Appl. Surf. Sci.258 (2012) 4893-4897.
    [71]X.Z. Ding, Z.A. Qi and Y.Z. He, Effect of tin dioxide doping on rutile phase formation in sol-gel-derived nanocrystalline titania powders [J]. Nanostru. Mater.4 (1996) 663-668.
    [72]林元华,张中太,黄淑兰,李晋林,纳米金红石型Ti02粉体的制备及其表征[J].无机材料学报,14(1999)853-860.
    [73]周华军,王大志,刘金华,纳米二氧化钛的量子尺寸效应及掺杂氧化锡对其光吸收的影响[J].化学物理学报,2002(2002)61-64.
    [74]S. Mahanty, S. Roy and S. Sen, Effect of Sn doping on the structural and optical properties of sol-gel TiO2 thin films [J]. J. Cryst. Grow.261 (2004) 77-81.
    [75]C. Byun, J. W. Jang, I.T. Kim, K.S. Hong and B.-W. Lee, Anatase-to-rutile transition of titania thin films prepared by MOCVD [J]. Mater. Res. Bull.32 (1997) 431-440.
    [76]S.I. Kitazawa, Y. Choi, S. Yamamoto and T. Yamaki, Rutile and anatase mixed crystal TiO2 thin films prepared by pulsed laser deposition [J]. Thin Solid Films 515 (2006) 1901-1904.
    [77]N. Martin, C. Rousselot, C. Savall F. Palmino, Characterizations of titanium oxide films prepared by radio frequency magnetron sputtering [J]. Thin Solid Films 287 (1996) 154-163.
    [78]J.D. DeLoach, G. Scarel, and C.R. Aita, Correlation between titania film structure and near ultraviolet optical absorption [J]. J. Appl. Phys.83 (1999) 2377-2384.
    [79]C.C. Ting and S.Y. Chen, Influence of ligand groups in Ti precursors on phase transformation and microstructural evolution of TiO2 thin films prepared by the wet chemical process [J]. J. Mater. Res.16(2001) 1712-1719.
    [80]M.H. Suhail, G. Mohan Rao, and S. Mohan, Dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films [J]. J. Appl. Phys.71 (1992) 1421-1427.
    [81]L. Zhao, M. Han and J. Lian, Photocatalytic activity of TiO2 films with mixed anatase and rutile structures prepared by pulsed laser deposition [J]. Thin Solid Films 516 (2008) 3394-3398.
    [82]J. Ben Naceur, M. Gaidi, F. Bousbih, R. Mechiakh, R. Chtourou, Annealing effects on microstructural and optical properties of Nanostructured-TiO2 thin films prepared by sol-gel technique [J]. Curr. Appl. Phys.12 (2012) 422-428.
    [83]L.V. Hong, N.T.H. Le, N.C. Thuan, N.D. Thanh, N.X. Nghia and N.X. Phuc, Observation of the phase formation in TiO2 nano thin film by Raman scattering [J]. J. Raman Spectr.36 (2005) 946-949.
    [84]R. Parna, U. Joost, E. Nommiste, T. Kaambre, A. Kikas, I. Kuusik, M. Hirsimaki, I. Kink and V. Kisand, Effect of cobalt doping and annealing on properties of titania thin films prepared by sol-gel process [J]. Appl. Surf. Sci.257 (2011) 6897-6907.
    [85]H. Shinguu, M.M.H. Bhuiyan, T. Ikegami and K. Ebihara, Preparation of TiO2/WO3 multilayer thin film by PLD method and its catalytic response to visible light [J]. Thin Solid Films 506(2006) 111-114.
    [86]J.X. Qiu, Y. Wang and M.Y. Gu, Microwave absorption properties of substituted BaFe12O19/TiO2 nanocomposite multilayer film [J]. J. Mater. Sci.42 (2007) 166-169.
    [87]S. Maikap, T.Y. Wang, P.J. Tzeng, C.H. Lin, T.C. Tien, L.S. Lee, J.R. Yang and M.J. Tsai, Band offsets and charge storage characteristics of atomic layer deposited high-k HfO2/TiO2multilayers [J]. Appl. Phys. Lett.90 (2007) 262901.
    [88]K.P. Biju and M.K. Jain, Sol-gel derived TiO2:ZrO2 multilayer thin films for humidity sensing application [J]. Sens. Actuators, B:Chem.128 (2008) 407-413.
    [89]Y.W. Tang, Z.G. Chen, L.S. Zhang, Z.Y. Jia and X. Zhang, Preparation and characterization of nanocrystalline Cu2O/TiO2 heterojunction film electrode [J]. J. Inorg. Mater.21 (2006) 453-458.
    [90]M.B. Lee, M. Kawasaki, M. Yoshimoto, B. Moon, H. Ishiwara, H. Koinuma, Formation and characterization of epitaxial TiO2 and BaTiO3/TiO2 films on Si substrate [J]. Jpn. J. Appl. Phys.34 (1995)808-811.
    [91]K.F. Albertin, M.A. Valle, and I. Pereyra, Study of MOS capacitors with TiO2 and SiO2/TiO2 gate dielectric [J]. J. Integr. Circ. Syst.2 (2007) 89-93.
    [92]B. Hudec, K. Husekova, E. Dobrocka, T. Lalinsky, J. Aarik, A. Aidla and K. Frohlich, High-permittivity metal-insulator-metal capacitors with TiO2 rutile dielectric and RuO2 bottom electrode [J]. IOP Conference Series:Materials Science and Engineering 8 (2010) 012024.
    [93]A.P. Huang, Paul K. Chu, L. Wang, W.Y. Cheung, J.B. Xu, and S.P. Wong, Fabrication of rutile TiO2 thin films by low-temperature, bias-assisted cathodic arc deposition and their dielectric properties [J]. J. Mater. Res.21 (2006) 844-850.
    [94]O. Pakma, N. Serin, T. Serin, The effect of repeated annealing temperature on the structural, optical, and electrical properties of TiO2 thin films prepared by dip-coating sol-gel method [J]. J. Mater. Sci.44 (2009)
    [95]D. Wang, M. Wang, X.H. Xu, Y. Hou, H. Wang and H. Han, Characteristics of titanium dioxide films deposited by metalorganic chemical vapor deposition [J]. J. Mater. Sci. Lett.21 (2002) 635-637.
    [96]M. Chandra Sekhar, P. Kondaiah, S.V. Jagadeesh Chandra, G. Mohan Rao and S. Uthanna, Effect of substrate bias voltage on the structure, electric and dielectric properties of TiO2 thin films by DC magnetron sputtering [J]. Appl. Surf. Sci.258 (2011) 1789-1796.
    [97]贾彩虹,掺杂钛酸铋薄膜的铁电与光学性质[D].河南大学硕士学位论文,2007.
    [98]胡安,章维益,固体物理学,高等教育出版社,2005年。
    [99]A.L. Patterson, the Scherrer formula for X-Ray particle size determination [J]. Phys.Rev.56 (1939)978-985.
    [100]J. Zhang, Z. Feng, J.Chen, and C. Li, UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the Bulk [J]. J. Phys. Chem.B 110 (2006) 927.
    [101]J.J. Tian, H.M. Deng, L. Sun, H. Kong, P.X. Yang and J.H. Chu, Effects of Co doping on the phase transformation and optical properties of TiO2 thin films by sol-gel method [J]. Physica E: 44(2011)550-554.
    [102]吴刚,材料结构表征及应用,化学工业出版社,2001年。
    [103]方容川,固体光谱学,中国科学技术大学出版社,2003年。
    [104]M. Fox,固体的光学性质,科学出版社,2009年。
    [105]W.L. Yu, K. Jiang, J.D. Wu, J. Gan, M. Zhu, Z.G. Hu, and J.H. Chu, Electronic structures and excitonic transitions in nanocrystalline iron-doped tin dioxide diluted magnetic semiconductor films:an optical spectroscopic study [J]. Phys. Chem. Chem. Phys.13 (2011) 6211.
    [106]J. Zhang, X. Chen, Y. Shen, Y. Li, Z. Hu, and J. Chu, Synthesis, surface morphology, and photoluminescence properties of anatase iron-doped titanium dioxide nano-cry stall ine films [J]. Phys. Chem. Chem. Phys.13 (2011) 13096.
    [107]A.B. Djurisic, Y. Chan, and E. Herbert Li, Progress in the room-temperature optical functions of semiconductors [J]. Mater. Sci. &Engin.:R:Reports 38 (2002) 237.
    [108]M. Kar, Error minimization in the envelope method for the determination of optical constants of a thin film [J]. Surf. & Interf. Analy.42 (2010) 145.
    [109]乔明霞,薄膜光学常数和厚度的透射光谱法测定研究[D].四川大学硕士学位论文,2006年。
    [110]D. Davazoglou, Determination of optical dispersion and film thickness of semiconducting disordered layers by transmission measurements:Application for chemically vapor deposited Si and SnO2 film [J]. Appl. Phys. Lett.70 (1997) 246-248.
    [111]D. Davazoglou, Optical properties of SnO2 thin films grown by atmospheric pressure chemical vapour deposition oxiding SnCl4 [J]. Thin Solid Films 302 (1997) 204-213.
    [112]胡志高,钙钛矿结构铁电薄膜和导电金属氧化物溥膜的光学性质[D],中国科学院上海技术物理研究所博士学位论文,2003。
    [113]H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications, John Wiley & Sons Ltd,2007.
    [114]J.Z. Zhang, Y.D. Shen, Y.W. Li, Z.G. Hu, and J.H. Chu, Composition dependence of microstructure, phonon modes, and optical properties in rutile TiO2:Fe nNanocrystalline films prepared by a nonhydrolytic sol-gel route [J]. J. Phys. Chem. C 114 (2010) 15157.
    [115]P. Yang, M. Guo, M. Shi, X. Meng, Z. Huang and J. Chu, Spectroscopic ellipsometry of SrBi2Ta2-xNbxO9 ferroelectric thin films [J]. J. Appl. Phys.97 (2005) 106106-3.
    [1]R.J. Berry and R. Mueller, Photocatalytic decomposition of crude oil slicks using TiO2 on a floating substrate [J]. Microchem.50 (1994) 28-32.
    [2]孙丽萍,高山,赵辉,纳米二氧化钛的晶型转变及光催化性能研究[J].功能材料5(2005)632-634.
    [3]符春林,魏稀文,二氧化钛晶型转变研究进展[J].材料导报13(1999)45-47.
    [4]J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang, and C. Li, Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of watermethanol mixture [J]. J. Phys. Chem. C 111 (2007) 693-699.
    [5]J. Zhang, Q. Xu, Y. Lian, X. Wang, and C. Li, Importance of the relationship between surface phases and photocatalytic activity of TiO2 [J]. Angew. Chem. Int. Ed.47 (2008) 1766-1769.
    [6]X.R. Zhang, Y.H. Lin, Interface junction at anatase/rutile in mixed-phase TiO2:formation and photo-generated charge carriers properties [J]. Chem. Phys. Lett.504 (2011) 71-75.
    [7]Y. Ma, Q. Xu, X. Zong, D. Wang, G. Wu, X. Wang and C. Li, Photocatalytic H2 production on Pt/TiO2-SO42- with tuned surface-phase structures:enhancing activity and reducing CO formation [J]. Energy Environ. Sci. (2012) DOI:10.1039/c1ee02053f.
    [8]R. Rodriguez-Talavera, S.Vargas, R. Arroyo-Murillo, R. Montiel-Campos and E. Haro-Poniatowski, Modification of the phase transition temperatures in titania doped with various cations [J]. J. Mater. Res.12 (1997) 439-443.
    [9]M.A. Barakat, G. Hayes, and S. Ismat Shah, Effect of cobalt doping on the phase transformation of TiO2 nanoparticles [J]. J. Nanosci. Nanotechnol.5 (2005) 759-765.
    [10]J.L. Gole, M.P. Sharka, and J.G. Orest, Efficient room-temperature conversion of anatase to rutile TiO2 induced by high-spin ion doping [J].J. Phys. Chem. C 112 (2008) 1782-1788.
    [11]I. Yoshio and O. Shunro, Grain growth and phase transformation of titanium oxide during calcinations [J]. J. Am.Ceram. Soc.44 (1961) 120-127.
    [12]S.Li and P. Jena, Origin of the anatase to rutile conversion of metal-doped TiO2 [J]. Phys. Rev. B 79(2009)201204-1-4.
    [13]G.B. Song, F.S. Liua, T.J. Peng, and G.H. Rao, Preparation and phase transformation of anatase-rutile crystals in metal doped TiO2/muscovite nanocomposites [J]. Thin Solid Films 491(2005) 110-116.
    [14]R. Parna, U. Joost, E. Nommiste, T. Kaambre, A. Kikas, I. Kuusik, M. Hirsimaki, I. Kink and V. Kisand, Effect of cobalt doping and annealing on properties of titania thin films prepared by sol-gel process [J]. Appl. Surf. Sci.257(2011) 6897-6907.
    [15]L.V.L. Hong, N.T.H. Thuan, N.C. Thanh, N.D. Nghia, N.X. Phuc, Observation of the phase formation in TiO2 nano thin film by Raman scattering [J]. J. Raman Spectrosc.36(2005) 946-949.
    [16]M.M. Yuji Matsumoto, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Room temperature ferromagnetism in transparent transition metal-doped titanium dioxide [J]. Scienceexpress 291(2001) 854-856.
    [17]T. Fukumura, Y. Yamada, K. Ueno, H.T. Yuan, H. Shimotani, Y. Iwasa, L. Gu, S. Tsukimoto, Y. Ikuhara and M. Kawasaki, Electrically induced ferromagnetism at room temperature in Cobalt-doped titanium dioxide [J]. Science 332 (2011) 1065-1067.
    [18]W. Prellier, A. Fouchet and B. Mercey, Oxide-diluted magnetic semiconductors:a review of the experimental status [J]. J. Phys.:Condens. Matter 15(2003) R1583.
    [19]W.K. Park, R.J. Ortega-Hertogs, J.S. Moodera, A. Punnoose and M.S. Seehra, Semiconducting and ferromagnetic behavior of sputtered Co-doped TiO2 thin films above room temperature [J]. J. Appl. Phys.91(2002) 8093-8905.
    [20]H. Toyosaki, T. Fukumura, Y. Yamada and M. Kawasaki, Evolution of ferromagnetic circular dichroism coincident with magnetization and anomalous Hall effect in Co-doped rutile TiO2 [J]. Appl. Phys. Lett.86(2005) 182503-1-3.
    [21]Y. Hirose, T. Hitosugi, Y. Furubayashi, G. Kinoda, K. Inaba, T. Shimada and T. Hasegawa, Intrinsic faraday spectra of ferromagnetic rutile Ti1-xCoxO2-σ [J]. Appl. Phys. Lett.88(2006) 252508-1-3.
    [22]Y.R. Park and K.J. Kim, Structural and optical properties of rutile and anatase TiO2 thin films: Effects of Co doping [J]. Thin Solid Films 484 (2005) 34-38.
    [23]T.Y. Tsutomu Umebayashi, Hisayoshi Itoh and Keisuke Asai, Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations [J]. J.Phys.Chem.Solids 63 (2002) 1909-1920.
    [24]S.V. M. Subramanian, S. Venkataraj, R. Jayavel, Effect of cobalt doping on the structural and optical properties of TiO2 films prepared by sol-gel process [J]. Thin Solid Films 516 (2008) 3776-3782.
    [25]李亚巍,含磁性离子铁电薄膜的制备和性能研究,中国科学院上海技术物理研究所博 士学位论文,2006.
    [26]W.F. Sullivan and S.S. Cole, Thermal chemistry of colloidal titanium dioxide [J]. J. Am. Ceram. Soc.42 (1959) 127-133.
    [27]J. Zhang, M. Li, Z. Feng, J.Chen, and C. Li, UV Raman spectroscopic study on TiO2.I. phase transformation at the surface and in the bulk [J]. J. Phys. Chem.B110 (2006) 927-935.
    [28]G.A. Tompsett, G.A. Bowmaker, R.P. Cooney, J.B. Metson, K.A. Rodgers and J.M. Seakins, The Raman spectrum of brookite, TiO2 (Pbca, Z=8) [J]. J. Raman spectrosc.26 (1995) 57-62.
    [29]C. Huang, Y. Guo, X. Liu and Y. Wang, Structural and optical properties of Ti1-xCoxO2 films prepared by sol-gel spin coating [J]. Thin Solid Films 505 (2006) 141-144.
    [30]S.C. Petitto, E.M. Marsh, GA. Carson and M.A. Langell, Cobalt oxide surface chemistry: The interaction of CoO(100),Co3O4(110) and Co3O4(111) with oxygen and water [J]. J. Mol. Catal. A:Chem.281 (2008) 49-58.
    [31]S.H. Chuang, R.H. Gao, K.H. Gao, M.Y. Chiang and T.S. Chao, Formation and structural characterization of cobalt titanate thin films [J]. J. Chin. Chem. Soc.57(2010) 1022-1026.
    [32]R. Parna, U. Joost, E. Nommiste, T. Kaambre, A. Kikas, I. Kuusik, M. Hirsimaki, I. Kink and V. Kisand, Effect of cobalt doping and annealing on properties of titania thin films prepared by sol-gel process [J]. Appl. Surf. Sci.257 (2011) 6897-6907.
    [33]R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon [J]. J. Phys. E:Sci. Instrum.16 (1983) 1214-1222.
    [34]D. Poelman and P.F. Smet, Methods for the determination of the optical constants of thin films from single transmission measurements:a critical review [J]. J. Phys. D:Appl. Phys. 36(2003) 1850-1857.
    [35]J. Tauc and A. Menth, States in the gap [J]. J. Non-Cryst. Solids 8-10 (1972) 569-585.
    [36]沈学础,半导体光谱和光学性质,第二版,科学出版社
    [37]伞海生,李斌,冯博学,何毓阳,陈冲,由缺陷引起的Burstein-Moss和带隙收缩效应对CdIn2O4透明导电薄膜光带隙的影响[J].物理学报54(2005)0842-0846.
    [38]孟凡明,周明飞,宋学萍,孙兆奇,退火温度对Ti02薄膜结构与光学性能的影响[J].功能材料38(2007)1773-1776.
    [39]C. Byun, J.W. Jang, I.T. Kim, K.S. Hong and B.W. Lee, Anatase-to-rutile transition of titania thin films prepared by MOCVD [J]. Mater. Res. Bull.32 (1997) 431-440.
    [40]H.Z. Zhang, J.F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates:Insights from TiO2 [J]. J. Phys. Chem. B 104 (2000) 3481-3487.
    [41]X. Li, X. Quan, and C. Kutal, Synthesis and photocatalytic properties of quantum confined titanium dioxide nanoparticle [J]. Scripta Mater.50 (2004) 499-505.
    [42]M. Cardona and G. Harbeke, Optical properties and band structure of wurtzite-type crystals and rutile [J]. Phys. Rev.137(1965) A1467-A1476.
    [43]S. Adachi, Optical dispersion relations in amorphous semiconductors [J]. Phys. Rev. B 43 (1991) 12316.
    [44]Z.G. Hu, W.W. Li, J.D. Wu, J. Sun, Q.W. Shu, X.X. Zhong, Z.Q. Zhu and J.H. Chu, Optical properties of pulsed laser deposited rutile titanium dioxide films on quartz substrates determined by Raman scattering and transmittance spectra [J]. Appl. Phys. Let.93 (2008) 181910-1.
    [45]C.C. Ting, S.Y. Chen and D.M. Liu, Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films [J]. J. Appl. Phys.88 (2000) 4628-4633.
    [46]O. Pakma, N. Serin, T. Serin, The effect of repeated annealing temperature on the structural, optical, and electrical properties of TiO2 thin films prepared by dip-coating sol-gel method [J]. J. Mater. Sci.44 (2009)
    [47]M. Chandra Sekhar, P. Kondaiah, S.V. Jagadeesh Chandra, G. Mohan Rao and S. Uthanna, Effect of substrate bias voltage on the structure, electric and dielectric properties of TiO2 thin films by DC magnetron sputtering [J]. Appl. Surf. Sci.258 (2011) 1789-1796.
    [48]A.P. Huang, P.K. Chu, L. Wang, W.Y. Cheung, J.B. Xu, and S.P. Wong, Fabrication of rutile TiO2 thin films by low-temperature, bias-assisted cathodic arc deposition and their dielectric properties [J]. J. Mater. Res.21 (2006) 844-850.
    [49]B. Hudec, K. Husekova, E. Dobrocka, T. Lalinsky, J. Aarik, A. Aidla and K. Frohlich, High-permittivity metal-insulator-metal capacitors with TiO2 rutile dielectric and RuO2 bottom electrode [J]. IOP Conference Series:Materials Science and Engineering 8 (2010) 012024.
    [50]刘恩科,朱秉升,罗晋生著,半导体物理学,第七版,电子工业出版社,2008.
    [51]赵毅强,姚素英,解晓东等译,半导体物理与器件,第三版,电子工业出版社,2011.
    [1]H. Shinguu, M.M.H. Bhuiyan, T. Ikegami and K. Ebihara, Preparation of TiO2/WO3 multilayer thin film by PLD method and its catalytic response to visible light [J]. Thin Solid Films 506 (2006) 111-114.
    [2]J.X. Qiu, Y. Wang and M.Y. Gu, Microwave absorption properties of substituted BaFe12O19/TiO2 nanocomposite multilayer film [J]. J. Mater. Sci.42 (2007) 166-169.
    [3]S. Maikap, T.Y. Wang, P.J. Tzeng, C.H. Lin, T.C. Tien, L.S. Lee, J.R. Yang and M.J. Tsai, Band offsets and charge storage characteristics of atomic layer deposited high-k HfO2/TiO2 multilayers [J]. Appl. Phys. Lett.90 (2007) 262901.
    [4]K.P. Biju and M.K. Jain, Sol-gel derived TiO2:ZrO2 multilayer thin films for humidity sensing application [J]. Sens. Actuators, B:Chem.128 (2008) 407-413.
    [5]Y.W. Tang, Z.G. Chen, L.S. Zhang, Z.Y. Jia and X. Zhang, Preparation and characterization of nanocrystalline Cu2O/TiO2 heterojunction film electrode [J]. J. Inorg. Mater.21 (2006) 453-458.
    [6]钟维烈著,铁电体物理学,科学出版社,北京,1996.
    [7]V.M. Fridkin, Ferroelectric Semiconductors, Consultant Bureau, New York,1980.
    [8]M.E. Linesand A.M. Glass, Principles and Applicationsof Ferorelectrics and Related Materials, Clarendon Press, Oxford,1977.
    [9]M.B. Lee, M. Yoshimoto, B. Moon, H. Ishiwara, H. Koinuma, Formation and characterization of epitaxial TiO2 and BaTiO3/TiO2 Films on Si Substrate [J]. Jpn. J. Appl. Phys.34 (1995) 808-811.
    [10]S. Adachi, Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb [J]. Phys. Rev. B 35 (1987) 7454-7463.
    [11]P. Yang, H. Deng, M. Shi and Z. Tong, Properties of SrBi2Ta0.8Nb1.2O9 thin films deposited by plasma-assisted pulsed-laser deposition [J]. J. Vac. Sci. Technol., A 25 (2007) 148-152.
    [12]R. Thomas, D.C. Dube, M.N. Kamalasanan and S. Chandra, Optical and electrical properties of BaTiO3 thin films prepared by chemical solution deposition [J]. Thin Solid Films 346 (1999) 212-225.
    [13]R. Thielsch, K. Kaemmer, B. Holzapfel and L. Schultz, Structure-related optical properties of laser-deposited BaxSr1-xTiO3 thin films grown on MgO (001) substrates [J]. Thin Solid Films 301 (1997)203-210.
    [14]P.C. Joshi and S.B. Desu, Structural, electrical, and optical studies on rapid thermally processed ferroelectric BaTiO3 thin films prepared by metallo-organic solution deposition technique [J]. Thin Solid Films 300 (1997) 289-294.
    [15]胡志高,钙钛矿结构铁电薄膜和导电金属氧化物薄膜的光学性质,中国科学院上海技术物理研究所博士学位论文,2003.
    [16]李亚巍,BaTiO3基钙钛矿结构薄膜的制备和性能研究,河南大学硕士学位论文,2003.
    [17]X.M. Lu, J.S. Zhu, W.Y. Zhang, G.Q. Ma and Y.N. Wang, The energy gap of r.f.-sputtered BaTiO3 thin films with different grain size [J]. Thin Solid Films 274 (1996) 165-168.
    [18]沈学础,《半导体光谱和光学性质》,科学出版社,2002年。
    [19]W.T. Liu, S.T. Lakshmikumar, D.B. Knorr, T.M. Lu and I.G.A. Van der Leeden, Deposition of amorphous BaTiO3 optical films at low temperature [J]. Appl. Phys. Lett.63(1993)574-576.
    [20]M. Wohlecke, V. Marrello and A. Onton, Refractive index of BaTiO3 and SrTiO3 films [J]. J. Appl. Phys.48 (1977) 1748-1750.
    [21]E.D. Palik, handbook of optical constants of solid-2.1991.
    [22]A.M. Salem, Structure, refractive-index dispersion and the optical absorption edge of chemically deposited ZnxCd1-xS thin films [J]. Appl. Phys. A 74 (2002) 205-211.
    [23]贾彩虹,掺杂钛酸铋薄膜的铁电与光学性质[D],河南大学硕士学位论文,2007.
    [24]刘志鹏,掺杂钛酸钡薄膜的合成及性能研究[D],华东师范大学硕士学位论文,2010.
    [1]D.S. Hwang, N.H. Lee, D.Y. Lee, J.S. Song, S.H. Shin and S.J. Kim, Phase transition control of nanostructured TiO2 powders with additions of various metal chlorides [J]. Smart Mater. Struct. 15(2006)S74.
    [2]James L. Gole, Sharka M. Prokes, and Orest J. Glembocki, Efficient Room-Temperature Conversion of Anatase to Rutile TiO2 Induced by High-Spin Ion Doping [J]. J. Phys. Chem. C 112 (2008) 1782-1788.
    [3]陈代荣,孟祥建,李博,孙思修,偏钛酸作前驱体水热合成Ti02微粉[J].无机材料学报12(1997)110-114.
    [4]S. Li and P. Jena, Origin of the anatase to rutile conversion of metal-doped TiO2 [J]. Phys. Rev. B79(2009)201204-1-4.
    [5]Y.H. Zhang and A. Reller, Phase transformation and grain growth of doped nanosized titania [J]. Mater. Sci. Eng. C 19 (2002) 323-326.
    [6]J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li, UV Raman spectroscopic study on TiO2. I. phase transformation at the surface and in the bulk [J]. J. Phys. Chem.B110 (2006) 927-935.
    [7]M.A. Barakat, G. Hayes, and S. Ismat Shah, Effect of cobalt doping on the phase transformation of TiO2 nanoparticles [J]. J. Nanosci. Nanotechnol.5 (2005) 759-765.
    [8]J. Tian, H. Deng, L. Sun, H. Kong, P. Yang and J. Chu, Effects of Co doping on the phase transformation and optical properties of TiO2 thin films by sol-gel method [J]. Physica E 44 (2011) 550-554.
    [9]S.H. Othman, S. Abdul Rashid, T.I. Mohd Ghazi and N. Abdullah, Effect of Fe doping on phase transition of TiO2 nanoparticles synthesized by MOCVD [J]. J. Appl. Sci.10 (2010) 1044-1051.
    [10]S. Adachi, Optical dispersion relations in amorphous semiconductors[J]. Phys. Rev. B 43 (1991) 12316.
    [11]胡志高,钙钛矿结构铁电薄膜和导电金属氧化物薄膜的光学性质,中国科学院上海技术物理研究所博士学位论文,2003。
    [12]Z.G. Hu, W.W. Li, J.D. Wu, J. Sun, Q.W. Shu, X.X. Zhong, Z.Q. Zhu and J.H. Chu, Optical properties of pulsed laser deposited rutile titanium dioxide films on quartz substrates determined by Raman scattering and transmittance spectra [J]. Appl. Phys. Let.93 (2008) 181910-1.
    [13]J. Zhang, X. Chen, Y. Shen, Y. Li, Z. Hu, and J. Chu, Synthesis, surface morphology, and photoluminescence properties of anatase iron-doped titanium dioxide nano-crystalline films [J] Phys. Chem. Chem. Phys.13 (2011) 13096.
    [14]C.C. Ting, S.Y. Chen and D.M. Liu, Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films [J]. J. Appl. Phys.88 (2000) 4628-4633.
    [15]J.D. DeLoach, G. Scarel, and C.R. Aita, Correlation between titania film structure and near ultraviolet optical absorption [J]. J. Appl. Phys.83 (1999) 2377-2384.
    [16]E. Haro-Poniatowski, S. Vargas-Munos, R. Arroyo-Murillo, R. Rodriguez-Talavera and R. Diamant, Laser-induced crystallization of Co(Ⅱ)-doped titania [J]. Mater. Res. Bull.31 (1996) 329-334.
    [17]H. Tang, F. Levy, H. Berger, P. E. Schmid, Urbach tail of anatase TiO2 [J]. Phys. Rev. B 52 (1995)
    [18]J. Zhang, X. Chen, K. Jiang, Y. Shen, Y. Li, Z. Hu and J. Chu, Evolution of orientation degree, lattice dynamics and electronic band structure properties in nanocrystalline lanthanum-doped bismuth titanate ferroelectric films by chemical solution deposition [J]. Dalton Transactions 40 (2011)7967-7975.
    [19]J. Ben Naceur, M. Gaidi, F. Bousbih, R. Mechiakh, R. Chtourou, Annealing effects on microstructural and optical properties of nanostructured-TiO2 thin films prepared by sol-gel technique [J]. Curr. Appl. Phys 12 (2012) 422-428.
    [20]S.Y. Han, D.H. Lee, Y.J. Chang, S.O. Ryu, T.J. Lee and C.H. Chang, The growth mechanism of nickel oxide thin films by room-temperature chemical bath deposition [J]. J. Electrochem. Soc. 153 (2006) C382-C386.
    [21]V. Biju and M. Abdul Khadar, Electronic structure of nanostructured nickel oxide using Ni 2p XPS analysis [J].J. Nanopart. Res.4 (2002) 247-253.
    [22]C. Byun, J.W. Jang, I.T. Kim, K.S. Hong and B.W. Lee, Anatase-to-rutile transition of titania thin films prepared by MOCVD [J]. Mater. Res. Bull.32 (1997) 431-440.
    [23]H.Z. Zhang, J.F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates:insights from TiO2 [J]. J. Phys. Chem. B 104 (2000) 3481-3487.
    [24]X. Li, X. Quan, C. Kutal. Synthesis and photocatalytic properties of quantum confined titanium dioxide nanoparticle [J]. Scripta Mater.50 (2004) 499-505.
    [25]G.A. Tompsett, G.A. Bowmaker, R.P. Cooney, J.B. Metson, K.A. Rodgers and J.M. Seakins, The Raman spectrum of brookite, TiO2 (Pbca, Z=8) [J]. J. Raman spectrosc.26 (1995) 57-62.
    [26]J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang, and C. Li, Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of watermethanol mixture [J]. J. Phys. Chem. C 111 (2007) 693-699.
    [27]M. Cardona and G. Harbeke, Optical properties and band structure of wurtzite-type crystals and rutile [J]. Phys. Rev.137(1965) A1467-A1476.
    [28]S.D. Mo, W.Y. Ching, Electronic and optical properties of three phases of titanium dioxide_Rutile, anatase, and brookite [J]. Phys. Rev.B51 (1995) 13023.
    [29]M. Islam, T. Bredow and A. Gerson, Electronic properties of oxygen-deficient and aluminum-doped rutile TiO2 from first principles [J]. Phys. Rev. B 76 (2007) 045217-1-4.
    [30]Y.S. Kim, Y.C. Chung, and K.S. Lee, The electronic structure of Ni doped rutile TiO2 [J]. J. Electroceram.17 (2006) 951.
    [1]S.H. Othman, S. A. R., T.I. Mohd Ghazi and N. Abdullah, Effect of Fe Doping on Phase Transition of TiO2 Nanoparticles Synthesized by MOCVD [J]. J. Appl. Sci.10 (2010) 1044-1051.
    [2]F.C. Gennari and D.M. Pasquevich, Enhancing effect of iron chlorides on the anatase-rutile transition in titanium dioxide [J]. J Am. Ceram. Soc.82 (1999) 1915-1921.
    [3]F.C. Gennari, D.M. Pasquevich, Kinetics of the Anatase-Rutile Transformation in TiO2 in the presence of Fe2O3 [J]. J Mater. Sci.33 (1998) 1571-1578.
    [4]X. Zhang and L. Lei, One step preparation of visible-light responsive Fe-TiO2 coating photocatalysts by MOCVD [J]. Mater. Lett.62 (2008) 895-897.
    [5]G.B. Song, J.K. Liang, F.S. Liua, T.J. Peng, and G.H. Rao, Preparation and phase transformation of anatase-rutile crystals in metal doped TiO2/muscovite nanocomposites [J]. Thin Solid Films 491 (2005) 110-116.
    [6]D.S. Hwang, N.H. Lee, D.Y. Lee, J.S. Song, S.H. Shin and S.J. Kim, Phase transition control of nanostructured TiO2 powders with additions of various metal chlorides [J]. Smart Mater. Struct. 15(2006)S74.
    [7]R.L. Narayana, M. Matheswaran, A. Abd Aziz and P. Saravanan, Photocatalytic decolourization of basic green dye by pure and Fe, Co doped TiO2 under daylight illumination [J]. Desalination 269 (2011) 249-253.
    [8]S. George, S. Pokhrel, Z. Ji, B.L. Henderson, T. Xia, L. Li, J.I. Zink, A.E. Nel and L. Madler, Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm [J]. J Am Chem Soc 133 (2011) 11270-8.
    [9]S. Li and P. Jena, Origin of the anatase to rutile conversion of metal-doped TiO2 [J]. Phys. Rev. B79(2009)201204-1-4.
    [10]M.A. Shui, Y. Song, Q.C. Wang and Y.L. Ren, Thermal behavior, microstructure, phase transformation, and crystal growth kinetics of nano-scale Fe3+-doped TiO2 xerogel powders [J]. Curr. Appl. Phys.10(2010) 1360-1365.
    [11]Y.H. Zhang and A. Reller, Phase transformation and grain growth of doped nanosized titania [J]. Mater. Sci. Eng. C 19 (2002) 323-326.
    [12]J. Zhang, M. Li, Z. Feng, J.Chen, and C. Li, UV Raman spectroscopic study on TiO2 I. phase transformation at the surface and in the bulk [J]. J. Phys. Chem.B110 (2006) 927-935.
    [13]M.A. Barakat, G. Hayes, and S. Ismat Shah, Effect of cobalt doping on the phase transformation of TiO2 nanoparticles [J]. J Nanosci Nanotechnol.5 (2005) 759-765.
    [14]J. Tian, H. Deng, L. Sun, H. Kong, P. Yang and J. Chu, Effects of Co doping on the phase transformation and optical properties of TiO2 thin films by sol-gel method [J]. Physica E 44 (2011) 550-554.
    [15]W.F. Sullivan and S.S. Cole, Thermal Chemistry of Colloidal Titanium Dioxide [J]. J Am. Ceram. Soc.42 (1959) 127-133.
    [16]S. Adachi, Optical dispersion relations in amorphous semiconductors [J]. Phys. Rev. B 43 (1991) 12316.
    [17]Z.G. Hu, W.W. Li, J.D. Wu, J. Sun, Q.W. Shu, X.X. Zhong, Z.Q. Zhu and J.H. Chu, Optical properties of pulsed laser deposited rutile titanium dioxide films on quartz substrates determined by Raman scattering and transmittance spectra [J]. Appl. Phys. Let.93 (2008) 181910-1.
    [18]M. Cardona and G. Harbeke, Optical properties and band structure of wurtzite-type crystals and rutile [J]. Phys. Rev.137(1965) A1467-A1476.
    [19]J. Ben Naceur, M. Gaidi, F. Bousbih, R. Mechiakh, R. Chtourou, Annealing effects on microstructural and optical properties of Nanostructured-TiO2 thin films prepared by sol-gel technique [J]. Curr. Appl. Phys 12 (2012) 422-428.
    [20]王鲁蕉,不同结构纳米TiO2-SiO2复合氧化制备、表征和比较研究[D].太原理工大学硕士学位论文,2008.
    [21]赵敬哲,王子悦,王莉玮,超细多孔Ti02的制备及机理研究[J].高等学校化学学报20(1999)118-123.
    [22]L. Chen, M.E. Graham, G. Li and K.A. Gray, Fabricating highly active mixed phase TiO2 photocatalysts by reactive DC magnetron sputter deposition [J]. Thin Solid Films 515 (2006) 1176-1181.
    [23]C.C. Ting, S.Y. Chen and D.M. Liu, Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films [J]. J. Appl. Phys.88 (2000) 4628-4633.
    [24]S.D. Mo, W.Y. Ching, Electronic and optical properties of three phases of titanium dioxide_Rutile, anatase, and brookite [J]. Phys. Rev. B 51 (1995) 13023.
    [25]M. Islam, T. Bredow and A. Gerson, Electronic properties of oxygen-deficient and aluminum-doped rutile TiO2 from first principles [J]. Phys. Rev. B 76 (2007) 045217-1-4.
    [26]T. Yamashita and P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials [J]. Appl. Surf. Sci.254 (2008) 2441-2449.
    [27]P. Mills and J.L. Sullivan, A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy [J]. J. Phys. D:Appl. Phys.16 (1983) 723.
    [28JF.L. Souza, K.P. Lopes, P.A.P. Nascente and E.R. Leite, Nanostructured hematite thin films produced by spin-coating deposition solution:Application in water splitting [J]. Sol. Energy Mater. Sol. Cells 93 (2009) 362-368.
    [29]K. Misook, Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol [J]. J. Mol. Catal. A:Chem.197 (2003) 173-183.
    [30]J. Zhang, X. Chen, Y. Shen, Y. Li, Z. Hu and J. Chu, Synthesis, surface morphology, and photoluminescence properties of anatase iron-doped titanium dioxide nano-crystalline films [J]. Phys. Chem. Chem. Phys.13 (2011) 13096-13105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700