功能微纳米材料的设计、合成及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳米材料因为具有与本体不同尺寸大小,因而有着不同的物理化学性能,具有特异功能应用更是非常广泛。微纳米颗粒的形貌、尺寸和分散性对于微纳米材料的性质有很重要的影响,因此如何控制、设计微纳米材料的合成生产尤为重要。不同的合成方法都有其优点和不足,我们探索了微纳米材料的不同制备方法,合成具有实际应用价值的片状α-Al203纳米抛光材料、分散性良好的立方相钇稳定氧化锆YSZ微纳颗粒、稳定性长久的CdS/ZnS核/壳纳米晶紫蓝光LED发光材料。并通过X射线粉末衍射(XRD)、电子显微镜(SEM、TEM)等对产物进行了的结构及形貌表征;用拉曼光谱(Raman)表征了不同相的钇稳定氧化锆;用紫外吸收(UV-vis)和光致发光(PL)光谱分析所得纳米材料的光学性质。主要研究工作如下所示:
     本论文的研究工作主要放在α-Al203制备及抛光性能和钇稳定氧化锆(YSZ)增韧陶瓷和CdS/ZnS核/壳结构荧光半导体纳米材料的制备三个方面。
     (1)用甘氨酸-硝酸盐自燃烧法,在保持其他工艺参数不变的条件下,仅仅通过改变反应物原料的配比,实现了所得α-Al203微纳粉体形貌由近似球形微纳粒子到二维片状结构的连续可调。另外还对产物生成及形貌变化机理进行了初步理论探讨和解释;其次加入草酸溶液(工业级)配制抛光液,验证了产物的抛光性能。
     (2)在产业化的沉淀法上,加以改进,利用超声,微波物理辅助方法,制备单分散四方相稳定的YSZ纳米颗粒;探究了超声、微波环境下颗粒表面的水分子脱离情况;对YSZ相增韧机理进行分析研究;同时研究了钇稳定氧化锆的光学性质。
     (3)采用高温热注射法,以十八烯(ODE)为溶剂,合成CdS/ZnS核/壳结构荧光半导体纳米晶;调节配体油酸(OA)的量控制CdS核的大小,采用SILAR (Successive Ion Layer Adsorption And Reaction)法控制壳层厚度,使其发光波长在410-480nm紫蓝光范围内可调,稳定性良好。
Because of their different physical and chemical properties, specific functional applications of nano-materials is very extensive. The morphology and size of nano-particles have a important influence on properties of the materials. So it is important to control the particle size and morphology in the process of preparation of nano-materials. Different synthesis methods have their own advantages and disadvantages. We explored different ways to synthesize nano-material including the flakyα-Al2O3 polishing material, yttria-stabilized zirconia (YSZ) toughened ceramic materials, and blue light-emitting CdS/ZnS core/shell nanocrystals. The samples were characterized by electron microscopy (EM), powder X-ray diffraction (XRD). UV-vis absorption and Photoluminescence were also used to characterize the growth process and optical properties of nanocrystals. The main experimental contents are as follows:
     In this paper, my research working mainly focuse on three aspects:i)α-Al2O3 preparation and its polishing performance; ii) yttrium-stabilized zirconia (YSZ) toughened ceramics; iii) preparation of fluorescent CdS/ZnS core-shell semiconductor nano-materials.
     (1)α-Al2O3 polishing materials were prepared via the glycine-nitrate pyrolysis process and the polishing performance of the obtained product was studied in detail, which shows comparative performance in comparison with the commercial products.
     (2) Stable monodisperse tetragonal YSZ nano-particles were prepared through the modification of industrialization precipitation incombination with the use of ultrasound and microwave techniques. The phase toughening mechanism of the obtained product was exploited.
     (3) Wurtzite structured CdS nanoparticles were firstly synthesized as cores. Successive Ion Layer Adsorption and Reaction (SILAR) method was applied to grow ZnS shell around the CdS cores by alternative injection of the Zn and S precursors. The obtained core-shell structured CdS/ZnS nanocrystals with photoluminescent emitting wavelength in the range of 410-480nm show high emission efficiency (up to 45%) and good stability.
引文
华东理工大学硕学位论文第41页参考文献
    [1]张立德.纳米材料和技术的发展趋势和应用机遇.世界科技研究与发展.2003.1-19.
    [2]唐叔贤.纳米材料和技术的二次浪潮.世界科技研究与发展.2003.1-10.
    [3]Alivisatos A P. Semiconductor Clusters, Nanocrystals, and Quantumn Dots. Science.1996,271(5251):933-937.
    [4]Pradhan N, Xu H, Peng X. Colloidal CdSe Quantum Wires by Oriented Attachment. Nano. Lett.2006,6 (4):720-740.
    [5]Xia Y N, Yang P D. Chemistry and Physics of Nanowires. Adv. Mater.2003,15(5): 351-352.
    [6]Lijima S, Lchihashi T, Ando Y. Pentagons, Heptagons and Negative Curvature in Graphite Microtubule Growth. Nature.1991,356:776-778.
    [7]Ma C, Moore D, Li J, Wang Z L, Nanobelts, Nanocombs, and Nanowindmills of Wurtzite ZnS. Adv. Mater.2003,15 (3):228-231.
    [8]Zhu J, Peng H, Chan C K, Jarausch K, Zhang X F, Cui Y. Hyperbranched Lead Selenide Nanowire Networks. Nano. Lett.2007,7 (4):1095-1099.
    [9]Zheng J, Song X, Chen N, Li X. Highly Symmetrical CdS Tetrahedral Nanocrystals Prepared by Low-Temperature Chemical Vapor Deposition Using Polysulfide as the Sulfur Source. Crystal Growth & Design.2008,8 (5):1760-1765.
    [10]小野守章,小营茂羲.日本公开特许公报,昭63-95101,1998-2002.
    [11]Gemma G., Jaume C.. Pulsed injection MOCVD of YSZ thin films onto dense an porous substrates. Chem. Vap. Deposition,2003,9:279-284.
    [12]Ananthapadmanabhan P. V. Formation of nano-sized alumina by in-flisht oxidation of aluminium powder in a thermal plasma reactor. Scripta Materialia,2004,50: 143-147.
    [13]Ye R., In-flisht sphereidization of alumina powders in Ar-H2 and Ar-N2 induction plasmas. Plasma Chem Plasma Process,2004,24(4):551-571.
    [14]钟盛文,焦永斌,叶雪均.预热粉体爆炸烧结超细氧化铝陶瓷初步研究.南方冶金学院学报.1999,20(1):25-27.
    [15]王志强,马铁成,蔡英骥.超细α-Al203的低温燃烧合成及其烧结特性的研究.硅酸盐通报,2000,19(5):28-32.
    [16]Singh K.A., Pathak L.C., Roy S.K.. Effect of citric acid on the synthesis of nano-crystalline yttria stabilized zirconia powders by nitrate-citrate process. Ceramics International.2007,33:1463-1468.
    [17]王德,贺强,裴力等.甘氨酸-硝酸盐法合成纳米YSZ微粉及其性能.吉林大学学 报(理学版).2004,42(2):261-264。
    [18]Su P, Guo X Y, Ji S H. Effects of multicomponent catalyzer on preparation of ultrafine a-Al2O3 at low sintering temperature. Advanced Powder Technology 2009,20:542-547
    [19]Wang Q G, Peng R R, Xia C R, Zhu W, Wang H T. Characteristics of YSZ synthesized with a glycine-nitrate process. Ceramics International 34 (2008) 1773-1778.
    [20]Ebadzadeh T., Asadian K.. Microwave-assisted synthesis of nanosized α-Al2O3 Powder Technology.2009,192:242-244.
    [21]刘新宽,马明亮.氧化铝高能球磨时机构力化学效应研究.材料科学与工艺,2000,8(2):41-45.
    [22]唐海红,焦淑红,杨红菊,张爱贤.纳米氧化铝的制备及应用.中国粉体技术,2002,8(6):37-39.
    [23]孙志昂,陈燕.搅拌球磨机在α-氧化铝超细粉碎中的应用.硅酸盐通报,1997,(2):68-71.
    [24]吴志鸿.纳米氧化铝的制备及其在催化领域的应用.工业催化,2004,12(2):36-39.
    [25]刘彤,谢志鹏,陆继伟.长柱状晶高韧性氧化铝陶瓷的制备与性能研究.材料工程,2001,(8):14-16.
    [26]Yi C., Qingqiao W., Hongkun P., Charles M. L., Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species.. Science. 2001,293:1289-1292.
    [27]Xin X H, Lu Z, Ding Z H, Huang X Q, Liu Z G, Sha X Q, Zhang Y H, Sua W H. Synthesis and characteristics of nanocrystalline YSZ by homogeneous precipitation and its electrical properties. Journal of Alloys and Compounds.2006,425:69-75
    [28]许珂敬,杨新春,田贵山.采用引入晶种的水热合成法制备纳米粉.硅酸盐学报,2001,29(6):576-582.
    [29]施尔畏,仲维卓,弈怀顺.水热法制备微粉中氢氧化铝转变为氧化铝的过程.无机材料学报,1992,7(3):300-306.
    [30]Yoshimum M, Somiya S. Hydrothermal synthesis of crystallized nano-particles of rare earth-doped zirconia and hafnia. Mater ChemPhys.1999,61(1):1-8。
    [31]Kumari L., Li W., Wang D., Monoclinic zirconium oxide nanostructures synthesized by a hydrothermal route, Nanotechnology.2008,19:195602.
    [32]曾文明,陈念贻,归林华等.无机盐制备氧化铝纳米粉及其物理化学的研究.无机材料学报,1998,13(6):51-53.
    [33]Dumeignil F.,etal. Modification of structural and acidic properties of sol-gel-prepared alumina powders by changing the hydrolysis ratio. Applied Catalysis A:General. 2003,241:319-329.
    [34]Macedo M. F, Osawa C. C, Bertran C. O. Sol-gel synthesis of transparent alumina gel and pure ganlma alumina By urea hydrolysis of aluminum nitrate. Journal of Sol-Gel Science and Technology,2004,30:135-140.
    [35]Shiga H.,Okubo T., Sadakata M.. Preparation of Nanostructured Platinum/Yttria-Stabilized Zirconia Cermet by the Sol-Gel Method. Ind.Eng. Chem. Res.1996,35:4479-4486.
    [36]Butz,z B., Stormer H., Gerthsen D., Bockmeyer,y M., Kruger R., Ivers-Tiffee E., and Luysberg M.. Microstructure of Nanocrystalline Yttria-Doped Zirconia Thin Films Obtained by Sol-Gel Processing. J. Am. Ceram. Soc.,2008,91(7):2281-2289.
    [37]Christopher N. C., Brady J. C., Hsiang W. C., Alexander E. G., Joe H. S., and Susan M. K.. Aerogel Synthesis of Yttria-Stabilized Zirconia by a Non-Alkoxide Sol-Gel Route. Chem. Mater.2005,17:3345-3351.
    [38]Christopher N. C., Brady J. C., Hsiang W. C., Alexander E. G., Joe H. S., and Susan M. K.. Role of Cyclic Ether and Solvent in a Non-Alkoxide Sol-Gel Synthesis of Yttria Stabilized Zirconia Nanoparticles. Chem. Mater.2006,18 (20):4865-4874.
    [39]Pang G. S., Sominska E., Colfen H., Mastai Y., Avivi S., Koltypin Y., and Gedanken A.. Preparing a Stable Colloidal Solution of Hydrous YSZ by Sonication. Langmuir, 2001,17 (11):3223-3226.
    [40]Victor I. O., Neil J. C.. Influence of water/alkoxide ratio on the properties of Ru/Al2O3 xerogel catalysts. J. Molecular Catalysis A:Chem.,1999,149:297-301.
    [41]Yu Z. Q., Wang C. X. J. Preparation and thermal stability of Eu2O3-doped Al2O3 nanometer-sized powder using the modified bimetallic alkoxides. Crystal Growth,2003,256:210-213.
    [42]Rajendran M., Bhattacharya A. K. Low-temperature formation of alpha alumina powders from carboxylate and mixed carboxylate precursors. Mater. Lett.,1999,39: 188-192.
    [43]牛国兴,何坚铭,陈晓银.不同添加物和制备方式对Al203热稳定性的影响.催化学报,1999,20(5):535-540.
    [44]王敬先,刘勇,何阿弟.不同制备方法镧改性对γ-Al203的高温热稳定作用研究.复旦学报(自然科学版),2000,39(4):450-455.
    [45]龚茂初,林之恩,高士杰.高温高表面氧化铝新材料的制备化学研究-Ⅳ.镧组分对溶胶-凝胶法制高比表面Al203的影响.燃料化学学报,2001,29(1):76-81.
    [46]林之恩,龚茂初,谢春英.高温高表面氧化铝新材料的制备化学研究-镧和表面活性剂对氧化铝性质的影响.化学研究与应用,2001,13(2):216-222.
    [47]宋希文,安胜利,赵文广.氧化铝超细粉末的烧结特性.兵器材料科学与工程,2001,24(2):20-24.
    [48]侯春楼.氧化铝微球的制备.轻金属,1997,(5):23-25.
    [49]夏长荣,唐哗,杨萍华.PVA修饰的溶胶凝胶法制备γ氧化铝超滤膜.材料研究学报,1999,(13):279-282.
    [50]曾文明,陈念贻,归林华.无机盐制备氧化铝纳米粉及其物理化学的研究.无机材料学报,1998,13(6):887-892.
    [51]Wu Y Q, Zhang Y F, Huang X X, Guo J K. Preparation of Nano-sized Alumina Powders at Low Temperatures.2001,16(2):349-352
    [52]Chen Z W, Li S, and Yan Y S. Synthesis of Template-Free Zeolite Nanocrystals by Reverse Microemulsion-Microwave Method. Chem. Mater.2005,17,2262-2266.
    [53]Piao L Y, Liu X Z,Mao L J, Ju S T. Preparation of Nano-Alumina by Reverse Microemulsion Method. Acta.Phys.-Chim. Sin.2009,11:2232-2236.
    [54]李月华,赵东林,曾宪伟.纳米γ-Al203粒子的制备及其磁性能研究.功能材料.2007,38:1981-1983.
    [55]Pang L. P.; Zhao R. H.; Guo F.; Chen J. F.; Cui W. G. Preparation and Characterization of Novel Alumina HollowSpheres. Acta.Phys.-Chim. Sin.,2008,24:1115
    [56]Hao, Z. X.; Liu, H.; Guo, B.; Li, H.; Zhang, J. W.; Gan, L. H.; Xu,Z. J.; Chen, L. W. Sol-Gel Synthesis of Alumina Using Inorganic Salt Precursor. Acta Phys.-Chim. Sin.,2007,23:289.
    [57]Zhang L.; Yao S. W.; Zhang W. G.; Wang H. Z. Preparation and Formation Mechanism of Alumina Nanowires. Acta Phys.-Chim. Sin.,2005,21:1254
    [58]Xu Z. J., Gan L. H., Pang Y. C., Chen L. W. Preparation of A12O3 bulk aerogels by non-supercritical fluid drying technology. Acta Phys.-Chim.Sin.,2005, 21:221
    [59]Zhang L. D.; Mou J. M. Nanomaterials and nanostructures. Beijing: Science Press,2001: 167-168
    [60]Hubbard, C. R., Evans, E. H. A computer program, for calculating X-ray and neutron diffraction powder patterns. Journal of Applied Crystallography,1976,9:167
    [61]李莉娟,孙凤久,楼丹花,王闯.纳米氧化铝的晶型及粒度对其红外光谱的影响.功能材料,2007,38:479
    [62]Wu Y. C., Yang, Y, Li, Y, Cui P. Effect of Addition of Alumina Sol on γ→α Phase Transformation of ultrafined Alumina. Acta Phys.-Chim. Sin.,2005,21:79
    [63]Li J., Pan Y, Xiang C., Ge Q., Guo. Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol-gel process. J. Ceramics International,2006,32: 587
    [64]Sharma P. K., Varadan V. V., Varadan V. K. A critical role of PH in the colloidal
    synthesis and phase transformation of nano size α-Al2O3 with high surface area. J. Eur. Ceramic Soc.,2003,23:659
    [65]Wu J. H., Li B. S., Guo J. K. A novel wet chemistryrtwo-step calcining process for the synthesis of ultrafine a-Al2O3 particles. Mater. Lett.,2001,47:40
    [66]Luo C. X., Wang Y., Liu J. K., Lian J. S., Chai, C. F. Characterizations and Application of Conductive ZAO Nanocrystals Prepared by Ultrasonic-Template Method. Acta Phys.-Chim. Sin.,2008,24:1007
    [67]Liu J. K., Yang X. H., Tian X. G. Preparation of silver/hydroxyapatite nanocomposite spheres. Powd. Technol.,2008,184:21
    [68]Huo W. L., Liu Q. F., Liu Q., Zhu L. H., Wang L. Application of Combinatorial Material Chip Method in Screening of Anticorrosion Zn-Al Alloy. Acta Phys.-Chim. Sin.,2008,24:1703
    [69]Liu J. K., Wu Q. S., Ding Y. P. Controlled Synthesis of Different Morphologies of BaWO4 Crystals through Biomembrane/Organic-Addition Supramolecule Templates. Cryst. Growth Des.,2005,5:445
    [70]Yan B., Wang Q. M. Two Luminescent Molecular Hybrids Composed of Bridged Eu(Ⅲ)-Diketone Chelates Covalently Trapped in Silica and Titanate Gels. Cryst. Growth Des.,2008,8:1484
    [71]Nadarajah A.; Word R. C., Meiss J., Konenkamp R. Flexible Inorganic Nanowire Light-Emitting Diode. Nano Lett.,2008,8:534.
    [72]Robert P, Claude M, Donats M. Hydrothermal synthesis of nanostructured zirconia materials:present state and future prospects. Sensors and Actuators B:Chemical,2005, 109(1):102-106.
    [73]Hwang C. C., Tsai J. S., and Huang T. H.. Combustion Synthesis of Ni-Zn Ferrite by Using Glycine and Metal Nitrates-Investigations of Precursor Homogeneity, Product Reproducibility, and ReactionMechanism. Mater. Chem. Phys.,2005,93,330-6.
    [74]Biammino S. and Badini D.. Combustion Synthesis of Lanthanum Chromites Starting from Water Solutions:Investigation of Process Mechanism by DTA-TG-MS, J. Eur. Ceram. Soc.,2004,24,3021-34.
    [75]伊衍升,李嘉.氧化锆陶瓷及其复合材料[M].北京:化学工业出版社,2004:60-63.
    [76]张学斌,徐俊,刘丽华等.硅藻土多孔陶瓷膜管的研制和性能表征.中国非金属矿工业导刊,2006,(2):36-38.
    [77]陈冀渝.轻质多孔粉煤灰陶瓷的研制.陶瓷.2006,(1):38-39.
    [78]Dassios G., Steen M., Filiou C.. Mechanical Properties of Alumina Nextel TM 720 Fibers at Room and Elevated Temperatures:Tensile Bundle Testing.Materials. Science and Engineering A,2003,349:63-72
    [79]王林,李晓俊,刘小兰,王飞,叶超.纳米材料在一些领域的应用及其前景2005年(第四届)中国纳米科技西安研讨会论文集,2005,1:685-687
    [80]Brook R J. Advances in Ceramies. edited by Classen N,1983,12:272-280.
    [81]Thiruchitrambalam M., Palkar V. R., Gopinathan V. Hydrolysis of aluminium metal and sol-gel processing of nano alumina. Mater. Lett,2004,58:3063-3069.
    [82]An S G, Wu X F, Wu W J, Liu Q G. Effect of heat treatment on structure and properties of MgO-PSZ electrolyte. Solid State loonies,1992,57:31-34.
    [83]M.A.C.G van de Graaf, A.J. Burggraaf, in: N. Claussen, M. Ruhle, A. Heuar (Eds.), Advances in Ceramics, Science and Technology of Zirconia Ⅱ, Vol.12, The American Ceramic Society, Columbus,OH,1984, p.744
    [84]宋然然,隋万美.湿化学法制备纳米氧化铝粉末的研究进展.陶瓷学报,2004,25(3):186-192.
    [85]Brook R J. Advances in Ceramies. edited by Classen N,1983.12:272-280.
    [86]Khollam Y. B., Deshpande A. S., Patil A. J., Potdar H. S., Deshpande S. B., Date S. K.. Synthesis of yttria stabilized cubic zirconia (YSZ) powders by microwave-hydrothermal route. Materials Chemistry and Physics.2001,71:235-241
    [87]Brossmann U., Sagmeister M., Polt P., Kothleitner G., Letofsky-Papst I., SzaboD. V., and Wurschum R.. Microwave plasma synthesis of nano-crystalline YSZ, Phys. Stat. sol.2007,1,107-109.
    [88]Xin X S, Lu Z, Ding Z H, Huang X Q, Liu Z G, Sha X Q, Zhang Y H, Sua W H. Synthesis and characteristics of nanocrystalline YSZ by homogeneous precipitation and its electrical properties. Journal of Alloys and Compounds.2006,425:69-75
    [89]Suresh K. K., Mathews.c T.. Sol-gel synthesis and microwave assisted sintering of zirconia-ceria solid solution. Journal of Alloys and Compounds.2005,391:177-180.
    [90]Ishihara H., Kaneko H, Hasegawa N., Tamaura Y. Two-step water-splitting at 1273-1623K using yttria-stabilized zirconia-iron oxide solid solution via co-precipitation and solid-state reaction. Energy.2008,33:1788-1793
    [91]Xu Q L, Hou B H, Zhang Y H. Preparation of ZrO2 nanomaterials and their characteristics of paramagnetic. Chinese Science Bulletin.1993,38 (6):500-500.
    [92]Ray J.C., Pati R.K., Pramanik P., Chemical synthesis and structural characterization of nanocrystalline powders of pure zirconia and yttria stabilized zirconia (YSZ), J. Eur. Ceram. Soc.2000,20:1289-1294.
    [93]Shukla A.K., Sharma V., Arul D. N., Patil K.C.. Oxide-ion conductivity of calcia-and yttria-stabilized zirconias prepared by a rapid-combustion route. Materials Science and Engineering B.1996,40:153-157
    [94]Yuan F L., Chen C. H., Kelder E. M., Schoonman J.. Preparation of zirconia and yttria-stabilized zirconia (YSZ) fine powders by flame-assisted ultrasonic spray pyrolysis (FAUSP), Solid State Ionics.1998,109:119-123.
    [95]Garcia-Sanchez M. F., Pena a J., Ortiz A., Santana G, Fandino J., Bizarro M., Cruz-Gandarilla F., Alonso J. C.. Nanostructured YSZ thin films for solid oxide fuel cells deposited by ultrasonic spray pyrolysis. Solid State Ionics.2008,179:243-249.
    [96]Combemale L., Caboche G, Stuerga D., Chaumont D.. Microwave synthesis of yttria stabilized zirconia, Materials Research Bulletin.2005,40:529-536.
    [97]Qi L, Xu M X, Tian Y M, Hao J W. Preparation of alumina-doped yttria-stabilized zirconia nanopowders by microwave-assisted peroxyl-complex coprecipitation. Trans. Nonferrous Met. Soc. China.2006,16:s426-s430.
    [98]Mary S. K., Arthur H. H.. Alcohol Interaction with Zirconia Powders.J Am Ceram Soc. 1990,73(6):1504-1509
    [99]Xu M X, Fang D P, Guo R S, Zhu G H, Xu H Y, Zheng F. Adsorption and modification of macromolecular PEG on the ZrO2 precursor. Journal of TianJin university.1994,27: 2-5
    [100]Begincolin, S., Lecaer, G.., Zandona, M., Bouzy, E., Malaman, B. Influence of the nature of milling media on phase transformations induced by grinding in some oxides. Journal of Alloys and Compounds.1995,227:157-166
    [101]Zhang P., Navrotsky A., Guo B., Kennedy I., Alisha N. C., Lesher C., and Liu Q Y. Energetics of Cubic and Monoclinic Yttrium Oxide Polymorphs:Phase Transitions, Surface Enthalpies, and Stability at the Nanoscale. J. Phys. Chem. C.2008,112: 932-938
    [102]Gibson I.R., Dransheld G.P., Irvine J.T.S.. Sinterability of commercial 8mol% yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity. J. Mater. Sci.1998,33:4297-4305
    [103]Muccillo E. N. S., Avila, D. M., Synthesis and characterization of submicron zirconia-12 mol% ceria ceramics. Ceramics International.1999,25:345-351.
    [104]Bolis V., Magnacca G., Cerrato G.. and Morterra C.. Microcalorimetric and IR-spectroscopic study of the room temperature adsorption of CO2 on pure and sulphated t-ZrO2. Thermochimica Acta,2001,379(1-2):147-161,
    [105]Feighery A. J. and Irvine J. T.. Effect of alumina additions upon electrical properties of 8 mol% yttria-stabilised zirconia. Solid State Ionics,1999,121(1-4):209-216,.
    [106]Mokkelbost T., Kaus I., Grande T. and Einarsrud M.-A.. Combustion synthesis and characterization of nanocrystalline CeO2-based powders. Chemistry of Materials, 2004,16(25):5489-5494,.
    [107]Nakamoto K.. Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, New York, NY, USA,2nd edition,1997.
    [108]Cao H.Q., Qiu X.Q., Luo B., Liang Y, Zhang Y.H., Tan R.Q., Zhao M.J., Zhu Q.M., Synthesis and room-temperature ultraviolet photoluminescence properties of zirconia nanowires, Adv. Funct. Mater.2004,14:243-247.
    [109]Emeline A., Kataeva G.V., Litke A.S., Rudakova A.V.,. Ryabchuk V.K, Serpone N.. Spectroscopic and photoluminescence studies of a wide band gap insulating material: powdered and colloidal ZrO2 sols, Langmuir.1998,14:5011-5016.
    [110]Blasse G., Grabmaier B. C.. Luminescent Materials, Springer, Heidelberg 1994
    [111]Fujimori H., Yashima M., Sasaki S., Kakihana M., Mori T., Tanaka M., Yoshimura M., Cubic-tetragnoal phase of yttria-doped hafnia solid solution:high resolution X-ray diffraction and Raman scattering. Chem. Phys. Lett.2001,346:217-223.
    [112]Yashima M., Ohtake K., Kakihana M., Arashi H., Yoshimura M.. Determiantion of tetragonal-cubic phase boundary of Zr1-xRxO2-x/2(R= Nd, Sm, Y, Er and Yb) by Raman scattering. J. Phys. Chem. Solids.1996,57:17-24
    [113]Kim M. R., Kang Y. M., Jang D. J.. Synthesis and Characterization of Highly Luminescent CdS/ZnS Core-Shell Nanorods. J. Phys. Chem. C 2007,111: 18507-18511.
    [114]Dabbousi B., Rodriguez-Viejo J., Mikulec F., Heine J., Mattoussi H., Ober R., Ensen K., Bawendi M. G. (CdSe)ZnS Core-Shell Quantum Dots. Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B.1997,101(46):9463-9475
    [115]Danek M., Jensen K. F., Murray C. B., Bawendi M. G. Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe. Chem. Mater.1996,8(1):173-180.
    [116]Peng X G, Schlamp M C, Kadavanich A V, Alivisatos A P. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc.1997,119(30):7019-7029.
    [117]Protiere M., Reiss P.. Facile synthesis of monodisperse ZnS capped CdS nanocrystals exhibiting efficient blue emission. Nanoscale Res Lett.2006,1:62-67
    [118]Hizumi A., Kanemitsu Y. Luminescence Spectra and Dynamics of Mn-Doped CdS Core/Shell Nanocrystals. Adv. Mater.2006,18(8):1083-1085
    [119]Jonathan S. S., John P. Z., Seth C. S., Nathan E. S., Vladimir B., and Bawend M. G. Blue Luminescence from (CdS)ZnS Core-Shell Nanocrystals. Angew. Chem. Int. Ed. 2004,43,2154-2158
    [120]Li J J, Wang Y A, Guo W Z, Keay J C, Mishima T D, Johnson M B, Peng X. G. Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction. J. Am. Chem. Soc.2003,125(41):12567-12575
    [121]Yu W W, Peng X G Formation of High-Quality CdS and Other Ⅱ-Ⅵ Semiconductor Nanocrystals in Noncoordinating Solvents:Tunable Reactivity of Monomers. Angew. Chem., Int. Ed.2002,41(13):2368-2371
    [122]Feng Y P, Teo K L, Li M F, Poon H C, Ong C K, Xia J B, Empirical Pseudopotential Band-Structure Calculation for Zn1-xCdxSySe1-y Quaternary Alloy. J. Appl. Phys. 1993,74(6):3948-3956
    [123]Wang X, Qu L, Zhang J, Peng X, Xiao M. Surface-Related Emission in Highly Luminescent CdSe Quantum Dots. Nano Lett.2003,3(8):1103-1106
    [124]Qu L. Peng X. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth. J. Am. Chem. Soc.2002,124(9):2049-2055
    [125]Zhang J, Wang X, Xiao M, Qu L, Peng X. Lattice Contraction in Free-Standing CdSe Nanocrystals. Appl. Phys. Lett.2002,81(11):2076-2078.
    [126]Kubin R F, Fletcher A N. Fluorescence Quantum Yields of Some Rhodamine Dyes. J. Lumin.1982,27 (4):455-462

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700