基于离子液体TiO_2纳米晶的合成及其嵌脱锂性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源与环境问题日益突出,电动汽车(EV)和混合动力汽车(HEV)的研究越来越受到世界范围内研究者关注。锂离子电池技术在EV和HEV中应用所面临的主要问题是快速充放电和安全性问题,限制其快速充放电性能的主要原因是锂离子在固相中扩散速率较低。TiO_2材料由于其较高的充放电电压、高化学稳定性、充放电过程“零”应变,且具备开放的嵌脱锂通道等特点,可实现快速充放电及满足安全性要求,成为一种新兴的动力锂离子电池负极材料。采用纳米材料可以有效的缩短锂离子迁移路径,增大电化学活性比表面,从而大幅度提升材料的快速嵌脱锂能力。
     近年来,离子液体在纳米材料合成中的应用日益增多,并显示出其相比于传统合成方法的突出优势。基于此,本文分别采用离子液体水解合成及溶胶-凝胶法合成TiO_2纳米晶,系统探讨了合成温度、辅助溶剂、阴离子种类、碳链长度等对合成TiO_2晶型及微观形貌的影响,并对合成的TiO_2纳米晶的电化学嵌脱锂性能进行了深入研究。此外,为改善TiO_2的电子和离子导电性,分别对其进行石墨烯(Graphene,GE)复合及氟F掺杂。
     首先,采用离子液体水解合成TiO_2,在高卤素离子和高酸度的条件下得到了大比表面的金红石TiO_2纳米晶,该材料可逆比容量可达216mAh/g,5C循环200次容量保持在127mAh/g。添加辅助溶剂后,合成产物的晶型发生了转变,得到了锐钛矿TiO_2纳米晶,比表面大大增加,该材料可逆比容量可达192mAh/g,5C循环200次容量保持在119mAh/g。合成中还发现,BF4-可更有效地促进结晶及晶粒的长大,长碳链离子液体表现出了更显著的模板效应。研究发现TiO_2电极的嵌脱锂动力学受锂离子的固相扩散控制。
     其次,采用离子液体溶胶-凝胶法合成了具有高比表面、孔径分布均匀、高热稳定性的介孔锐钛矿TiO_2纳米晶。同样,长碳链离子液体表现出了更显著的模板剂和稳定剂的作用。该锐钛矿TiO_2可逆比容量可达226mAh/g,5C循环50次容量保持在127mAh/g。
     最后,采用原位生长的方法制备了金红石TiO_2/Graphene复合纳米材料,采用TiF_4为氟源合成了F掺杂金红石TiO_2,研究发现复合或掺杂后,金红石TiO_2的电化学性能尤其是大倍率充放电能力得到了大幅的提高。
Along with the prominent energy and environmental problems, electric vehicle (EV) and hybrid electric vehicle (HEV) are getting more and more attention by researchers worldwide. The main problems for lithium-ion battery technology applied in EV and HEV are the rapid charge-discharge ability and security issues, while the main reason for the restriction of its rapid charge-discharge performance is the low lithium-ion diffusion rate in the solid phase. TiO_2 electrode materials can achieve rapid charge-discharge and meet safety requirements due to their higher charge-discharge voltage, high chemical stability, zero volume strain during the charge-discharge process, and open channel for lithium-ion insertion and extraction. Materials with nano-structure can effectively shorten the lithium-ion deffusion path and increase the specific surface with electrochemical activity, which greatly enhance the material properties of the fast Li-ion insertion and extraction.
     In recent years, the application of ionic liquids (ILs) in the synthesis of nano-materials has been increasing, which shows excellent advantages compared to the traditional synthetic methods. In view of this, this thesis has studied the function of ionic liquids in the hydrolysis and the sol-gel synthesis of TiO_2 nanocrystals, and the effecting factors such as temperature, auxiliary solvent, anion species and carbon chain length are researched. The electrochemical Li-ion insertion-extraction performance has also been studied. In addition, in order to improve the electronic and ionic conductivity of TiO_2, we have prepared TiO_2/Graphene (GE) composites and F-doping TiO_2.
     Firstly, we synthesized TiO_2 nanocrystals by hydrolysis using ILs. Rutile nanocrystalline TiO_2 with large specific surface area were fabricated in the high halogen ion and high acidity conditions. This material showed a excellent reversible capacity of 216mAh/g, and the capacity kept 127mAh/g after 200 cycles at 5C. After adding auxiliary solvent, anatase TiO_2 nanocrystals were obtianed, while its specific surface area increased greatly. This material also showed a high reversible capacity of 192mAh/g and maintained 119mAh/g after 200 cycles at 5C. It was also found that BF4-can be more effective in promoting crystallization and grain growth, while Long carbon-chain ionic liquids showed superior template effect. The dynamics of the lithium-ion intercalation-deintercalation of TiO_2 electrode was controlled by the Li-ion diffusion in the solid phase.
     Secondly, Mesoporous nanocrystalline anatase TiO_2 with high surface area, well distributed pore size and high thermal stability was prepared by sol-gel method based on ILs. Long carbon-chain ionic liquids showed superior function of template and stabilizing agent. The anatase TiO_2 showed a high reversible specific capacity of 226mAh/g and kept 127mAh/g after 200 cycles at 5C.
     Finally, Rutile TiO_2/GE nano-composite was prepared by in-situ growth method and F-doping rutile TiO_2 was fabricated by taking TiF_4 as fluoride source. Test results showed that the electrochemical properties of rutile TiO_2, especially the rapid charge and discharge capacities were greatly improved.
引文
1 A. D. Robertson, A. R. West, A. G. Ritchie. Review of Crystalline Lithium-Ion Conductors Suitable for High Temperature Battery Applications. Solid State Ionics. 1997, 104(1-2): 1~11
    2 H. Yang, S. Amiruddin, H. J. Bang, et al. Areview of Li-ion Cell Chemistries and Their Potential Use in Hybrid Electric Vehicles. Journal of Industrial and Engineering Chemistry. 2006, 12(1): 12~38
    3黄可龙,王兆翔,刘素琴等.锂离子电池原理与关键技术.化学工业出版社, 2008: 130~136
    4 P. G. Balakrishnan, R. Ramesh, T. P. Kumar. Safety Mechanisms in Lithium-Ion Batteries. Journal of Power Sources. 2006, 155(2): 401~414
    5 K. S. Park, A. Benayad, D. J. Kang, et al. Nitridation-Driven Conductive Li_4Ti_5O_(12) for Lithium Ion Batteries. Journal of the American Chemical Society. 2008, 130: 14930~14931
    6 Y. H. Xu. The Negative-Electrode Material Electrochemistry for the Li-Ion Battery. Rare Metal Materials and Engineering. 2004, 33(1): 1~4
    7李玥,赵海雷,仇卫华.二次锂离子电池负极材料Li_4Ti_5O_(12)的研究进展.硅酸盐通报. 2007, 26(1): 92~97
    8 T. Yuan, K. Wang, R. Cai, et al. Cellulose-Assisted Combustion Synthesis of Li_4Ti_5O_(12) Adopting Anatase TiO_2 Solid as Raw Material with High Electrochemical Performance. Journal of Alloys and Compounds. 2009, 477: 665~672
    9 Y. M. Zhao, G. Q. Liu, L. Liu, et al. High-Performance Thin-Film Li_4Ti_5O_(12) Electrodes Fabricated by using Ink-Jet Printing Technique and their Electrochemical Properties. Solid State Electrochem. 2009, 13: 705~711
    10 H. Kitaura, A. Hayashi, K. Tadanaga, et al. High-Rate Performance of All-Solid-State Lithium Secondary Batteries using Li_4Ti_5O_(12) Electrode. Journal of Power Sources. 2009, 189: 145~148
    11 Z. G. Yang, D. W. Choi, S. Kerisit, et al. Nanostructures and Lithium Electrochemical Reactivity of Lithium Titanites and Titanium Oxides: AReview. Journal of Power Sources. 2009, 19: 588~598
    12张玉玺,张晓丽,郑洪河.锂离子电池负极材料TiO_2的研究进展.电池. 2009, 39(2): 106~109
    13 C. H. Jiang, M. D. Wei, Z. M. Qi. Particle Size Dependence of the Lithium Storage Capability and High Rate Performance of Nanocrystalline Anatase TiO_2 Electrode. Journal of Power Sources. 2007, 166: 239~243
    14黄阳.一维纳米材料的合成、表征及性质研究.华东师范大学硕士学位论文. 2006: 2~4
    15黄剑锋.溶胶-凝胶原理与技术.化学工业出版社. 2005: 1~14
    16 S. J. Bao, Q. L. Bao, C. M. Li, et al. Novel Porous Anatase TiO_2 Nanorods and Their High Lithium Electroactivity. Electrochemistry Communications. 2007, 9: 1233~1238
    17 H. L. Zhao, Z. X. Tang, Q. G. Zhang, et al. Inorganic Synthesis in Ionic Liquids. Progress in Chemistry. 2009, 21(10): 2077~2083
    18 M. Antonietti, D. Kuang, B. Smarsly. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures. Angew. Chem. Int. Ed. 2004, 43: 4988~4992
    19马海兵.离子液体合成、表征及应用.山东师范大学硕士学位论文. 2006: 1~4
    20姜妲,尹振,翟玉春.离子液体及其研究进展.材料导报. 2006, 20(5): 89~91
    21张霞,于志刚.离子液体研究进展.内蒙古石油化工. 2008, 3:10~13
    22 M. Armand, F. Endres, D. R. MacFarlane, et al. Ionic-Liquid Materials for the Electrochemical Challenges of the Future. Nature Materials. 2009, 8: 621~69
    23 J. M. Leveque, J. Estager, M. Draye, et al. Synthesis of Ionic Liquids Using Non Conventional Activation Methods: An Overview. Monatshefte Fue Chemie. 2007, 138(11): 1103~1113
    24邓友全.离子液体—性质、制备与应用.中国石化出版社, 2006: 11~36
    25 K. R. Sedoon, A. Stark, M. J. Torres, et al. Influence of Chloride, Water, and Organic Solvents on the Physical Properties of Ionic Liquids. Pure and Applied Chemistry. 2000, 72: 2275~2287
    26 P. Bonh?te, A. P. Dias, N. Papageorgiou, et al. Hydrophobic, HighlyConductive Ambient-Temperature Molten Salts. Inorganic Chemistry. 1996, 35: 1168~1178
    27 Z. Ma, J. H. Yu, S. Dai. Preparation of Inorganic Materials Using Ionic Liquids. Advanced Materials. 2009, 21: 1~25
    28 Y. Zhou. Recent Advances in Ionic Liquids for Synthesis of Inorganic Nanomaterials. Current Nanoscience. 2005, 1: 35~42
    29 E. R. Cooper, C. D. Andrews, P. S. Wheatley. Ionic Liquids and Eutectic Mixturesas Solvent and Template in Synthesis of Zeolite Analogues. Nature. 2004, 430: 1012~1016
    30 Y. Zhou, M. Antonietti. Synthesis of Very Small TiO_2 Nanocrystals in a Room-Temperature Ionic Liquid and Their Self-Assembly toward Mesoporous Spherical Aggregates. Journal of the American Chemical Society. 2003, 125: 14960~14961
    31 Y. Zhou, J. H. Schattka, M. Antonietti. Room-Temperature Ionic Liquids as Template to Monolithic Mesoporous Silica with Wormlike Pores via a Sol-Gel Nanocasting Technique. Nano Letters. 2004, 4(3): 477~481
    32 T. Nakashima, N. Kimizuka. Interfacial Synthesis of Hollow TiO_2 Microspheres in Ionic Liquids. Journal of the American Chemical Society. 2003, 125 (21): 6386~6387
    33 K. Yoo, H. Choi, D. D. Dionysiou. Ionic Liquid Assisted Preparation of Nanostructured TiO_2 Particles. Chemical Communications. 2004: 2000~2001
    34 K. S. Yoo, H. Choi, D. D. Dionysiou. Synthesis of Anatase Nanostructured TiO_2 Particles at Low Temperature Using Ionic Liquid for Photocatalysis. Catalysis Communications. 2005, 6: 259~262
    35 Y. A. Zhai, Y. Gao, F. Q. Liu, et al. Synthesis of Nanostructured TiO_2 Particles in Room Temperature Ionic Liquid and its Photocatalytic Performance. Materials Letters. 2007, 61: 5056~5058
    36 Y. A. Zhai, Q. Zhang, F. Q. Liu, et al. Synthesis of Nanostructure Rutile TiO_2 in a Carboxyl-Containing Ionic Liquid. Materials Letters. 2008, 62: 4563~4565
    37 H. Choi, Y. J. Kim, R. S. Varma, et al. Thermally Stable Nanocrystalline TiO_2 Photocatalysts Synthesized via Sol-Gel Methods Modified with IonicLiquid and Surfactant Molecules. Chemical Materials. 2006, 18: 5377~5384
    38 N. Y. Yu, L. M. Gong, H. J. Song, et al. Ionic Liquid of [Bmim]~+Cl~- for the Preparation of Hierarchical Nanostructured Rutile Titania. Journal of Solid State Chemistry. 2007, 180: 799~803
    39 Y. Liu, J. Li, M. Wang, et al. Preparation and Properties of Nanostructure Anatase TiO_2 Monoliths Using 1-Butyl-3-Methylimidazolium Tetrafluoroborate Room-Temperature Ionic Liquids as Template Solvents. Cryst. Growth Des. 2005, 5: 1643~1649
    40 Y. H. Liu, C. W. Lin, M. C. Chang, et al. The Hydrothermal Analogy Role of Ionic Liquid in Transforming Amorphous TiO_2 to Anatase TiO_2: Elucidating Effects of Ionic Liquids and Heating Method. Journal of Material Science. 2008, 43: 5005~5013
    41 W. J. Zheng, X. D. Liu, Z. Y. Yan, et al. Ionic Liquid-Assisted Synthesis of Large- Scale TiO_2 Nanoparticles with Controllable Phase by Hydrolysis of TiCl4. ACS Nano. 2009, 3(1): 115~122
    42 P. Peng, C. S. Sun, W. J. Zheng. Morphology Evolution of Rutile Particles from Nanorods to Microcones, again Microspheres via Self-Assembly in Ionic Liquids (ILs) Solution. Materials Letters. 2009, 63: 66~68
    43 S. D. Miao, Z. J. Miao, Z. M. Liu, et al. Synthesis of Mesoporous TiO_2 Films in Ionic Liquid Dissolving Cellulose. Microporous and Mesoporous Materials. 2006, 95: 26~30
    44 K. L. Ding, Z. J. Miao, Z. M. Liu, et al. Facile Synthesis of High Quality TiO_2 Nanocrystals in Ionic Liquid via a Microwave-Assisted Process. Journal of the American Chemical Society. 2007, 129: 6362~6363
    45 H. Zhu, J. Huang, Z. Pan, et al. Ionothermal Synthesis of Hierarchical ZnO Nanostructures from Ionic-Liquid Precursors. Chemical Materials. 2006, 18: 4473~4477
    46 N. Recham, L. Dupont, M. Courty, et al. Ionothermal Synthesis of Tailor-Made LiFePO_4 Powders for Li-Ion Battery Applications. Chemical. Materials. 2009, 21: 1096~1107
    47 A. Henningsson, H. Rensmo, A. Sandell, et al. Electronic Structure of Electrochemically Li-inserted TiO_2 Studied with Synchrotron RadiationElectron Spectroscopies. Journal of Chemical Physics. 2003, 118(12): 5607~5612
    48 M. V. Koudriachova, S. W. de Leeuw, N. M. Harrison. A New Phase of Lithiated Titania Predicted from First Principles. Chemical Physics Letters. 2003, 371: 150~156
    49 M. V. Koudriachova, N. M. Harrison, S. W. de Leeuw. Effect of Diffusion on Lithium Intercalation in Titanium Dioxide. Physical Review Letters. 2001, 86(7): 1275~1278
    50 E. Baudrin, S. Cassaignon, M. Koelsch, et al. Structural Evolution during the Reaction of Li with Nano-Sized Rutile Type TiO_2 at Room Temperature. Electrochemistry Communications. 2007, 9: 337~342
    51 M. A. Reddy, M. S. Kishore, V. Pralong, et al. Room Temperature Synthesis and Li Insertion into Nanocrystalline Rutile TiO_2. Electrochemistry Communications. 2006, 8: 1299~1303
    52 C. H. Jiang, I. Honma, T. Kudo, et al. Nanocrystalline Rutile TiO_2 Electrode for High-Capacity and High-Rate Lithium Storage. Electrochemical and Solid-State Letters. 2007, 10 (5): 127~129
    53 D. L. Hecht, M. Wagemaker, P. Keil, et al. Ex Situ Reflection Mode EXAFS at the Ti K-edge of Lithium Intercalated TiO_2 Rutile. Surface Science. 2003, 538: 10~22
    54 M. Wagemaker, A. P. M. Kentgens, F. M. Mulder. Equilibrium Lithium Transport Between Nanocrystalline Phases in Intercalated TiO_2 Anatase. Nature. 2002, 418: 397~399
    55 S. W. Oh, S. H. Park, Y. K. Sun. Hydrothermal Synthesis of Nano-Sized Anatase TiO_2 Powders for Lithium Secondary Anode Materials. Journal of Power Sources. 2006, 161: 1314~1318
    56 X. P. Gao, Y. Lan, H. Y. Zhu, et al. Electrochemical Performance of Anatase Nanotubes Converted from Protonated Titanate Hydrate Nanotubes. Electrochemcal and Solid State Letters. 2005, 8(1): 26~29
    57 R. Marchand, L. Brohan, M. Tournoux. TiO_2(B) a New Form of Titanium-Dioxide and the Potassium Octatitanate K2Ti8O17. Mater. Res. Bull. 1980, 15: 1129
    58 A. R. Armstrong, G. Armstrong, J. Canales, et al. TiO_2-B Nanowires asNegative Electrodes for Rechargeable Lithium Batteries. Journal of Power Sources. 2005, 146: 501~506
    59 A. R. Armstrong, G. Armstrong, J. Canales, et al. Lithium-Ion Intercalation into TiO_2(B) Nanowires. Advanced Materials. 2005, 17(7): 862~865
    60 G. Armstrong, A. R. Armstrong, J. Canales, et al. Nanotubes with the TiO_2-B Structure. Chemical Communications, 2005, 2454~2456
    61 M. A. Reddy, V. Pralong, U. V. Varadaraju, et al. Crystallite Size Constraints on Lithium Insertion into Brookite TiO_2. Electrochemical and Solid-State Letters. 2008, 11(8): 132~134
    62 H. Huang, W. K. Zhang, X. P. Gan, et al. Electrochemical Investigation of TiO_2/carbon Nanotubes Nanocomposite as Anode Materials for Lithium-Ion Batteries. Materials Letters. 2007, 61: 296~299
    63 I. Moriguchi, R. Hidaka, H. Yamada, et al. A Mesoporous Nanocomposite of TiO_2 and Carbon Nanotubes as a High-Rate Li-Intercalation Electrode Material. Advanced Materials. 2006, 18: 69~73
    64 D. H. Wang, D. W. Choi, J. Li, et al. Self-Assembled TiO_2–Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion. ACS Nano. 2009, 3(4): 907~914
    65 Y. G. Guo, Y. S. Hu, W. Sigle, et al. Superior Electrode Performance of Nanostructured Mesoporous TiO_2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks. Advanced Materials. 2007, 19: 2087~2091
    66 H. S. Zhou, D. L. Li, M. Hibino, et al. A Self-Ordered, Crystalline–Glass, Mesoporous Nanocomposite for Use as a Lithium-Based Storage Device with Both High Power and High Energy Densities. Angew. Chem. Int. Ed. 2005, 44: 797~802
    67 H. G. Jung, C. S. Yoon, J. Prakash, et al. Mesoporous Anatase TiO_2 with High Surface Area and Controllable Pore Size by F--Ion Doping: Applications for High-Power Li-Ion Battery Anode. J. Phys. Chem. C. 2009, 113: 21258~21263
    68 V. I. Parvulescu, C. Hardacre. Catalysis in Ionic Liquids. Chemical Review. 2007, 107: 2615~2665
    69 M. Galiński, A. Lewandowski, I. Stepniak. Ionic Liquids as Electrolytes. Electrochimica Acta. 2006, 51: 5567~5580
    70 H. O. Bourbigou, L. Magna, D. Morvan. Ionic Liquids and Catalysis: Recent Progress from Knowledge to Applications. Applied Catalysis A: General. 2010, 373: 1~56
    71 J. S. Wilkes, M. J. Zaworotko. Air and Water Stable 1-Ethyl-3-Methylimidazolium Based Ionic Liquids. J. Chem. Soc. Chem. Commun.. 1992: 965~967
    72 P. A. Z. Suatez, J. E. L. Dullius, S. Einloft, et al. The Use of New Ionic Liquids in Two-Phase Catalytic Hydrogenation Reaction by Rhidium Complexes. Polyhedron. 1996, 15: 1217~1219
    73许超.室温离子液体辅助无机纳米材料合成的应用研究.浙江师范大学硕士学位论文. 2005: 20~21
    74张凯.离子液体的制备、表征及其电化学研究.西北师范大学硕士学位论文. 2009: 25~38
    75 P. Kubiak, M. Pfanzelt, J. Geserick, et al. Electrochemical Evaluation of Rutile TiO_2 Nanoparticles as Negative Electrode for Li-ion Batteries. Journal of Power Sources. 2009, 194: 1099~1104
    76 B. Bhattacharya, S. K. Tomar, J. K. Park. A Nanoporous TiO_2 Electrode and New Ionic Liquid Doped Solid Polymer Electrolyte for Dye Sensitized Solar Cell Application. Nanotechnology. 2007, 18: 1~4
    77 H. M. Cheng, J. M. Ma, Z. G. Zhao, et al. Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles. Chemical Materials. 1995, 7: 663~671
    78 M. A. Zoubi, H. K. Farag, F. Endres. Synthesis and Characterization of Rutile and Anatase in Air- and Water-Stable Ionic Liquids with and without Isopropanol as a Cosolvent. Aust. J. Chem. 2008, 61: 704~711
    79 Y. T. Wu, Y. C. Ho, C. C. Lin, et al. Stepwise Reaction of TiCl4 and Ti(OiPr)Cl3 with 2-Propanol. Variable Temperature NMP Studies and Crystal Atructures of [TiCl2(OiPr)(HOiPr)(μ-Cl)]2 and [TiCl2(OiPr)(HOiPr)(μ-OiPr)]2. Inorganic Chemistry. 1996, 35(20): 5948~5952
    80 R. B. Hadjean, J. P. P. Ramos. New Structural Approach of Lithium Intercalation Using Raman Spectroscopy. Journal of Power Sources. 2007,174(2): 1188~1192
    81李俊荣.钛氧化物一维纳米结构的制备、表征和电化学嵌锂性能.清华大学博士学位论文. 2005: 60~70
    82 J. Maier. Ionic Transport in Nano-Sized Systems. Solid Stete Ionics. 2004, 175: 7~12
    83张锁江,吕兴梅等.离子液体—从基础研究到工业应用.科学出版社. 2006: 297~306
    84 S. Dai, Y. H. Ju, H. J. Gao, et al. Preparation of Silica Aerogel Using Ionic Liquids as Solvents. Chemical Communications. 2000: 243~244
    85 T. W. Wang, H. Kaper, M. Antonietti, et al. Templating Behavior of a Long-Chain Ionic Liquid in the Hydrothermal Synthesis of Mesoporous Silica. Langmuir. 2007, 23: 1489~1495
    86 T. A. Bleasdale, G. J. T. Tiddy, E. W. Jones. Cubic Phase Formation in Polar Nonaqueous Solvents. J. Phys. Chem.. 1991, 95: 5385
    87 F. Neve, O. Francescangeli, A. Crispini. Crystal Architecture and Mesophase Structure of Long-Chain N-alkypyridinium Teteachlorometallates. Inorganica Chimica Acta. 2002, 338: 51~58
    88 E. H. Choi, S. I. Hong, D. J. Moon. Preparation of Thermally Stable Mesostructured Nano-sized TiO_2 Particles by Modified Sol–Gel Method Using Ionic Liquid. Catal Lett. 2008, 123: 84~89
    89 Y. H. Pang, X. Y. Li, G. Y. Shi, et al. Electrochromic Properties of Poly(3-chlorothiophene) Film Electrodeposited on a Nanoporous TiO_2 Surface via a Room Temperature Ionic Liquid and its Application in an Electrochromic Device. Thin Solid Films. 2008, 516: 6512~6516
    90 G. Williams, B. Seger, P. V. Kamat. TiO_2-Graphene Nanocomposites UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano. 2(7): 1487~1491
    91 C. Wen, Y. J. Zhu, T. Kanbara, et al. Effects of I and F Codoped TiO_2 on the Photocatalytic Degradation of Methylene Blue. Desalination. 2009, 249: 621~625
    92 J. G. Yu, J. C Yu, B. Cheng, et al. The Effect of F--Doping and Temperature on the Structural and Textural Evolution of Mesoporous TiO_2 Powders. Journal of Solid State Chemistry. 2003, 174: 372~380
    93 M. Bellardita, M. Addamo, A. D. Paola, et al. Preparation of N-Doped TiO_2:Characterization and Photocatalytic Performance under UV and Visible Light. Phys. Chem. Chem. Phys.. 2009, 11: 4084~4093
    94 M. H. Zhou, J. G. Yu, B. Cheng. Effects of Fe-Doping on the Photocatalytic Activity of Mesoporous TiO_2 Powders Prepared by an Ultrasonic Method. Journal of Hazardous Materials B. 2006, 137: 1838~1847
    95 M. H. Zhou, J. G. Yu, B. Cheng, et al. Preparation and Photocatalytic Activity of Fe-Doped Mesoporous Titanium Dioxide Nanocrystalline Photocatalysts. Materials Chemistry and Physics. 2005, 93: 159~163
    96 A. V. Murugan, T. Muraliganth, A. Manthiram. Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Strorage. Chemical Materials. 2009, 21: 5004~5006
    97 D. Y. Pan, S. Wang, B. Zhao, et al. Li Storage Properties of Disordered Graphene Nanosheets. Chemical Materials. 2009, 21: 3136~3142
    98 C. Xu, X. Wang, L. C. Yang, et al. Fabrication of a Graphene–Cuprous Oxide Composite. Journal of Solid State Chemistry. 2009, 182: 2486~2490
    99 Y. Ding, Y. Jiang, F. Xua, et al. Preparation of Nano-Structured LiFePO_4/Graphene Composites by Co-precipitation Method. Electrochemistry Communications. 2010, 12: 10~13
    100 J. G. Yu, W. G. Wang, B. Cheng, et al. Enhancement of Photocatalytic Activity of Mesporous TiO_2 Powders by Hydrothermal Surface Fluorination Treatment. J. Phys. Chem. C. 2009, 113: 6743~6750
    101 J. G. Yu, J. C Yu, B. Cheng, et al. The Effect of F-Doping and Temperature on the Structural and Textural Evolution of Mesoporous TiO_2 Powders. Journal of Solid State Chemistry. 2003, 174: 372~380
    102 Y. Yu, H. H. Wu, B. L. Zhu. Preparation, Characterization and Photocatalytic Activities of F-Doped TiO_2 Nanotubes. Catal Lett. 2008, 121: 165~171

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700