用户名: 密码: 验证码:
云母负载纳米氧化钛薄膜组成、微结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现阶段能源危机和环境污染已成为人类面临和亟待解决的重大课题。TiO2纳米材料的出现提供了一种有效的解决能源和环境问题的新思路。由于TiO2具有光催化、光电转换、高反射率等性质,使其在环境净化、光电池、传感器及涂料等方面拥有重要的应用价值。TiO2基光催化材料可以直接利用太阳光降解空气和水中的污染物,是解决环境问题的重要手段之一,具有巨大的应用潜力;而TiO2基高反射颜料在隔热涂料中的应用则是降低炎热地区建筑物空调能耗的有效手段。但是TiO2光催化降解污染物在实际应用中遇到一些认识或技术难题,如金红石氧化钛光催化活性为什么较低;氧化钛光响应范围较窄,不能有效利用太阳光;光催化剂回收困难等问题。此外,氧化钛薄膜的组成、微结构与太阳光谱反射率关系的理论研究尚不完善,也阻碍了氧化钛基反射隔热材料性能的提高。
     本论文采用非均相化学沉淀法在云母表面构筑了不同组成和微结构的纳米氧化钛薄膜,系统研究了氧化钛薄膜的组成(晶型)、微结构对光催化性能、漫反射性能以及润湿性的影响。具体内容包括以下几个方面。
     第一,云母表面锐钛矿氧化钛薄膜的构筑及其性能的研究。系统研究了pH值对云母表面氧化钛薄膜组成和成膜方式的影响,对比了钛源浓度和负载量对薄膜组成、微结构和紫外光催化性能的影响。研究发现,在pH值在1~7的范围内,均会生成锐钛矿型的纳米氧化钛薄膜。但pH值对氧化钛纳米粒子在云母表面的沉积方式有较大的影响:当pH为1时,非均匀成核占优,氧化钛纳米颗粒在云母表面整齐排列形成薄膜;而当pH为3~7时,均匀成核占优,氧化钛纳米颗粒会在云母表面堆积形成零星岛状聚集体。随着钛盐浓度的降低氧化钛薄膜的颗粒尺寸明显变小,样品的紫外光催化活性逐渐增强,尤其是钛酸四丁酯浓度为1/400时所合成样品的光催化降解常数是P25的2.2倍。随着氧化钛负载量的增加,氧化钛薄膜的光催化性能呈现先增强后降低的趋势。对于云母负载锐钛矿型氧化钛,氧化钛负载量为10%时光催化活性最强。
     第二,云母表面成核剂的预沉积对薄膜组成的影响。在云母表面预先沉积了SnO2、MnO2或Fe2O3做成核剂,研究了成核剂的种类和用量对薄膜组成的影响。通过预先在云母表面沉积SnO2或MnO2作成核剂,可在70℃的低温下构筑出结晶良好的金红石型氧化钛薄膜。通过控制SnO2(或MnO2)与云母的质量比,可以构筑出不同锐钛矿、金红石比例的氧化钛薄膜。而Fe2O3的预沉积只能得到混晶氧化钛。SnO2或MnO2能够促进金红石型氧化钛低温形成的机理在于金红石型TiO2与SnO2或MnO2沿a轴和c轴方向的晶格常数非常接近。因此,SnO2或MnO2可以作为金红石型氧化钛的成核剂,大大降低了金红石氧化钛晶核的成核位垒,促进金红石TiO2的成核生长。
     第三,云母表面成核剂的预沉积对薄膜微结构的影响。通过控制成核剂种类和用量、四氯化钛乙醇溶液的用量可以制备出不同微结构的氧化钛薄膜,并揭示出了不同微结构氧化钛薄膜的生长机制。SnO2的预沉积可以获得单分散的纳米棒状或纳米花状的金红石氧化钛薄膜,MnO2的预沉积可以获得纳米颗粒、纳米棒以及纳米花组成的金红石氧化钛薄膜,Fe2O3的预沉积可以获得颗粒状、片状、花瓣状等多种形貌的混晶氧化钛薄膜。此外,Fe2O3预沉积形成的氧化钛薄膜中金红石纳米棒表面还附着了许多1~3nm的无定型态突起。
     第四,薄膜组成和微结构对其光学性能的影响。SnO2预沉积获得的低温金红石氧化钛薄膜在400~1300nm的可见光区和近红外区具有比锐钛矿氧化钛薄膜更高的反射率,而在紫外区则具备更强的紫外线吸收能力。云母表面金红石型氧化钛的负载量和颗粒尺寸对薄膜漫反射性能有较大的影响。随着金红石氧化钛负载量的增大,薄膜的紫外-可见反射光谱出现了明显的红移,能隙由2.85eV增大到2.95eV。在400~700nm的可见光区,薄膜的反射率随金红石TiO2负载量的增大而增大;而在1300~2500nm的近红外光区,薄膜的反射率随金红石TiO2负载量的增大而降低。这是由于随着负载量的增大,金红石型氧化钛的颗粒尺寸逐渐增大。根据K-M理论,当氧化钛颗粒尺寸增大时,颗粒边界处的反射就会减少,从而导致散射系数减小,进而导致在1300~2500nm的近红外光区的反射率降低。而MnO2、Fe2O3的预沉积则使薄膜出现了明显的可见光吸收,该波段的吸收可以归因于Mn4+、Fe3+离子的d-d跃迁。
     第五,薄膜组成和微结构对其光催化性能的影响。在SnO2预沉积的情况下,金红石型TiO2薄膜的紫外光光催化活性高于锐钛矿TiO2薄膜和P25;而MnO2的预沉积则明显降低了薄膜的紫外光催化活性,所得金红石薄膜的光催化降解常数只有锐钛矿薄膜的74%。这是由于金红石TiO2在成核剂SnO2或MnO2表面成核生长,在两者的界面处形成了TiO2/SnO2或TiO2/MnO2复合半导体结构。TiO2/SnO2复合半导体结构有效促进了电子和空穴的分离,从而促进了金红石氧化钛薄膜紫外光催化活性的提高;TiO2/MnO2复合半导体结构促使了电子、空穴的复合,导致金红石氧化钛薄膜紫外光催化活性较低。Fe2O3的预沉积对混晶TiO2薄膜在可见光下的催化活性影响很大。低Fe2O3沉积量下,可见光催化活性随Fe2O3沉积量增加而增强,但Fe2O3沉积量太大催化活性反而下降。在制备样品中mica-1.47%Fe2O3-TiO2具有最强的可见光光催化活性,其光催化降解常数是P25的9.1倍,这是由于Fe2O3附着在TiO2晶体表面改变了可见光下光激发路径,光生电子从Fe2O3d子带激发到二氧化钛导带上引发了光催化反应。
     第六,薄膜微结构对其润湿性的影响。通过控制云母表面金红石氧化钛薄膜的粗糙度和表面羟基含量可以构筑出不同亲水程度的表面(无紫外光激发条件下)。mica-2.07%MnO2-TiO2经过800℃煅烧后,金红石薄膜的粗糙度增加了0.6倍,并且表面羟基含量增加了5.5%,使得样品由亲水状态变为超亲水状态(无紫外光激发条件下)。此外,该超亲水表面能够在黑暗条件下长时间的保持超亲水性。
Nowadays, energy and environmental issues are the biggest challenges. TiO2basedmaterials exhibit great potentials in environmental protection and solar energyconversion. Due to their physical properties of photocatalytic activities, photoelectricconversion characteristics, and high reflectance properties, TiO2have been widelyused in environment purification system, solar cells, sensors and coatings. TiO2basedphotocatalytic materials can decompose pollutes in water and air with the help ofsolar irradiation, making them good candidates for environment purification. Besides,it’s an effective way to apply TiO2based reflective materials to reduce the energyconsumption of air conditioning in Southern China. However, owing to its lowquantum efficiency and relatively wide band gap, which can only absorb the UV light,their practical applications are restricted. What’s more, the theory study ofrelationships between compositon, structure and solar reflectance of TiO2is notthorough, which restricts the improving of reflectance properties of TiO2.
     In this dissertation, we constructed TiO2coatings on mica substrates with differentcompositions and microstructures, and study the effect of compositions andmicrostructures on the photocatalytic properties, reflectance properties and wettingability. The main points could be summarized as following.
     Firstly, anatase TiO2was coated onto mica substrates. We studied the effect ofconcentration and TiO2loading on constitutions, microstructures and photocatalyticproperties of TiO2coated mica particles. The results showed that anatase TiO2coatings could be obtained at pH of1to7and pH showed a great influence on themicrostructure of TiO2coatings. TiO2coating composed of nanoparticles could beprepared at low pH, while island-shaped TiO2coating could be prepared at high pH.Raman spectra verified that Si-O-Ti and Al-O-Ti formed between the interface ofmica and TiO2coating, which leaded to the close coating of TiO2onto mica. Particlesize decreases as the decrease of concentration, leading to the increase ofphtocatalytic properties. What’s more, the photocatalytic activities increased firstlyand then dropped with increasing TiO2loadings.
     Secondly, effect of prior deposition of metal dioxides on the phase compositons ofTiO2coatings. Rutile TiO2coated mica particles were prepared by hydrosis of TiCl4ethanolic solution in water at70℃with a prior depositon of SnO2or MnO2. Wecould control the ratio of anatase to rutile by controlling the mass ratio of SnO2(orMnO2) to mica. The rutile promoting effects of SnO2or MnO2could be ascribed tothe structural similarity of rutile and cassiterite (or pyrolusite). Besides, the priordepositon of Fe2O3lead to the formation of mixed-phase TiO2.
     Thirdly, effect of prior deposition of metal dioxides on the microstructures of TiO2coatings. The various microstructures of TiO2coatings could be obtained by adjustingthe usage of seed and TiCl4ethanolic solution. The prior depositon of SnO2lead to theformation of nanorod-like or nanoflower-like rutile TiO2coatings, the prior depositonof rutile TiO2coating composed of nanoparticles, nanaorods and nanoflowers, whilethe prior depositon of Fe2O3lead to the formation of nanorod-like, nanoplate-like ornanoflower-like rutile TiO2coatings. MnO2lead to the formation of nanorod-like ornanoflower-like rutile TiO2coatings. Moreover, amorphous Fe2O3were absorbed onthe surface of rutile TiO2nanorods after the prior depositon of Fe2O3.
     Fourthly, effect of phase compositions and microstructures on the optical propertiesof TiO2coatings. Rutile TiO2showed stronger UV shielding ability and higher NIRreflectance compared to anatase TiO2. We studied the effect of rutile TiO2loadings onthe band gap, visible reflectance and NIR reflectance. The decrease of TiO2loadingleads to the increase of reflectance in the region of1300-2500nm. This increasedreflectance property can be ascribed to a decrease in the mean particle size inaccordance with the KM theory.The results showed that the particle size andmorphology had a great influence on the photocatalytic properties. Besidew, the priordepositon of MnO2or Fe2O3lead to obvious visible absorbance due to the d-dtransition of Mn4+or Fe3+.
     Fifthly, effect of phase compositions and microstructures on the photocatalyticproperties of TiO2coatings. Due to the different band structures of TiO2/SnO2orTiO2/MnO2, the prior depositon of SnO2lead to the high photocatalytic properties ofrutile TiO2, while the prior deposition of MnO2lead to the low photocatalytic properties of rutile TiO2. The band structures of TiO2/SnO2favored the separation ofelectrons and holes, leading to the high photocatalytic properties of rutile TiO2coating.The band structures of TiO2/MnO2favored the recombine of electrons and holes,leading to the low photocatalytic properties of rutile TiO2coating. The priordeposition of Fe2O3also had a great influence on the photocatalytic activity of thesamples under visible irradiation. The photocatalytic activity increased firstly andthen dropped with increasing Fe2O3loadings. mica-1.47%Fe2O3-TiO2showed thestrongest visible photocatalytic property, which was almost9.1times as high as thatof Degussa P25. The high visible photocatalytic activity could be ascribed to thetransition of electron from d sub-band of Fe2O3to the conduct band of TiO2undervisible irradiation.
     Sixthly, effect of phase compositions and microstructures on the wettabilities ofTiO2coatings. Interestingly, rutile TiO2coated mica particles can be directly appliedas a general kind of building blocks to construct large-area superhydrophilic surfaceswithout UV irradiation by the simple spin-coating technique. The superhydrophilicityoriginates from the combination of the special rough structures of hierarchicalnanorods and nonoflowers and the increased hydroxyl content caused by calcinations.More importantly, this property is very stable for half a year and could be used inself-cleaning surfaces.
引文
[1] Geoffrey-A Ozin, Cademartiri Ludovico. Nanochemistry: What Is Next?[J]. Small,2009,5(11):1240-1244.
    [2]白春礼.纳米科技及其发展前景[J].科学通报,2001,(02):89-92.
    [3] Mnyusiwalla Anisa, Abdallah S-Daar, Peter A-Singer.'Mind the gap': science and ethics innanotechnology[J]. Nanotechnology,2003,14(3): R9.
    [4] Laurent Levy, Sahoo Yudhisthira, Kim Kyoung-Soo, et al. Nanochemistry: Synthesis andCharacterization of Multifunctional Nanoclin ics for Biological Applications[J]. Chemistry OfMaterials,2002,14(9):3715-3721.
    [5] Miao Yu, Long Yun-Ze, Sun Bin, et al. Recent advances in solar cells based on one-dimensionalnanostructure arrays[J]. Nanoscale,2012,4(9):2783-2796.
    [6] V-V Pokrop ivny, Skoro khod V-V. Classification of nanostructures by dimensionality andconcept of surface forms engineering in nanomaterial science[J]. Materials Science andEngineering: C,2007,27(5–8):990-993.
    [7] Greta-R Patzke, Zhou Ying, Kontic Ro man, et al. Oxide Nanomaterials: Synthetic Develop ments,Mechanistic Studies, and Technological Innovations[J]. Angewandte Chemie InternationalEd ition,2011,50(4):826-859.
    [8] Jae-Hwang Lee, Singer Jonathan-P, Thomas Edwin-L. Micro-/Nanostructured MechanicalMetamaterials[J]. Advanced Materials,2012,24(36):4782-4810.
    [9] M Lazzari, López-Qu intela M-A. Block Copoly mers as a Tool for Nano material Fabrication[J].Advanced Materials,2003,15(19):1583-1594.
    [10] Yang Yang, Wang Hong, Li Jian xin, et al. A novel functionalized nano-TiO2loadingelectrocatalytic memb rane for o ily wastewater treatment[J]. Environ mental Science&Technology,2012.
    [11] Yong-Cai Zhang, Li Jing, Xu Hai-Yan. One-step in situ solvothermal synthesis of SnS2/TiO2nanocomposites with high performance in visible light-driven photocatalytic reduction ofaqueous Cr(VI)[J]. Applied Catalysis B: Environ mental,2012,123–124(0):18-26.
    [12] L Francioso, Pascali C-De, Capone S, et al. Effect of top-down nanomachin ing on electricalconduction properties of TiO2nanostructure-based chemical sensors[J]. Nanotechnology,2012,23(9):95302.
    [13] Zheng-ji Zhou, Fan Jun-qi, Wang Xia, et al. So lution Fabrication and Photoelectrical Propertiesof CuIn S2Nanocrystals on TiO2Nanorod Array[J]. A CS Applied Materials&Interfaces,2011,3(7):2189-2194.
    [14] Ulrike Diebold. The surface science of titaniu m dio xide[J]. Surface Science Reports,2003,48(5–8):53-229.
    [15] Damien Dambournet, Belharouak Ilias, A mine Khalil. Tailored Preparation Methods of TiO2Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties [J].Chemistry of Materials,2009,22(3):1173-1179.
    [16] Yuanzhi Li, Lee Nam-Hee, Hwang Doo-Sun, et al. Synthesis and Characterization of NanoTitania Powder with High Photoactivity for Gas-Phase Photo-oxidation of Benzene fro m TiOCl2Aqueous Solution at Lo w Temperatures[J]. Lang muir,2004,20(25):10838-10844.
    [17] K Madhusudan Reddy, Manorama Sunkara-V, Ramachandra Reddy A. Bandgap studies onanatase titanium d io xide nanoparticles[J]. Materials Chemistry and Physics,2003,78(1):239-245.
    [18] Nick Serpone. Is the Band Gap of Pristine TiO2Narrowed by Anion-and Cation-Doping ofTitaniu m Dio xide in Second-Generation Photocatalysts?[J]. The Journal of Physical Chemistry B,2006,110(48):24287-24293.
    [19] Diana Mardare, Tasca M, Delibas M, et al. On the structural properties and optical transmittanceof TiO2r.f. sputtered thin films[J]. Applied Surface Science,2000,156(1–4):200-206.
    [20] Teruhisa Ohno, Saru kawa Koji, Matsumura Michio. Photocatalytic Activities of Pure RutileParticles Isolated fro m TiO2Powder by Dissolving the Anatase Component in HF So lution[J].The Journal of Physical Chemistry B,2001,105(12):2417-2420.
    [21] James Fisher, Egerton Terry-A. Titaniu m Co mpounds, Inorganic. John Wiley&Sons, Inc.,2000.
    [22] H Wang, Lewis J-P. Second-generation photocatalytic materials: anion-doped TiO2[J]. Journalof Physics: Condensed Matter,2006,18(2):421.
    [23] DorianA-H Hanaor, Sorrell CharlesC. Review of the anatase to rutile phase transformation[J].Journal Of Materials Science,2011,46(4):855-874.
    [24] Stacey-J Smith, Stevens Rebecca, Liu Shengfeng, et al. Heat capacities and thermodynamicfunctions of TiO2anatase and rutile; analysis of phase stability[J]. A merican Mineralogist,2009,94236-243.
    [25] Joseph Muscat, Swamy Varghese, Harrison Nicholas-M. First-principles calculations of thephase stability of TiO2[J]. Physical Rev iew B,2002,65(22):224112.
    [26] A Navrotsky, Kleppa O-J. Enthalpy of the Anatase-Rutile Transformation[J]. Journal Of TheAmerican Ceramic Society,1967,50(11):626.
    [27] Dong-Jin Kim, Hahn Sung-Hong, Oh Sung-Hoon, et al. Influence of calcination temperature onstructural and optical properties of TiO2thin films prepared by sol–gel d ip coating[J]. MaterialsLetters,2002,57(2):355-360.
    [28] Young-Ug Ahn, Kim Eu i-Jung, Kim Hwan-Tae, et al. Variation of structural and opticalproperties of sol-gel TiO2thin films with catalyst concentration and calcination temperature[J].Materials Letters,2003,57(30):4660-4666.
    [29] Ji-Guang Li, Ishigaki Takamasa. Brookite→rutile phase transformation of TiO2studied withmonodispersed particles[J]. Acta Materialia,2004,52(17):5143-5150.
    [30] Hengzhong Zhang, Banfield Jillian-F. Understanding Polymorphic Phase TransformationBehavior during Gro wth of Nanocrystalline Aggregates: Insights from TiO2[J]. The Journal ofPhysical Chemistry B,2000,104(15):3481-3487.
    [31] Pyung-Soo Ha, Youn Hyuk-Joon, Jung Hyun-Seok, et al. Anatase–Rutile Transition ofPrecip itated Titaniu m Oxide with Alcohol Rinsing[J]. Journal Of Colloid and Interface Science,2000,223(1):16-20.
    [32] H-E Chao, Yun Y-U, Xingfang H-U, et al. Effect of silver doping on the phase transformationand grain growth of sol-gel titania powder[J]. Journal Of The European Ceramic Society,2003,23(9):1457-1464.
    [33] Najeh-I A l-Salim, Bagshaw Stephen-A, Bittar Antoine, et al. Characterisation and activity ofsol-gel-prepared TiO2photocatalysts modified with Ca, Sr or Ba ion additives[J]. Journal OfMaterials Chemistry,2000,10(10):2358-2363.
    [34] Saila Karv inen. The effects of trace elements on the crystal properties of TiO2[J]. So lid StateSciences,2003,5(5):811-819.
    [35] Chen-Chi Wang, Ying Jackie-Y. So l Gel Synthesis and Hydrothermal Processing of Anatase andRutile Titania Nanocrystals[J]. Chemistry Of Materials,1999,11(11):3113-3120.
    [36] Hengzhong Zhang, Banfield Jillian-F. Understanding Polymorphic Phase TransformationBehavior during Gro wth of Nanocrystalline Aggregates: Insights from TiO2[J]. The Journal ofPhysical Chemistry B,2000,104(15):3481-3487.
    [37] M-R Ranade, Navrotsky A, Zhang H-Z, et al. Energetics of nanocrystalline TiO2[J]. Proceedingsof the National Academy of Sciences,2002,99(suppl2):6476-6481.
    [38] Y-C Ryu, Kim T-G, Seo G-S, et al. Effect of substrate on the phase transformation of TiO2inpearlescent pigment[J]. Journal o f Industrial and Engineering Chemistry,2008,14(2):213-218.
    [39] G-B Song, Liang J-K, Liu F-S, et al. Preparation and phase transformation of anatase-rutilecrystals in metal doped TiO2/muscovite nanocomposites[J]. Th in Solid Films,2005,491(1-2):110-116.
    [40] Gerhard Pfaff, Reynders Peter. Angle-Dependent Optical Effects Deriving fro m SubmicronStructures of Films and Pig ments[J]. Chemical Reviews,1999,99(7):1963-1982.
    [41]郑昭科. TiO2及其相关材料微结构调控、可见光拓展和光催化性能研究[D].山东大学,2012.
    [42] K Madhusudan Reddy, Manorama Sunkara-V, Ramachandra Reddy A. Bandgap studies onanatase titanium d io xide nanoparticles[J]. Materials Chemistry and Physics,2003,78(1):239-245.
    [43] D Reyes-Coronado, Rodríguez-Gattorno G, Espinosa-Pesqueira M-E, et al. Phase-pure TiO2nanoparticles: anatase, brookite and rutile[J]. Nanotechnology,2008,19(14):145605.
    [44] C Kormann, Bahnemann D-W, Hoffman M-R. Preparation and characterization of quantum-sizetitanium dio xide[J]. Journal Of Physical Chemistry B,1988,92(18):5196-5201.
    [45] A Ku mar, Jose R, Fu jihara K, et al. Structural and Optical Properties of Electrospun TiO2Nanofibers[J]. Chemistry Of Materials,2007,19(26):6536-6542.
    [46] Andrey-N Enyashin, Seifert Gotthard. Structure, stability and electronic properties of TiO2nanostructures[J]. physica status solidi (b),2005,242(7):1361-1370.
    [47] S Monticone, Tufeu R, Kanaev A-V, et al. Quantum size effect in TiO2nanoparticles: does itexist?[J]. Applied Surface Science,2000,162–163(0):565-570.
    [48] Xiangping Huang, Pan Chun xu. Large-scale synthesis of single-crystalline rutile TiO2nanorodsvia a one-step solution route[J]. Journal Of Crystal Growth,2007,306(1):117-122.
    [49] Yawen Wang, Zhang Lizhi, Deng Kejian, et al. Low Temperature Synthesis and PhotocatalyticActivity of Rutile TiO2Nanorod Superstructures[J]. The Journal of Physical Chemistry C,2007,111(6):2709-2714.
    [50] Michel Posternak, Baldereschi Alfonso, Walter Eric-J, et al. Wannier functions and Born chargetensors of brookite TiO2[J]. Physical Rev iew B,2006,74(12):125113.
    [51] Yong-fan Zhang, Lin Wei, Li Yi, et al. A Theoretical Study on the Electronic Structures of TiO2:Effect of Hartree Fock Exchange[J]. The Journalof Physical Chemistry B,2005,109(41):19270-19277.
    [52]刘恩科,朱秉升,罗晋生.半导体物理学[M].电子工业出版社,2011.
    [53] P Jeevanandam, Mulukutla R-S, Ph illips M, et al. Near In frared Reflectance Properties of MetalOxide Nanoparticles[J]. The Journal o f Physical Chemistry C,2007,111(5):1912-1918.
    [54] G-B Smith, Gentle A, Swift P, et al. Coloured paints based on coated flakes of metal as thepigment, for enhanced solar reflectance and cooler interio rs: description and theory[J]. So larEnergy Materials and Solar Cells,2003,79(2):163-177.
    [55] D-L Liao, Liao B-Q. Shape, size and photocatalytic activity control of TiO2nanoparticles withsurfactants[J]. Journal of Photochemistry and Photobiology A: Chemistry,2007,187(2–3):363-369.
    [56] Wang Taoye, Tayirjan T-Isimjan, Jianfeng Chen, et al. Transparent nanostructured coatings withUV-shielding and superhydrophobicity properties[J]. Nanotechnology,2011,22(26):265708.
    [57] Pinar Kurt, Banerjee Debasish, Cohen Robert-E, et al. Structural color via layer-by-layerdeposition: layered nanoparticle arrays with near-UV and visib le reflectivity bands[J]. Journal ofMaterials Chemistry,2009,198920-8927.
    [58] A my-L Linsebigler, Lu Guangquan, Yates John-T. Photocatalysis on TiO2Su rfaces: Principles,Mechanisms, and Selected Results[J]. Chemical Reviews,1995,95(3):735-758.
    [59] A kira Fu jishima, Zhang Xintong, Tryk Donald-A. TiO2photocatalysis and related surfacephenomena[J].2008,63(12):515-582.
    [60] A kira Fu jishima, Zhang Xintong, Tryk Donald-A. TiO2photocatalysis and related surfacephenomena[J]. Surface Science Reports,2008,63(12):515-582.
    [61]杜建华,李超,刘贵民,等.非均相沉淀法制备铜包覆纳米SiO2复合粉体[J].粉末冶金材料科学与工程,2008,(05):291-295.
    [62]关毅,程琳俨,张金元.非均相沉淀法在无机包覆中的应用[J].材料导报,2006,(07):88-90.
    [63]赵峰,杨艳丽. CVD技术的应用与进展[J].热处理,2009,(04):7-10.
    [64]朱冬生,赵朝晖,李军.溶胶-凝胶法制备纳米薄膜的研究进展[J].材料导报,2003,(S1):53-55.
    [65]丁子上,翁文剑.溶胶-凝胶技术制备材料的进展[J].硅酸盐学报,1993,(05):443-450.
    [66]武志刚,高建峰.溶胶-凝胶法制备纳米材料的研究进展[J].精细化工,2010,(01):21-25.
    [67]陈静,王向德,叶书栋,等.微乳液法制备钴蓝云母珠光颜料[J].硅酸盐学报,2005,(03):346-349.
    [68]周彦昭.微乳液法制备纳米粉体综述[J].陕西科技大学学报,2004,(05):167-170.
    [69]宋杰,陈晓明,闫玉华.微乳液法在纳米粒子制备中的应用[J].材料导报,2003,(S1):36-38.
    [70] Masayuki Okuno, Zotov Niko lay, Sch mücker Martin, et al. Structure of SiO2-Al2O3glasses:Co mbined X-ray d iffraction, IR and Raman studies[J]. Journal Of Non-crystalline So lids,2005,351(12–13):1032-1038.
    [71] Michael-R Hoffmann, Martin Scot-T, Choi Wonyong., et al. Environmental Applications ofSemiconductor Photocatalysis[J]. Chemical Rev iews,1995,95(1):69-96.
    [72] Kari Pirkanniemi, Sillanp Mika. Heterogeneous water phase catalysis as an environmentalapplication: a review[J]. Chemosphere,2002,48(10):1047-1060.
    [73] Michael-A Gonzalez, Howell S-Garry, Sikdar Subhas-K. Photocatalytic Selective Oxidation ofHydrocarbons in the Aqueous Phase[J]. Journal o f Catalysis,1999,183(1):159-162.
    [74] Endalkachew Sahle-Demessie, Gon zalez Michael, Wang Zhong-Min, et al. SynthesizingAlcohols and Ketones by Photoinduced Catalytic Partial Oxidation of Hydrocarbons in TiO2FilmReactors Prepared by Three Different Methods[J]. Industrial&Engineer ing Chemistry Research,1999,38(9):3276-3284.
    [75] John-C Crittenden, Liu Junbiao, Hand David-W, et al. Photocatalytic o xidation of chlorinatedhydrocarbons in water[J]. Water Research,1997,31(3):429-438.
    [76] Lixin Cao, Gao Zi, Su ib Steven-L, et al. Photocatalytic Oxidation of To luene on Nanoscale TiO2Catalysts: Studies of Deactivation and Regeneration[J]. Journal of Catalysis,2000,196(2):253-261.
    [77] Hao Zhang, Lv Xiaojun, Li Yueming, et al. P25-Graphene Co mposite as a High PerformancePhotocatalyst[J]. ACS Nano,2009,4(1):380-386.
    [78] Maocheng Yan, Chen Feng, Zhang Jinlong, et al. Preparation of Controllable Crystalline Titaniaand Study on the Photocatalytic Properties[J]. The Journal of Physical Chemistry B,2005,109(18):8673-8678.
    [79]唐建军,邹原. TiO2-Fe (3+)可见光催化H2O2降解阿特拉津的协同效应[J].环境科学学报,2013,(03):736-741.
    [80]霍爱群,谭欣,丛培君.纳米TiO2膜光催化降解废水中阿特拉津的研究[J].工业水处理,1998,(03):27-28.
    [81]刘丰良,刘淑君,薛志超,等. Fe(Ⅲ)改性金红石TiO2可见光催化H2O2降解阿特拉津的研究[J].水处理技术,2010,(01):67-69.
    [82] G-G Len zi, Fávero C-V-B, Colpin i L-M-S, et al. Photocatalytic reduction of Hg(II) on TiO2andAg/TiO2prepared by the sol-gel and impregnation methods[J]. Desalination,2011,270(1–3):241-247.
    [83]李川,古国榜,柳松. TiO2光催化处理废水中贵重金属的研究进展[J].环境污染治理技术与设备,2003,(11):6-11.
    [84] M-J López-Mu oz, Aguado J, Arencibia A, et al. Mercury removal fro m aqueous solutions ofHgCl2by heterogeneous photocatalysis with TiO2[J]. Applied Catalysis B: Env iron mental,2011,104(3–4):220-228.
    [85] S Hager, Bauer R, Kudielka G. Photocatalytic o xidation of gaseous chlorinated organics overtitanium dio xide[J]. Chemosphere,2000,41(8):1219-1225.
    [86] Q-L Yu, Brouwers H-J-H. Indoor air purification using heterogeneous photocatalytic o xidation.Part I: Experimental study[J]. Applied Catalysis B: Environ mental,2009,92(3-4):454-461.
    [87] Lexuan Zhong, Haghighat Fariborz, Blondeau Partice, et al. Modeling and physical interpretationof photocatalytic o xidation efficiency in indoor air applications[J]. Build ing and Environ ment,2010,45(12):2689-2697.
    [88] Qingping Wu, van de Krol Roel. Selective Photoreduction of Nitric Oxide to Nitrogen byNanostructured TiO2Photocatalysts: Role of Oxygen Vacancies and Iron Dopant[J]. Journal OfThe American Chemical Society,2012.
    [89] C-S Poon, Cheung E. NO removal efficiency of photocatalytic paving blocks prepared withrecycled materials[J]. Construction and Building Materials,2007,21(8):1746-1753.
    [90] Fujishima A, K Honda. Electrochemical photolysis of water at a semiconductor electrode[J].1972,238(07).
    [91] A kih iko Kudo, Miseki Yugo. Heterogeneous photocatalyst materials for water splitting[J].Chemical Society Reviews,2009,38(1):253-278.
    [92]黄翠英,张澜萃,李晓辉.稀土离子掺杂对纳米TiO2光催化制氢活性的影响[J].催化学报,2008,(02):163-166.
    [93] Quan Yuan, Liu Yang, Li Le-Le, et al. High ly ordered mesoporous titania-zirconia photocatalystfor applications in degradation of rhodamine-B and hydrogen evolution[J]. Microporous andMesoporous Materials,2009,124(1–3):169-178.
    [94] R Sasikala, Shirole A, Sudarsan V, et al. Highly dispersed phase of SnO2on TiO2nanoparticlessynthesized by polyol-mediated route: Photocatalytic activity for hydrogen generation[J].International Journal of Hydrogen Energy,2009,34(9):3621-3630.
    [95] Shiping Xu, Sun Darren-Delai. Significant improvement of photocatalytic hydrogen generationrate over TiO2with deposited CuO[J]. International Journal of Hydrogen Energy,2009,34(15):6096-6104.
    [96] Shiping Xu, Ng Jiawei, Zhang Xiwang, et al. Fabrication and co mparison of highly efficient Cuincorporated TiO2photocatalyst for hydrogen generation fro m water[J]. International Journal ofHydrogen Energy,2010,35(11):5254-5261.
    [97] Kannekanti Lalitha, Reddy Jakkidi-Krishna, Phanikrishna Sharma Mangalampalli-Ven kata, et al.Continuous hydrogen production activity over finely dispersed Ag2O/TiO2catalysts fro mmethanol:water mixtures under solar irradiation: A structure-activity correlation[J]. InternationalJournal of Hydrogen Energy,2010,35(9):3991-4001.
    [98] Mi-Seo Park, Kang Misook. The preparation of the anatase and rutile forms of Ag-TiO2andhydrogen production fro m methanol/water deco mposition[J]. Materials Letters,2008,62(2):183-187.
    [99] Beata Zieli ska, Boro wiak-Palen Ewa, Kalenczu k Ryszard-J. Photocatalytic hydrogen generationover alkaline-earth titanates in the presence of electron donors[J]. International Journal ofHydrogen Energy,2008,33(7):1797-1802.
    [100] M-K Nazeeruddin, Kay A, Rodicio I, et al. Conversion of light to electricity bycis-X2bis(2,2'-bipyridyl-4,4'-dicarbo xylate)rutheniu m(II) charge-transfer sensitizers (X=Cl-, Br-,I-, CN-, and SCN-) on nanocrystalline titaniu m dio xide electrodes[J]. Journal of the AmericanChemical Society,1993,115(14):6382-6390.
    [101] Michael Gr tzel. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solarcells[J]. Journal of Photochemistry and Photobiology A: Chemistry,2004,164(1–3):3-14.
    [102] Qing Shen, Sato Tadakazu, Hashimoto Mituru, et al. Photoacoustic and photoelectrochemicalcharacterization of CdSe-sensitized TiO2electrodes composed of nanotubes and nanowires[J].Thin Solid Films,2006,499(1–2):299-305.
    [103] K-G-U W ijayantha, Peter Laurence-M, Otley L-C. Fabrication of CdS quantum dot sensitizedsolar cells via a pressing route[J]. So lar Energy Materials and Solar Cells,2004,83(4):363-369.
    [104]钱新明,宋庆,白玉白,等. CdS敏化对TiO2纳米薄膜电极光生电荷转移特性的影响[J].高等学校化学学报,2000,(02):295-297.
    [105] Ying-Ch iao Wang, Wang Di-Yan, Jiang You-Ting, et al. FeS2Nanocrystal Ink as a CatalyticElectrode for Dye-Sensitized Solar Cells[J]. Angewandte Chemie International Edition,2013,52(26):6694-6698.
    [106] C-W Lin, Wang D-Y, Wang Y-T, et al. Increased photocurrent in bulk-heterojunction solar cellsmed iated by FeS2nanocrystals[J]. So lar Energy Materials and Solar Cells,2011,95(4):1107-1110.
    [107] Huihua Deng, Zhang Hong, Lu Zuhong. Dye-sensitized anatase titanium d io xide nanocrystallinewith (001) preferred orientation induced by Lang muir–Blodgett monolayer[J]. Chemical PhysicsLetters,2002,363(5–6):509-514.
    [108] K-D Benkstein, Kopidakis N, van de Lagemaat J, et al. Influence of the Percolation NetworkGeo metry on Electron Transport in Dye-Sensitized Titaniu m Dio xide Solar Cells[J]. The Journalof Physical Chemistry B,2003,107(31):7759-7767.
    [109] Svetlana-S van Bavel, B renklau Maik, de With Gijsbertus, et al. P3HT/PCBM Bu lkHeterojunction Solar Cells: Impact of Blend Co mposition and3D Morphology on DevicePerformance[J]. Advanced Functional Materials,2010,20(9):1458-1463.
    [110] Gio rgio Div itin i, Stenzel Ole, Ghadirzadeh Ali, et al. Nanoscale Analysis of a HierarchicalHybrid Solar Cell in3D[J]. Advanced Functional Materials,2014, n/a-n/a.
    [111]徐卡秋,高夏红.二氧化钛颜料的表面有机改性研究[J].化工进展,2003,(11):1200-1202.
    [112] David McCoy.二氧化钛颜料的发展过程[J].涂料技术与文摘,2005,(02):25-27.
    [113]毕胜.中国二氧化钛工业的生产与市场现状[J].现代涂料与涂装,2003,(06):37-40.
    [114] Nooshin Bayat, Baghshahi Saeid, Alizadeh Parvin. Synthesis of white pearlescent pigments usingthe surface response method of statistical analysis[J]. Ceramics International,2008,34(8):2029-2035.
    [115] J-H Cho, Tark Y-D, Kim W-Y, et al. Roo m-temperature synthesis and characteristics ofnanocrystalline TiO2on mica by homogeneous precipitation[J]. Metals and MaterialsInternational,2009,15(6):1001-1005.
    [116] F-J Maile, Pfaff G, Reynders P. Effect pig ments-past, present and future[J]. Progress in OrganicCoatings,2005,54(3):150-163.
    [117] H Shio mi, Misaki E, Adachi M, et al. High chroma pearlescent pigments designed by opticalsimu lation[J]. Journal of Coatings Technology and Research,2008,5(4):455-464.
    [1]孙大可,曹立新,常素玲.一维纳米材料的制备、性质及应用[J].稀有金属,2006,(01):88-94.
    [2]袁文俊,周勇敏.纳米颗粒团聚的原因及解决措施[J].材料导报,2008,(S3):59-61.
    [3]冯拉俊,刘毅辉,雷阿利.纳米颗粒团聚的控制[J].微纳电子技术,2003,(Z1):536-539.
    [4]徐文炘,郭陀珠,李衡,等.云母矿物材料研究现状及前景[J].矿产与地质,2001,(03):201-204.
    [5]张志杰.材料物理化学[M].北京:化学工业出版社,2006.
    [6]谭建农,张术根,彭志勤,等.我国绢云母的应用研究现状及发展问题探讨[J].中国非金属矿工业导刊,2003,(03):6-10.
    [7]伍林,欧阳兆辉,曹淑超,等.拉曼光谱技术的应用及研究进展[J].光散射学报,2005,(02):180-186.
    [8] Petar Djinovi, Batista Jurka, Pintar Albin. Efficient catalytic abatement of greenhouse gases:Methane reforming with CO2using a novel and thermally stable Rh-CeO2catalyst[J]. InternationalJournal of Hydrogen Energy,2012,37(3):2699-2707.
    [9] David-A McKeown, Bell Michael-I, Etz Edgar-S. Raman spectra and vibrational analysis of thetrioctahedral mica phlogopite[J]. A merican Mineralogist,1999,84(5-6):970-976.
    [10]曹淑慧,张立飞,孙樯,等.高压下多硅白云母的拉曼光谱学研究[J].岩石矿物学杂志,2006,(01):71-76.
    [11] Mou Pal, García Serrano J, Santiago P, et al. Size-Controlled Synthesis of Spherical TiO2Nanoparticles: Morphology, Crystallization, and Phase Transition[J]. The Journal of PhysicalChemistry C,2006,111(1):96-102.
    [12] Jing Zhang, Li Meijun, Feng Zhaochi, et al. UV Raman Spectroscopic Study o n TiO2. I. PhaseTransformation at the Surface and in the Bulk[J]. The Journal of Physical Chemistry B,2005,110(2):927-935.
    [13] Changhua Wang, Shao Changlu, Liu Yichun, et al. Water Dichloro methane Interface ControlledSynthesis of Hierarchical Rutile TiO2Superstructures and Their Photocatalytic Properties[J].Inorganic Chemistry,2009,48(3):1105-1113.
    [14]丁明,董强,范广能,等.二步法云母微晶片的纳米二氧化钛包覆研究[J].合肥工业大学学报(自然科学版),1998,(01):79-84.
    [15]陆佩文.无机材料科学基础[M].武汉:武汉理工大学出版社,2006.
    [16]辛忠,吴军,戴干策.液相化学沉积法制备云母钛珠光颜料[J].华东理工大学学报,1997,(03):78-84.
    [17]张景峰,梁晓娟,向卫东.云母钛珠光颜料表面形貌的研究与制备条件的控制[J].温州大学学报(自然科学版),2007,(01):37-40.
    [18] Xin Liu, Li Wu, Nai Xueying, et al. Hydrothermal synthesis and formation of4ZnO·B2O3·H2Owhiskers via a new route[J]. Crystal Research and Technology,2012,47(4):455-460.
    [19] K-Vasanth Kumar, Porkodi K, Rocha F. Lang muir–Hinshelwood kinetics–A theoreticalstudy[J]. Catalysis Co mmunications,2008,9(1):82-84.
    [20] Chun-Yan-And-Wang-Jiang-Bin Li. Microstructure and photocatalytic activity of titaniu m dio xidenanoparticles[J]. Chinese Physics B,2012,21(9):98102.
    [1] Ye-Fei Li, Liu Zh i-Pan. Particle Size, Shape and Activity for Photocatalysis on Titania AnataseNanoparticles in Aqueous Surroundings[J]. Journal of the American Chemical Society,2011,133(39):15743-15752.
    [2] Hao-Bin Wu, Hng Huey-Hoon, Lou Xiong-Wen. Direct Synthesis of Anatase TiO2Nanowireswith Enhanced Photocatalytic Activity[J]. Advanced Materials,2012,24(19):2567-2571.
    [3] Bin Liu, Khare Ankur, Aydil Eray-S. Synthesis of single-crystalline anatase nanorods andnanoflakes on transparent conducting substrates[J]. Chemical Co mmunications,2012,48(68):8565-8567.
    [4]张青红,高濂,郑珊.金红石相二氧化钛纳米晶的光催化活性[A]2000'全国光催化学术会议论文集[C].中国福州:2000:2.
    [5]崔玉民,范少华,苏凌浩.功能材料二氧化钛光催化降解酸性黑染料[J].北京科技大学学报,2006,(07):625-629.
    [6] O Carp, Huis man C-L, Reller A. Photoinduced reactivity of titaniu m dio xide[J]. Progress in SolidState Chemistry,2004,32(1-2):33-177.
    [7]张静,阎松,付鹿,等.锐钛矿、金红石和板钛矿降解罗丹明B光催化活性的比较(英文)[J].催化学报,2011,(06):983-991.
    [8] Ziq i Sun, Kim Jung-Ho, Zhao Yue, et al. Rational Design of3D Dendritic TiO2Nanostructureswith Favorable Architectures[J]. Journal of the A merican Chemical Society,2011,133(48):19314-19317.
    [9] Naoya Murakami, Katayama Satoshi, Nakamura Misa, et al. Dependence of PhotocatalyticActivity on Aspect Ratio of Shape-Controlled Rutile Titaniu m(IV) Oxide Nanorods[J]. TheJournal of Physical Chemistry C,2010,115(2):419-424.
    [10]杜国华,龚家竹,韩小刚.金红石型二氧化钛在涂料中遮盖力的影响因素[J].涂料工业,2005,(01):15-19.
    [11] Gerhard Pfaff, Reynders Peter. Angle-Dependent Optical Effects Deriv ing fro m Sub micronStructures of Films and Pig ments[J]. Chemical Reviews,1999,99(7):1963-1982.
    [12] Y Masuda, Ieda S, Kou moto K. Site-Selective Deposition of Anatase TiO2in an Aqueous SolutionUsing a Seed Layer[J]. Langmu ir,2003,19(10):4415-4419.
    [13] Alvin-G Wee, Lindsey Delwin-T, Kuo Shanglun, et al. Color accuracy of co mmercial dig italcameras for use in dentistry[J]. Dental Materials,2006,22(6):553-559.
    [14] Xiaoguang Zhang, Ge Xin, Wang Cheng. Synthesis of Titania in Ethanol/Acetic Acid MixtureSolvents: Phase and Morphology Variations[J]. Crystal Gro wth&Design,2009,9(10):4301-4307.
    [15] Yu kiaki Ohno, Tomita Koji, Ko matsubara Yukihiro, et al. Pseudo-Cube Shaped Brookite (TiO2)Nanocrystals Synthesized by an Oleate-Modified Hydrothermal Growth Method[J]. CrystalGrowth&Design,2011,11(11):4831-4836.
    [16] Ji-Guang Li, Ishigaki Takamasa, Sun Xudong. Anatase, Brookite, and Rutile Nanocrystals viaRedo x Reactions under Mild Hydrothermal Conditions: Phase-Selective Synthesis andPhysicochemical Properties[J]. The Journal of Physical Chemistry C,2007,111(13):4969-4976.
    [17] Hyun-Suk Jung, Shin Hyunho, Kim Jeong-Ryeol, et al. In Situ Observation of the Stability ofAnatase Nanoparticles and Their Transformation to Rutile in an Acid ic So lution[J]. Lang muir,2004,20(26):11732-11737.
    [18] J Yang, Ferreira J-M-F. Inhibitory effect of the Al2O3-SiO2mixed additives on the anatase-rutilephase transformation[J]. Materials Letters,1998,36(5-6):320-324.
    [19] Chen-Chi Wang, Ying Jackie-Y. Sol Gel Synthesis and Hydrothermal Processing of Anatase andRutile Titania Nanocrystals[J]. Chemistry Of Materials,1999,11(11):3113-3120.
    [20] J-P Jo livet. Metal o xide chemistry and synthesis. John Willy and Sons,2000.
    [21] D Reyes-Co ronado, Rodríguez-Gattorno G, Espinosa-Pesqueira M-E, et al. Phase-pure TiO2nanoparticles: anatase, brookite and rutile[J]. Nanotechnology,2008,19(14):145605.
    [22] Weijia Zhou, Liu Xiaoyan, Cui Jingjie, et al. Control synthesis of rutile Ti O2microspheres,nanoflowers, nanotrees and nanobelts via acid-hydrothermal method and their optical properties[J].CrystEngCo mm,2011,13(14):4557-4563.
    [23] Wenxi Guo, Xu Chen, Wang Xue, et al. Rectangular Bunched Rutile TiO2Nanorod Arrays Gro wnon Carbon Fiber for Dye-Sensitized Solar Cells[J]. Journal of the A merican Chemical Society,2012,134(9):4437-4441.
    [24] Gerhard Pfaff, Reynders Peter. Angle-Dependent Optical Effects Deriv ing fro m Sub micronStructures of Films and Pig ments[J]. Chemical Reviews,1999,99(7):1963-1982.
    [25] G-B Song, Liang J-K, Liu F-S, et al. Preparation and phase transformation of anatase-rutilecrystals in metal doped TiO2/muscovite nanocomposites[J]. Th in Solid Films,2005,491(1-2):110-116.
    [26] P Jeevanandam, Mulukutla R-S, Phillips M, et al. Near Infrared Reflectance Properties of MetalOxide Nanoparticles[J]. The Journal o f Physical Chemistry C,2007,111(5):1912-1918.
    [27] LA GORIO, Gabriela Maria. Why do marbles become paler on grinding? Reflectance,spectroscopy, color, and particle size[M]. Mad ison, WI, ETATS-UNIS: A merican ChemicalSociety, Division of Chemical Education,2004:5.
    [28] Maocheng Yan, Chen Feng, Zhang Jin long, et al. Preparation of Controllab le Crystalline Titaniaand Study on the Photocatalytic Properties[J]. The Journal of Physical Chemistry B,2005,109(18):8673-8678.
    [29] Andrea Testino, Bellobono Ignazio-Renato, Buscaglia Vincenzo, et al. Optimizing thePhotocatalytic Properties of Hydrothermal TiO2by the Control of Phase Co mposition and ParticleMorphology. A Systematic Approach[J]. Journal Of The A merican Chemical Society,2007,129(12):3564-3575.
    [30] Maocheng Yan, Chen Feng, Zhang Jin long, et al. Preparation of Controllab le Crystalline Titaniaand Study on the Photocatalytic Properties[J]. The Journal of Physical Chemistry B,2005,109(18):8673-8678.
    [31] Beata Zielińska, Grzechulska Joanna, Grzmil Barbara, et al. Photocatalytic degradation ofReactive Black5: A co mparison between TiO2-Tytanpol A11and TiO2-Degussa P25photocatalysts[J]. Applied Catalysis B: Environ mental,2001,35(1): L1-L7.
    [32] Victor-F Stone, Davis Robert-J. Synthesis, Characterization, and Photocatalytic Activity of Titaniaand Niobia Mesoporous Molecular Sieves[J]. Chemistry Of Materials,1998,10(5):1468-1474.
    [33] Xiao xu Li, Xiong Yujie, Li Zhengquan, et al. Large-Scale Fabrication of TiO2Hierarch icalHollow Spheres[J]. Inorganic Chemistry,2006,45(9):3493-3495.
    [34] Jin-Ming Wu, Qi Bin. Lo w-Temperature Growth of Rutile Nanorod Thin Films and theirPhoton-Induced Property[J]. Journal of the A merican Ceramic Society,2008,91(12):3961-3970.
    [35]尚静,谢绍东,刘建国. SnO2-TiO2复合半导体纳米薄膜的研究进展[J].化学进展,2005,(06):66-72.
    [36] C Ko rmann, Bahnemann D-W, Hoffman M-R. Preparation and characterization of quantum-sizetitanium dio xide[J]. Journal Of Physical Chemistry B,1988,92(18):5196-5201.
    [37]孙奉玉,吴鸣,李文钊,等.二氧化钛的尺寸与光催化活性的关系[J].催化学报,1998,(03):39-43.
    [38] Yan Hu, Yuan Chunwei. Lo w-temperature preparation of photocatalytic thin films fro m anatasesols[J]. Journal Of Crystal Gro wth,2005,274(3–4):563-568.
    [39] Qinghong Zhang, Gao Lian, Guo Jingkun. Effects of calcination on the photocatalytic propertiesof nanosized TiO2powders prepared by TiCl4hydrolysis[J]. Applied Catalysis B: Env iron mental,2000,26(3):207-215.
    [40] Shao-Chun Li, Diebold Ulrike. Reactivity of TiO2Rutile and Anatase Surfaces towardNitroaro matics[J]. Journal Of The A merican Chemical Society,2009,132(1):64-66.
    [41] V Subramanian, Zhu Hongwei, Vajtai Robert, et al. Hydrothermal Synthesis andPseudocapacitance Properties of MnO2Nanostructures[J]. The Journal of Physical Chemistry B,2005,109(43):20207-20214.
    [42] Mathieu Toupin, Brousse Thierry, Bélanger Daniel. Charge Storage Mechanism of MnO2Electrode Used in Aqueous Electrochemical Capacitor[J]. Chemistry Of Materials,2004,16(16):3184-3190.
    [43] Satoshi Yamabi, Imai Hiroaki. Crystal Phase Control for Titaniu m Dio xide Films by DirectDeposition in Aqueous Solutions[J]. Chemistry of Materials,2002,14(2):609-614.
    [44] Yawen Wang, Zhang Lizh i, Deng Kejian, et al. Lo w Temperature Synthesis and PhotocatalyticActivity of Rutile TiO2Nanorod Superstructures[J]. The Journal of Physical Chemistry C,2007,111(6):2709-2714.
    [45] Xinjian Feng, Shankar Karthik, Varghese Oomman-K, et al. Vertically Aligned Single CrystalTiO2Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: SynthesisDetails and Applications[J]. Nano Letters,2008,8(11):3781-3786.
    [46] Akshay Kumar, Madaria Anuj-R, Zhou Chongwu. Growth of A ligned Single-Crystalline RutileTiO2Nanowires on Arbitrary Substrates and Their Application in Dye-Sensitized So lar Cells[J].The Journal of Physical Chemistry C,2010,114(17):7787-7792.
    [47] Zhong-Lin Wang, Kang Zhen-Chuan. Functional and Smart Materials: Structural Evo lution andStructure Analysis[M]. New Yo rk: Springer,1998.
    [48] ShunJun Li, Ma ZiChuan, Wang Lin, et al. Influence of MnO2on the photocatalytic activity ofP-25TiO2in the degradation of methyl orange[J].2008,51(2):179-185.
    [49] Rong Wang, Hashimoto Kazuhito, Fu jishima A kira, et al. Light-induced amphiphilic surfaces[J].Nature,1997,388(6641):431-432.
    [50]斯芳芳,张靓,赵宁,等.超亲水表面制备方法及其应用[J].化学进展,2011,(09):1831-1840.
    [51] Liang Li, Li Yue, Gao Shuyan, et al. Ordered Co3O4hierarch ical nanorod arrays: tunablesuperhydrophilicity without UV irradiation and transition to superhydrophobicity[J]. Journal OfMaterials Chemistry,2009,19(44):8366-8371.
    [52] Ho-Sun Lim, Kwak Donghoon, Lee Dong-Yun, et al. UV-Driven Reversible Switching of aRoselike Vanadiu m Oxide Film between Superhydrophobicity and Superhydrophilicity[J]. JournalOf The American Chemical Society,2007,129(14):4128-4129.
    [53] Xinjian Feng, Zhai Jin, Jiang Lei. The Fabrication and Switchable Superhydrophobicity of TiO2Nanorod Films[J]. Angewandte Chemie International Ed ition,2005,44(32):5115-5118.
    [54] Mikael Ja rn, Xu Qian, Linde n Mika. Wetting Studies of Hydrophilic Hydrophobic TiO2@SiO2Nanopatterns Prepared by Photocatalytic Deco mposition[J]. Lang muir,2010,26(13):11330-11336.
    [1] Manoj Raula, Rashid Md-Harunar, Paira Tapas-K, et al. Ascorbate-Assisted Growth ofHierarchical Zn O Nanostructures: Sphere, Spindle, and Flower and Their Catalytic Properties[J].Lang muir,2010,26(11):8769-8782.
    [2] M-A Ah med, El-Katori Emad-E, Gharni Zarha-H. Photocatalytic degradation of methylene bluedye using Fe2O3/TiO2nanoparticles prepared by sol–gel method[J]. Journal Of Alloys andCo mpounds,2013,553(0):19-29.
    [3] Xiaoyu He, Hu Chenguo, Yi Qianning, et al. Preparation and Improved Photocatalytic Activity ofWO3·0.33H2O Nanonetworks[J]. Catalysis Letters,2012,142(5):637-645.
    [4] Idriss Bedja, Kamat Prashant-V. Capped Semiconductor Colloids. Synthesis andPhotoelectrochemical Behavior of TiO2Capped SnO2Nanocrystallites[J]. The Journal of PhysicalChemistry,1995,99(22):9182-9188.
    [5] Qiuye Li, Kako Tetsuya, Ye Jinhua. PbS/CdS nanocrystal-sensitized titanate network films:enhanced photocatalytic activities and super-amphiphilicity[J]. Journal of Materials Chemistry,2010,20(45):10187-10192.
    [6] Defa Wang, Zou Zhigang, Ye Jinhua. A new spinel-type photocatalyst BaCr2O4for H2evolutionunder UV and visib le light irradiat ion[J]. Chemical Physics Letters,2003,373(1–2):191-196.
    [7] Y Bessekhouad, Trari M. Photocatalytic hydrogen production fro m suspension of spinel powdersAMn2O4(A=Cu and Zn)[J]. International Journal Of Hydrogen Energy,2002,27(4):357-362.
    [8]张青红.二氧化钛基纳米材料及其在清洁能源技术中的研究进展[J].无机材料学报,2012,(01):1-10.
    [9]陈其凤,史卫梅,姜东,等.可见光响应的镍硅共掺杂二氧化钛及其光催化性能[J].化学学报,2010,(04):301-308.
    [10]周武艺,曹庆云,唐绍裘.提高纳米二氧化钛可见光光催化活性研究的进展[J].硅酸盐学报,2006,(07):861-867.
    [11] Miguel Pelaez, Nolan Nicholas-T, Pillai Su resh-C, et al. A review on the visible light activetitanium dio xide photocatalysts for environ mental applications[J]. Applied Catalysis B:Environmental,2012,125(0):331-349.
    [12] G Co lón, Hidalgo M-C, Munuera G, et al. Structural and surface approach to the enhancedphotocatalytic activity of sulfated TiO2photocatalyst[J]. Applied Catalysis B: Environ mental,2006,63(1-2):45-59.
    [13] Masayuki Okuno, Zotov Nikolay, Sch mücker Martin, et al. Structure of SiO2-Al2O3glasses:Co mbined X-ray d iffraction, IR and Raman studies[J]. Journal Of Non-crystalline So lids,2005,351(12–13):1032-1038.
    [14] N-J Clayden, Esposito S, Aronne A, et al. Solid state27A l NMR and FTIR study of lanthanumalu minosilicate glasses[J]. Journal Of Non-crystalline Solids,1999,258(1–3):11-19.
    [15] Dimitrios Papoulis, Ko marneni Sridhar, Panagiotaras Dionisios, et al. Halloysite-TiO2nanocomposites: Synthesis, characterization and photocatalytic activity[J]. Applied Catalysis B:Environmental,2013,132–133(0):416-422.
    [16] Youji Li, Li Leiyong, Li Chenwan, et al. Carbon nanotube/titania composites prepared by amicro-emulsion method exhibiting imp roved photocatalytic activity[J]. Applied Catalysis A:General,2012,427–428(0):1-7.
    [17] T Bezrodna, Puchkovska G, Shy manovska V, et al. IR-analysis of H-bonded H2O on the pureTiO2surface[J]. Journal of Mo lecular Structure,2004,700(1-3):175-181.
    [18] Anastasios-John Hart, Slocum Alexander-H, Royer Laure. Growth of conformal single-walledcarbon nanotube films fro m Mo/Fe/Al2O3deposited by electron beam evaporation[J]. Carbon,2006,44(2):348-359.
    [19] Zhonghai Zhang, Hossain Md.-Faru k, Takahashi Takakazu. Self-assembled hematite (α-Fe2O3)nanotube arrays for photoelectrocatalytic degradation of azo dye under simu lated solar lightirradiation[J]. Applied Catalysis B: Environ mental,2010,95(3–4):423-429.
    [20] Hongzhe Wang, Zhang Xingtang, Liu Bing, et al. Synthesis and Characterization of Single Crystalα-Fe2O3Nanobelts[J]. Chemistry Letters,2005,34(2):184-185.
    [21] Huogen Yu, Irie Hiroshi, Shimodaira Yoshiki, et al. An Efficient Visible-Light-SensitiveFe(III)-Grafted TiO2Photocatalyst[J]. The Journal of Physical Chemistry C,2010,114(39):16481-16487.
    [22] Xiaoru Zhang, Lin Yanhong, He Dongqing, et al. Interface junction at anatase/rutile inmixed-phase TiO2: Formation and photo-generated charge carriers properties[J]. Chemical PhysicsLetters,2011,504(1–3):71-75.
    [23] Agatino Di Paola, Cufalo Giovanni, Addamo Maurizio, et al. Photocatalytic activity ofnanocrystalline TiO2(b rookite, rutile and brookite-based) powders prepared by thermohydrolysisof TiCl4in aqueous chloride solutions[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2008,317(1–3):366-376.
    [24] Xiaojun Shen, Zhang Jinlong, Tian Bao zhu. Microemulsion-mediated solvothermal synthesis andphotocatalytic properties of crystalline titania with controllable phases of anatase and rutile[J].Journal Of Hazardous Materials,2011,192(2):651-657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700