微波加热技术在铁矿烧结点火中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:我国钢铁行业中,烧结工序作为钢铁生产的重要组成部分,其能耗约占钢铁生产总能耗的10%~15%,其中,烧结点火能耗占烧结工序能耗的5%~10%。传统的煤气点火存在煤气利用率低、能源消耗量大、污染严重等问题,制约了钢铁企业的可持续发展。因此,积极开发不依赖高炉/焦炉煤气的铁矿石烧结点火新技术,是我国钢铁工业节能减排和高效环保的必然要求。
     本文以宝钢烧结生产现场为对象,对传统的煤气点火过程进行了系统解析,测定了不同点火条件下点火炉内.温度场的分布状态;针对现场煤气点火存在的不足,提出了微波热风点火新概念,建立了微波热风烧结点火的理论基础及点火模型;开发了微波热风点火烧结试验装置及点火新技术,查明了微波热风点火烧结矿的固结行为;在微波热风烧结点火扩大化试验的基础上,初步设计了工业型微波热风烧结点火系统。本研究的创新点及获得的主要结论如下:
     (1)解析了点火炉内温度场分布不均匀是造成传统煤气点火能耗利用率低(宝钢现场实际点火能耗为50.93MJ/mz,实际利用率仅为37.8%)的主要原因。通过改变点火强度、点火负压及点火区域皆无法实现点火炉内温度场分布的均匀性,需从本质上改变点火方式。
     (2)提出了微波热风点火烧结的新概念,建立了热风烧结点火的理论基础及点火模型。在点火气流中氧含量为21%时,得出微波热风烧结点火所需理论最低点火温度为618.32℃,最低点火能耗为23.68MJ/m2。在此点火条件下,表层混合料中的焦粉能够成功点燃,并保证烧结过程顺利进行。
     (3)成功开发了微波热风点火烧结新技术及装置,并在实验室及扩大试验中得到了应用,获得了良好的试验效果。
     a、实验室烧结杯试验研究结果表明,在实际点火风温为760℃(空气预先被加热至330℃)、点火时间为1.5min,单位面积点火风量682Nm3/(h·m2)的点火条件下,所获得烧结产质量指标优于煤气点火,而且其点火能耗仅为煤气点火能耗的21.61%,同时点火废气中的SO2和NOx含量明显降低。
     b、扩大化试验研究结果表明,在实际点火风温700℃,点火时间1.5min,单位面积点火风量960Nm3/(h.m2)的点火条件下,所获得的烧结产质量指标为:垂直烧结速度23.48mm/min,转鼓强度66.91%,烧结矿成品率69.62%,利用系数为1.453t/m2.h。与实验室结果相比,扩大试验获得的烧结矿质量明显改善,且点火能耗进一步降低至25.08MJ/m2。
     (4)微波热风点火烧结矿的固结行为研究发现,因微波热风点火气流中氧气含量接近21%,明显高于煤气点火热气流中的氧气含量(8-9%),所以微波热风点火中、上层烧结矿中的赤铁矿数量较多,铁酸钙分布广泛、晶形发育充分,这是微波热风点火烧结矿强度优于煤气点火烧结矿强度的重要原因。随着微波热风点火气流中氧气含量提高,烧结矿中赤铁矿数量增多,磁铁矿减少;点火气流中氧气含量的提高有利于焦粉的充分燃烧,使得料层中铁酸钙液相生成量增多,铁酸钙和赤铁矿相互熔蚀程度提高。铁酸钙作为烧结矿主要的粘结相,多呈针状、树枝状或长条状,充填于赤铁矿晶粒间,相互间嵌布关系密切。
     (5)初步设计了工业型微波热风点火系统,点火单元及辅助单元的工程造价约为4200万元,一台机年效益约为769.66万元,投资回报期需5.46年。通过对工艺技术、经济效益及社会效益的评估,证实了微波热风烧结点火技术的工业化实施是可行的。
Abstract:In the domestic iron and steel industry, sintering process is one of the most important sections, which consumes10%~15%of the total energy. And the ignition energy consumption accounts for5%~10%of the sintering process. However, the traditional ignition based on coal gas is characterized by high gas consumption, low efficiency and serious pollution, which restricts the sustainable development of iron and steel industry. Therefore, developing novel ignition technologies independent of coal gas is inevitable for the requirements of energy conservation and emission reduction, high efficiency and environmental friendliness.
     In this paper, the traditional coal gas-based ignition (CGI) process was systematically analysed, and the temperature distribution of ignition spot in Bao Steel was measured. With respect to the drawbacks of conventional ignition method, the microwave-heated ignition (MHI) technology was firstly proposed and the theoretical basis and ignition model of MHI were established. The new technology and corresponding devices were developed and the consolidation behavior of MHI sintering was found out. Based on the large-scale experiments of MHI, the industrialized MHI system was preliminary designed. The following innovation and conclusions were obtained.
     (1) The analysis of the traditional ignition process revealed that the ununiform temperature distribution of ignition spot was the main reason for low utilization efficiency (the current ignition energy consumption in Bao Steel was50.93MJ/m2and the efficiency was only37.8%). In order to reduce the ignition energy consumption, the ignition method must be changed as it was infeasible by changing ignition intensity, negative pressure or ignition area.
     (2) The theoretical model of MHI indicated that, the minimum ignition temperature and heat was618.32℃and23.68MJ/m2, respectively. The coke breeze in the sinter bed was capable of combustion if the superficial one was ignited and then the sintering process was readily to go on smoothly under the above ignition conditions.
     (3) The novel MHI technology was developed and successfully applied in the laboratory and large-scale experiments:
     a、The laboratory investigation indicated that the optimal sintering ignition conditions were the following:ignition temperature at760℃(preheating temperature of ignition airflow at330℃), ignition time at1.5min and unit ignition airflow at682Nm3/(h·m2). The sintering indexes under the above conditions were slightly better than those under the traditional ignition condition, the ignition energy consumption was only21.61%of CGI and the emission of SO2and NOx by MHI was reduced obviously.
     b、The optimized conditions for large-scale experiments were obtained as ignition temperature at700℃, ignition time at1.5min, unit ignition airflow at960Nm3/(h㈨m2). The vertical sintering velocity of23.48mm/min, tumbling strength of66.91%, yield of69.62%and utilization efficiency of1.453t/m2·h were acquired under the above conditions. It can be observed that the quality of the finished sinter was improved remarkably in the large-scale experiment. The ignition energy consumption was only25.08MJ/m2.
     (4) The consolidation behavior of finished sinters by MHI sintering was found out. It was demonstrated that there was more hematite in the middle and upper sinter obtained from MHI, calcium ferrite was well developed and widely distributed as the ignition airflow of MHI had higher O2content (nearly21%) while8~9%of CGI. Because of it, the strength of finished sinters by MHI sintering was higher to CGI. The quantity of hematite was increased with increasing O2content of ignition airflow, while that of magnetite decreased. In addition, the combustion of coke breeze was enhanced and the liquid-phase of calcium ferrite was increased resulting in a greater corrosion of the minerals. Calcium ferrite was considered as the main binding phase exhibiting an acicular and foliated appearance, which was well combined and distributed among the hematite and magnetite grains.
     (5) The industrialized MHI system was designed preliminarily. And it was estimated that the construction costs of each ignition and auxiliary unit were42million and the benefit was7.69million each year. As a result, the estimated investment recovery time was about5.46years. The industrialization of this novel technology was proved to be feasible after assessing the technology, economic benefit and social benefit.
引文
[1]傅菊英,姜涛,朱德庆.烧结球团[M].长沙:中南工业大学出版社,1996.185.
    [2]Dawson P. R. Recent Developments in Iron Ore Sintering New Development for Sintering [J]. Ironmaking and Steelmaking.1993,2:135-136.
    [3]Kowaldki W., Kersting K., Werner P. The Influence of Sinter Composition on Sintering Rate and Physical Quality of Sinter[C]. Ironmaking Conference Proceedings.1997,415-425.
    [4]王宏斌,张咏梅.降低烧结工序能耗的措施[J].钢铁,1999,1(34):1-14.
    [5]金德刚.安钢烧结厂的节能技术[J].河南冶金,1998,29(4):59-60.
    [6]Dawson P.R. Recent Developments in Iron Ore Sintering[J]. Ironmaking And Steelmaking,1993,(20):135-143.
    [7]Parish R. V. The Metallic Elements, Longman [M].1997.
    [8]张瑞年.浅谈烧结节能降耗的技术途径和措施[J].烧结球团,2003,28(3):18-20.
    [9]杨世农,梁迪超.铁矿石烧结生产节能技术[C].北京:中国金属学会、冶金部能源办,1991,36.
    [10]Wang S, Gao W, Kong L. Formation Mechanism of Silicoferrite of Calcium and Aluminum in Sintering Process [J]. Ironmaking and Steelmaking.1998: 296-301.
    [11]潘建.铁矿烧结烟气减量排放基础理论与工艺研究[D].中南大学,2007.
    [12]D.R. Anderson., Raymond Fisher. Sources of Dioxins in the United Kingdom: the Steel Industry and other Sources [J]. Chemosphere,2002, (46):371-381.
    [13]Environmental Protection Agency(UBA). Comments on the Draft Dutch Notes on Best Available Techniques for Pollution Prevention and Control in the Production of Primary Iron and Steel[R]. Berlin:Environmental Protection Agency of Germany,1997.
    [14]Suzuki K, Kasai E, Aono T. De novo formation characteristics of dioxins in the dry zone of an iron ore sintering bed[J]. Chemosphere,2004 (54):97-104.
    [15]唐先觉.我国烧结工业现状及面临的问题[J].烧结球团,1995,20(6):1-6.
    [16]Kasai E. Influence of properties of fluxing materials on the flow of melt formed in the sintering process [J]. ISIJ International,2000,40(9):857-862.
    [17]Hsieh L.H., Whiteman J.A. Effect of raw material composition on the mineral phases in the lime-fluxed iron ore sinter [J]. ISIJ International,1993,133(4): 62-73.
    [18]唐先觉.我国烧结能耗状况及节能途径[J].烧结球团,1998,23(2):1-5.
    [19]孔令坛.我国炼铁原料技术的进步和展望[J].炼铁,2002,21(1 0):20-23.
    [20]Loo C.E., Wan K.T., Howes V.R. Mechanical properties of natural and synthetic mineral phases in sinters having varying reduction degradation indices[J]. Ironmaking and Steelmaking,1998,25(6):279-285.
    [21]Gunther Straka. Experiment and Study on Effects of Different Basicity and Contents of MgO and SiO2 in Sinter [J]. ISIJ Inter,1998,38(7):457-462.
    [22]胡志清,李冰.降低烧结工序能耗实践与探讨[C].第五届全国大高炉炼铁学术年会,2004,103-106.
    [23]冶飞.降低八钢烧结工序能耗的实践[C].2012年度全国烧结球团技术交流年会论文集,2002,16-20.
    [24]Satskii V.A., Tarasov V.P., LNabona V. Results of Operating the Bell Charging Apparatus with Delivery of Part of the Coke into the Axial Zone of the Top[J]. Coke and Ironmaking congress,2001,31(11):1-5.
    [25]Vurunov I.F. Ecological Problems of Ironmaking[C]. Proceeding of the Fourth European Coke and Ironmaking Congress,2001,31(11):6-10.
    [26]Bristow N.J, Waters A.G. Trans. Inst. Min. Metal,1991,100:1-10.
    [27]Jiang Tao, Fan Zhen-yu, Zhang Yuan-bo Zhang, LI Guang-hui, FAN Xiao-hui. A Simulation Study on Flue Gas Circulation Sintering (FGCS) for Iron Ores[C]. And International Symposium on High-Temperature Metallurgical Processing. TMS (The Minerals, Metals & Materials Society),2011,33-40.
    [28]Zhang Helei, Rao Mingjun, Fan Zhenyu, Zhang Yuanbo, Li Guanghui, Jiang Tao. Effects of Circulated Flue Gas Sintering on the Iron Ores Sintering[J]. ISIJ international,2012,52(12):2139-2144.
    [29]王中林.降低烧结工序能耗的研讨[J].节能环保,2004,11:42-44.
    [30]曾永福.多缝式烧嘴点火器在攀钢烧结生产中的应用[J].钢铁钒钛,1994,15(4):56-60.
    [31]文振国,张永忠,贾彦忠.马钢一铁总厂降低烧结工序能耗的措施与实践[J].安徽冶金科技职业学院学报,2004,14(2):6-8.
    [32]Jin YongLong, Zhang JunHong, Xu NanPing. Thermal Measurement of Linear Burner Ignition Furnace and Double-Sloping Girdle Burner Ignition Furnace [J]. Journal of Iron and Steel Research,2005,17(3):18.
    [33]Antonov V.V., Ochinnikov N.A., et al. Heat operation of the sintering machine ignition device with burner on front end wall [J]. Stal,2004,9:4.
    [34]金永龙,徐南平,邬式英,陈同庆,成正福,钱家璋.烧结机综合节能途径的探讨[J].冶金能源,1998,17(6):12-15.
    [35]马巧玲,董文萃.带式抽风烧结机点火炉烧嘴技术改进[J].城市建设理论研究,2013,(13):1-4.
    [36]Jin Yonglong, Zhang Junhong, Xu Nanping. The Status and Important Purport of Multi Energy Saving and Environmental Protection in Sintering Process[J]. Energy for Metallurgical Industry,2002.21(4):12.
    [37]孙文东.降低武钢烧结工序能耗的实践[J].烧结球团,2003,28(3):15-19.
    [38]张军红,徐南平,谢安国.烧结过程降低固体燃耗途径的探讨[J].冶金能源,2002,21(1):25-27.
    [39]戴保才,邢建民.强化管理加速技改促进节能降耗[J].河南冶金,1994,10(1):36-39.
    [40]陈同庆.宝钢烧结生产的节能技术[J].中国冶金,1998,(2):37-40.
    [41]Loo, Chin Eng; Tame, Nigel; Penny, Gareth Carlson. Effect of iron ores and sintering conditions on flame front properties [J]. ISIJ International,2012,52(6): 967-976.
    [42]Silva D.S., Da S., Rita V.G., De A.V., Seabra D. M., Rossana B.M., Pablo J.S.. Model for determining loss on ignition iron ore carajas[C]. ICSTI 2012 Including Proceedings from the 42nd Ironmaking and Raw Materials Seminar, and the 13th Brazilian Symp. on Iron Ore,2012,4:2394-2397.
    [43]宋国良,傅志华,张全.烧结机增产节能的途径[J].钢铁研究学报,2000,12(6):61-64.
    [44]叶匡吾.我国烧结能耗现状及对策[J].烧结球团,1997,22(7):11-12.
    [45]宋庆斌.关于降低烧结点火能耗的探讨[J].烧结球团,1992,2:48-50.
    [46]桓庶宝,肖学勇,陈雪峰,胡洪天.攀钢烧结低负压点火技术[J].烧结球团,2002,27(2):57-59.
    [47]胡兵,黄柱成,姜涛,张元波.铁矿石富氧烧结点火试验研究[J].钢铁研究学报,2010,12,12-17.
    [48]李怀林,史郑斌.烧结富氧点火生产实践[J].烧结球团,1999,24(4):46-47.
    [49]Zhou Hao, Zhao Jiapei, Loo Chineng, Ellis Benjamin George, Cen Ke Fa. Model predictions of important bed and gas properties during iron ore sintering[J]. ISIJ International,2012,52(12):2168-2176.
    [50]高春贵.浅谈烧结点火器与节能途径[J].包钢科技,2002,28(3):89-91.
    [51]Binner J.G., Cross T.E. Applications for microwave heating in ceramic sintering: challenges and opportunities[J]. Journal of Hard Materials,1993,4(4): 177-185.
    [52]金钦汉,戴树善,黄卡玛.微波化学[M].北京:科学出版社,1999.282.
    [53]Idalia Gomez, Maryangel Hernandez, Juan Aguilar, Moises Hinojosa. Comparative study of microwave and conventional processing of MgAl2O4-based materials[J]. Ceramics International,2004,30:893-900.
    [54]朱文玄,吴一平,徐正达,陈建国,徐镜廉,潘晓霞.微波烧结技术及其进展[J].材料科学与工程,1998,16(2):61-64.
    [55]E. Breval, J.P. Cheng, D.K. Agrawal, P. Gigl, M. Dennis, R. Roy, A.J. Papworth. Comparison between microwave and conventional sintering of WC/Co composites[J]. Materials Science and Engineering A,2005,391:285-295.
    [56]Haque, K.E.. Microwave energy for mineral treatment pro-cesses-a brief review[J]. International Journal of Mineral Processing,1999,57:1-24.
    [57]Link G., Thumm M., Faubel W., Heissler St., Weidler P.G. Investigation of selective microwave heating by use of Raman spectroscopy Ceramic Transactions[J]. Processing and Properties of Advanced Ceramics and Composites II,2010,220:27-34.
    [58]Chien Yih Tsay, Kuo Shung Liu, I Nan Lin. Microwave sintering of (Bi0.75Cai.2Y1.05)(V0.6Fe4.4)O12 microwave magnetic materials[J]. Journalof the European Ceramic Society,2004,24:1057-1061.
    [59]S.A. Borkar, S.R. Dharwadkar. Effect of microwave processing on polymorphic transformation of TiO2[J]. Ceramics International,2004,30:509-514.
    [60]Ipsita Roy, Munishwar N. Gupta. Non-thermal effects of microwaves on protease-catalyzed esterification and transesterification[J]. Tetrahedron,2003, 59:5431-5436.
    [61]Santos T., Valente M.A., Monteiro J., Sousa J., Costa L.C. Electromagnetic and thermal history during microwave heating[J]. Applied Thermal Engineering, 2011,31(16):3255-3261.
    [62]Kashimura K., Suzuki S., Hayashi M., Mitani T., Shinohara N., Nagata K.. Surface Plasmon like modes of graphite powder compact in microwave heating[J]. Journal of Applied Physics,2012,112(3):034905-034910.
    [63]袁明亮,胡岳华.矿物材料化学加工与合成的研究现状和发展方向[J].现在 化工,2004,24(1):12-15.
    [64]曲世鸣,张明.微波混合加热技术及应用前景[J].物理,1999,28(2):117-119.
    [65]牟群英,李贤军.微波加热技术的应用与研究进展[J].物理学和高新技术,2004,33(6):438-442.
    [66]董吉溪,张文敏.用微波辐射制备磷酸钴纳米粒子[J].化学世界,1996,37(2):68-71.
    [67]胡征,王喜章,吴强.多功能微波等离子体化学反应装置及其应用.化学通报,2001,(1):56-59.
    [68]Bykov Y.V., Rybakov K.I., Semenov V.E. Topical review. High-temperature microwave processing of materials[J]. Journal of Physics. D, Applied Physics 2001,34:55-75.
    [69]Chan T.V., Chen C.T. Understanding Microwave Heating Cavities Archtech[M]. 2000, London.
    [70]蔡卫权,李会泉,张懿.微波技术在冶金中的应用[J].过程工程学报,2005,5(2):228-232.
    [71]Kingman S.W., Vorster W., Rowson N.A. The Influence of Mineralogy on Microwave Assisted Grinding[J]. Miner. Eng.,2000,13(3):313-327.
    [72]Kingman S.W., Rowson N.A. The Effect of Microwave Radiation on the Magnetic Properties of Minerals[J]. J. Microwave Power Electromagn. Energy, 2003,35(2):141-150.
    [73]Whittles D., Kingman S.W, Reddish D. Application of Numerical Modelling for Prediction of the Influence of Power Density on Microwave-assisted Breakage[J]. Int. J. Miner. Process.,2003,68(1-4):71-91.
    [74]范先锋,N-A·罗森.微波能在钛铁矿选矿中的应用[J].国外金属矿选矿1992,2:2-7.
    [75]陈艳,白晨光,何宜柱,吉川异,谷口尚司.微波协助碾磨高钛高炉渣[J].钢铁研究学报,2006,18(8):5-8.
    [76]Huang J.H, Rowson N.A. An Application of Microwave Pre-oxidation in Improving Gold Recovery of a Refractory Gold Ore[J]. Rare Metals,2000, 19(3):161-171.
    [77]Havlik T., Popovicova M., Ukasik M.. Use of microwave energy for chalcopyrite leaching[J]. Metall,2002,56 (3):131-134.
    [78]Hua Y., Lin Z., Yan Z.. Application of microwave irradi-ation to quick leach of zinc silicate ore[J]. Minerals Engineering,2002,15:451-456.
    [79]谷晋川,刘亚川,谢扩军.难选冶金矿微波预处理研究[J].有色金属,2003,55(2):55-56.
    [80]Kingman S.W., Rowson N.A. Microwave Treatment of Minerals-A Review[J]. Miner.Eng.,1998,11(11):1083-1086.
    [81]Melamud S.G., Yurev B.P, Kolesnik V.G. Oppertuntiy for Utilizing the Energy of Microwave Fields for Drying the Iron-ore Concentrates [J]. Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya,2001,12:29.
    [82]Pickles C.A., Xia D.K. Microwave drying of ferric oxide pellets[C]. Proceedings-Ironmaking conference,1997,329.
    [83]Peinsitt T., Kuchar F., Hartlieb P., Moser P., Kargl H., Restner U., Sifferlinger N.A.. Microwave heating of dry and water saturated basalt, granite and sandstone[J]. International Journal of Mining and Mineral Engineering,2010, 2(1):18-29.
    [84]张世敏,彭金辉,张利波.微波加热扩大试验装置及硫酸铜的干燥[J].有色金属,2003,55(2):40-42.
    [85]樊希安,彭金辉,秦文峰.微波辐射Mg(OH)2制备轻质活性MgO新工艺[J].轻金属,2003,7:42-44.
    [86]陈津,刘浏,曾加庆,任瑞刚,刘金营.微波加热还原含碳铁矿粉试验研究[J].钢铁,2004,39(6):1-5.
    [87]陈津,刘浏,曾加庆,任瑞刚,刘金营.微波加热含碳铁矿粉还原矿相结构研究[J].电子显微学报,2005,24(2):114-119.
    [88]梁波,宁平,马晓利.微波辐照解毒铬渣的稳定性研究[J].有色金属,2003,55:95-98.
    [89]Ishizaki Kotaro, Nagata Kazuhiro, Hayashi Tesuro. Production of Pig Iron from Magnetite Ore-coal Composite Pellets by Microwave Heating[J]. ISIJ International,2006,46, (10):1403.
    [90]Chen Jin, Shi Xuehong, Zhang Meng, Zhao Jing. Gas Ionization During Carbothermal Reduction in Microwave Field and Its Effect[J]. Journal of Iron and Steel Research International,2009.16(5):12-16,31.
    [91]蔡杰.陶瓷材料微波烧结研究.真空电子技术,1994,4:52-56.
    [92]Vlack L.H.V. Geometry of Microstructure [M]. Proc.Symp. On Microstructure of ceramics Materials,1964,12-22.
    [93]Bristow N.J., Loo C.E. Sintering Properties of iron ore mixes containing titanium [J]. ISIJ International,1997,32(7):819.
    [94]Luo S.D., Guan C.L., Yang Y.F., Schaffer G.B., Qian M. Microwave Heating, Isothermal Sintering, and Mechanical Properties of Powder Metallurgy Titanium and Titanium Alloys[J]. Metallurgical and Materials Transactions A, 2013,44(4):1842-1851.
    [95]Ebadzadeh T. Effect of mechanical activation and microwave heating on synthesis and sintering of nano-structured mullite[J]. Journal of Alloys and Compounds,2010,489(1):125-129.
    [96]谢志鹏,李建保,杨金龙,黄勇.高技术陶瓷的微波快速烧结研究[J].应用基础与工程科学学报1994,2(2-3):132-137.
    [97]任伟,白晨光,邱贵宝.磁铁精矿的无碳烧结[J].重庆大学学报(自然科学版),2006,29(8):116-118.
    [98]Clark D.E., Folz D.C., West J.K.. Processing materials with microwave energy[J]. Materials Science & Engineering. A,2000,287:153-158.
    [99]Cumbane A.J.. Microwave processing of Minerals[D], PhD thesis, University of Nottingham, Nottingham, UK,2003,110-115.
    [100]Elsamak G.G., Oztas N.A., Yurum Y. Chemical desulphur-isation of Turkish Cayirhan lignite with HI using microwave and thermal energy[J]. Fuel,2003, 82:531-537.
    [101]Antonov V.V., Ovchinnikov N.A., Dmitriev E.S., Orobtsev Yu.V., Dymchenko E.N., Omel'chenko Yu.V.. Heat operation of the sintering machine ignition device with burner on front end wall[J]. Stal',2004,9:4-6.
    [102]Mao Xiaoming, Zhang Yuanbo, Huang Zhucheng, Li Guanghui, Fan Xiaohui, Jiang Tao. A Pilot-scale Investigation on Microwave Heated Ignition in Iron Ore Sintering[C]. Proceedings of the 5th International Congress on the Science and Technology of Ironmaking,2009,152-156.
    [103]Mao Xiaoming, Zhang Yuanbo, Huang Zhucheng, Li Guanghui, Jiang Tao. Thermal equilibrium calculation and application of microwave-heated ignition (MHI) for iron ore sintering[C].139th Annual Meeting and Exhibition. Supplemental Proceedings,2010,355-362.
    [104]Zhucheng Huang, Lingyun Yi, Tao Jiang, Yuanbo Zhang. Hot Airflow Ignition with Microwave Heating for Iron Ore Sintering[J]. ISIJ International,2012, 52(10):1750-1756.
    [105]彭坤,张永亮,鲍家全,贾海宁.南通宝钢烧结富氧点火生产实践[C]. 2011全国中小高炉炼铁学术年会,2011,312-315.
    [106]鲁健.宝钢降低烧结工序能耗的措施[C].第七届中国钢铁年会论文集,2009,645-659.
    [107]袁兵,周茂军,马洛文,薛红光.宝钢烧结低能耗低排放的技术进步[C].第八届中国钢铁年会,2011,456-462.
    [108]黄亚蕾,黄柱成,毛晓明,彭虎,姜涛.铁矿石微波热风烧结点火研究[J],矿冶工程,2008,28(5),64-67.
    [109]周兴德,袁文彬,李上峙,邓庆球译.铁矿石烧结点火过程[M].冶金工业部烧结球团情报网.
    [110]马洛文.宝钢2号烧结机生产的节能技术[J].宝钢技术;2002,(2):16-19.
    [111]成正福,李加福.宝钢1、2烧结工序能耗剖析[C].中国钢铁年会,2001,233-237.
    [112]黄亚蕾.微波热风烧结点火技术及机理研究[D].中南大学,2008.
    [113]张松寿.工程燃烧学[M].上海:上海交通大学出版社,1987:261-265.
    [114]韩昭沧.燃料及燃烧[M].北京:冶金工业出版社,1994,29-32.
    [115]顾恒祥,张青藩,王洪铭,金如山.燃料与燃烧[M].西安:西北工业大学出版社,1993,25-28.
    [116]韩旭里,秦宣云.高等数学教程[M].长沙:中南大学出版社,2000.284-286.
    [117]张平民.工科大学化学[M].长沙:湖南教育出版社,2002.178.
    [118]冶金工业部长沙黑色冶金矿山设计研究院.烧结设计手册[M].北京:冶金工业出版社,1990.205.
    [119]江源.铁矿石烧结中燃料合理分布的研究[D].长沙:中南大学,2006.
    [120]黄柱成,江源,毛晓明,许斌,郭宇峰,姜涛.铁矿烧结中燃料合理分布研究[J].中南大学学报,2006,37(5):886-890.
    [121]Gesche R., Kuhn, S., Andrei, C.. Plasma ignition in a quarter-wavelength microwave slot resonator[J]. Journal of Physics D:Applied Physics,2008, 41(19):194003-194007.
    [122]Vavriv D.M., Kanilo P.M., Kazantsev V.I., Rasyuk, N.I., Schunemann K.. Microwave plasma technology of coal ignition and combustion[C]. IEEE Conference Record Abstracts.30th International Conference on Plasma Science (Cat. No.03CH37470),2003,448.
    [123]Pipa A.V., Andrasch M., Rackow K., Ehlbeck J., Weltmann K.D.. Observation of microwave volume plasma ignition in ambient air[J]. Plasma Sources, Science and Technology,2012,21 (3):035009-035017.
    [124]陈耀铭.人造矿矿相学[M].长沙:中南大学教材科,2002.92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700