AlInGaN半导体薄膜的MOVPE生长和光电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AlxInyGa1-x-yN四元化合物半导体材料,通过调节Al和In的组分不但可以实现禁带宽度和晶格常数的独立调节,还可以与GaN缓冲层的热外延系数相匹配,更兼具AlxGa1-xN材料的禁带宽度大和InxGa1-xN材料对位错不敏感,发光效率高等优点,从而使AlxInyGa1-x-yN半导体薄膜成为高效发光二极管的研究热点并广泛受到关注。本文主要针对AlxInyGa1-x-yN四元化合物半导体材料研究的热点问题,利用MOVPE技术通过调节金属Al束流和生长温度,生长禁带宽度大,高晶体质量的AlxInyGa1-x-yN四元化合物,并通过调节生长参数成功制备了与GaN缓冲层晶格匹配的AlxInyGa1-x-yN材料,在此基础上对AlxInyGa1-x-yN四元化合物的相分离、发光机制、电-声子耦合进行了研究,制备了AlxInyGa1-x-yN基MSM紫外探测器。本论文的具体研究内容如下:
     在c轴蓝宝石衬底上利用MOVPE设备,通过调节金属Al束流生长了不同禁带宽度的高质量的AlxInyGa1-x-yN四元化合物半导体,并且在只调节金属Al束流的情况下,成功生长了与GaN缓冲层晶格匹配的AlxInyGa1-x-yN。通过光学、电学等一系列表征手段研究了金属Al束流对AlxInyGa1-x-yN四元化合物薄膜光电性质的影响。内量子效率测试结果表明,AlxInyGa1-x-yN四元化合物的内量子效率高于In组分近似的InxGa1-xN的内量子效率,也高于GaN缓冲层的内量子效率。
     在调节金属Al束流生长AlxInyGa1-x-yN的基础上,将生长温度从850oC下降到830oC,生长了AlxInyGa1-x-yN四元化合物半导体。通过光学、电学等一系列表征手段研究了生长温度对AlxInyGa1-x-yN四元化合物薄膜光电性质的影响。降低生长温度后,样品的带边发光峰强度明显提高,但是材料的晶体质量下降并且表面粗糙度上升,这是由于Al原子的迁移率低、表面粘附系数高,较低的生长温度使其不能到达晶格中适当位置而在表面形成岛状生长。
     对生长的不同Al组分的AlxInyGa1-x-yN四元化合物材料的相分离进行了研究。在一定组分下,Al在AlxInyGa1-x-yN四元化合物中起到相分离“催化剂”的作用,在Al组分低于14%时,材料中没有发生明显的相分离现象,在Al为18%时相分离现象明显,XRD测试表明材料中存在富In区和富Al区。
     对所生长的不同Al组分的AlxInyGa1-x-yN四元化合物材料的发光机制进行了研究,并分析了Al原子的注入对发光机制的影响。光致发光谱测试结果表明:在一定组分下,我们所生长的AlxInyGa1-x-yN四元化合物的发光强度随禁带宽度的增大而增强,即我们获得了禁带宽度大,发光强度高的AlxInyGa1-x-yN四元化合物材料。变温发光谱表明AlxInyGa1-x-yN四元化合物带边发光峰位随温度变化呈现“S”型,说明样品中存在载流子局域机制。结合相分离分析表明:由于AlN、InN晶格常数和键能差距很大,在AlxInyGa1-x-yN中只有在Al或In组分很小的时候材料中才存在固熔区。一定组分下,AlxInyGa1-x-yN四元化合物材料随Al组分的升高,材料中组分不均匀,相分离的趋势增强。由此形成富In的In纳米簇,并造成材料能带变化,在势能最低处形成局域能级,局域能级将激子束缚住,从而避免了位错等非辐射中心的捕获,并且提高相邻激子波函数的重叠几率,激子波函数重叠几率的提高意味着辐射复合几率的提高,因此材料对于位错不敏感,在禁带宽度增大,位错密度提高后,材料仍有很高的发光强度。拉曼测试结果验证了以上结论,拉曼散射谱中存在In纳米簇声子峰,并且In纳米簇的声子峰强度随Al组分的升高而增强。
     对所生长的AlxInyGa1-x-yN四元化合物材料中电-声子之间相互作用进行了研究,并对所生长的InxGa1-xN和AlxInyGa1-x-yN材料声子发光峰的黄昆方程进行了计算,分别求出了In0.03Ga0.97N和Al0.15In0.03Ga0.82N的黄昆因子。计算结果表明:Al0.15In0.03Ga0.82N的黄昆因子大于相同In组分In0.03Ga0.97N的黄昆因子,并且这两种材料的黄昆因子也都大于非掺GaN体材料的黄昆因子。这种情况说明,GaN,InxGa1-xN, AlxInyGa1-x-yN三种材料中,随材料体内无序程度的加剧,除了受激载流子的局域作用加强之外,声子的局域振动也加强,这将导致电-声子之间的作用逐渐加强,这种现象体现在光致发光谱中主要是发光峰向短波长方向扩展(声子伴线的出现),以及0级声子峰和声子伴线发光强度增强。
     在Al0.40In0.02Ga0.58N外延膜上通过标准光刻工艺,制备了Al0.40In0.02Ga0.58N金属-半导体-金属(MSM)结构紫外探测器。并对探测器的暗电流和光谱响应特性进行了深入分析。I-V测量表明器件展现明显的肖特基二极管特性,势垒高度为0.98eV。在10V偏压下探测器的截止波长为310nm峰值响应为0.065A/W。并且在10V偏压下,探测器的可见-紫外比(R295nm/R450nm)接近两个数量级。探测器在360nm处的响应来源于GaN,这表明探测器在紫外波段可作为双波段探测器。
AlxInyGa1-x-yN quaternary alloys have attracted considerable attention as ultraviolet (UV) light-emitting material. By varying aluminum and indium compositions, the band gap and lattice constant can be independently changed, which can be helpful to reduce dislocation density as well as piezoelectric field. Moreover, it provides much better insight into the growth process, in particular it allows to modulate the thermal expansion coefficient of AlxInyGa1-x-yN for matching better with GaN than its ternary counterparts, which is an important advantage in epitaxial growth. According to the present research hotspots and difficulties on AlxInyGa1-x-yN quaternary alloys, we pay more attention to the MOVPE growth of high qulity and large bandgap AlxInyGa1-x-yN quaternary alloys, through adjusting the TMAl flow rate and growth temperature. The phase separation, luminous mechanism and electron-phonon interaction of AlxInyGa1-x-yN quaternary alloys were researched in details. The details are as follows:
     AlxInyGa1-x-yN quaternary alloys have been grown through MOVPE on sapphire by adjusting the TMAl flow rate. Furthermore the AlxInyGa1-x-yN quaternary alloys with lattice constant match with GaN buffer have been achieved through only adjusting the TMAl flow rate. The effect of the TMAl flow rate on the optical and electrical properties of AlxInyGa1-x-yN quaternary alloys were researched. The measurement result shown the Internal quantum efficiency of AlxInyGa1-x-yN quaternary alloys was higher than InxGa1-xN and GaN.
     AlxInyGa1-x-yN quaternary alloys have been grown through MOVPE on sapphire by adjusting the growth temperature. The effect of the growth temperature on the optical and electrical properties of AlxInyGa1-x-yN quaternary alloys were researched. As the growth temperature reduced, the emission peak intensity of AlxInyGa1-x-yN quaternary alloys enhanced obviously, while the surface RMS of increased suddenly. We believed that this is due to the low migration and high degree of surface adhesion of Al atoms, when the temperature reduce, the Al atoms can’t reach the proper position in lattice, and then formed the island growth in surface.
     The phase separation of AlxInyGa1-x-yN quaternary alloys were researched in details. n. For sample1, with a lower Al content (14%), there is no obvious phase separation observed. While for sample2, as the Al content increasing to18%, phase separation was formed, which might result in the formation of In-rich clusters. The simulation result by ab initio method also shows similar results. Indium content was kept at3%in that work, when the Al content increasing from8%to15%, there is no phase separation, as the Al content increasing from15%to20%, indium-rich regions were formed in the film, which indicated the occurrence phase separation with Al content increasing. The XRD results of the two samples are consistent with the previous calculation results, which demonstrate that with a comparable In content, the Al atoms play as a “catalyst” to the phase separation process in AlxInyGa1-x-yN quaternary alloys.
     Luminous mechanism of AlxInyGa1-x-yN quaternary alloys were researched in details. Strong phase separation in the AlxInyGa1-x-yN quaternary alloys was observed as the Al content increased, especially In-rich phase segregation. The situation here is similar to the existence of In nanoclusters in InGaN based semiconductors. At some small regions, the In-rich phase formation leads to the localized states at potential minima, which might confine the excited carriers. The localized carriers are beneficial for radiative recombination, causing the emission intensity to increase. In AlxInyGa1-x-yN film, it was reported that above a certain critical content, the Al atoms act as the “catalyst” for the phase separation process, and the In-In affinity changes increased drastically. Based on analysis above, it can be speculated that enhanced emission intensity of sample2is induced from In-cluster in the epilayer. In this case, the excitons can be localized in potential wells formed by In-nanoclusters, which enhance the overlap of neighboring excitonic wave function and large wave function overlap results in high recombination probability. Due to the existence of a large number of In-clusters in the AlxInyGa1-x-yN alloys with high Al content, therefore it can overcome the influence of a large number of defects and provide the brighter emission than that of AlxInyGa1-x-yN alloy with lower Al content.
     Electron-phonon interaction of AlxInyGa1-x-yN quaternary alloys were researched in details. The Huang-Rhys factor of In0.03Ga0.97N and Al0.15In0.03Ga0.82N were caculated. It can be draw that the alloy disorder has an essiontial role on the exciton-phonon interaction in AlxInyGa1-x-yN quaternary alloy. With the increasing of Al content the alloy disorder was enhanced, result in the increase both carrier localization and phonon confine which increase the ratio of exciton-phonon interaction. These sitiation reflected in the PL spectra was both the emission intensity increase of ZPL and PSB.
     AlInGaN film was prepared by by metalorganic vapor phase epitaxy (MOVPE). The metal semiconductor metal photodetector based on the Al0.4In0.023Ga57.7N film exhibits a. The peak responsivity of the photodetector was around290nm and a very sharp cutoff wavelenghth was at a wavelength of about310nm corresponding to the Transmission of the AlInGaN.
引文
[1] S. F. Chichibu, T. Azuhata, H. Okumura, et al. Localized exciton dynamics inInGaN quantum well structures[J]. Applied surface science.2002,190(1-4):330-338.
    [2] I. K. Park, M. K. Kwon, S. H. Baek, et al. Enhancement of phase separationin the InGaN layer for self-assembled In-rich quantum dots[J]. AppliedPhysics Letters.2005,87(6):061906.
    [3] I. K. Park, M. K. Kwon, S. B. Seo, et al. Ultraviolet light-emitting diodeswith self-assembled InGaN quantum dots[J]. Applied Physics Letters.2007,90(11):111116.
    [4] C. J. Humphreys, Does In form In-rich clusters in InGaN quantum well[J]?Philosophical Magazine.2007,87(13):1971-1982.
    [5]潘尧波. III族氮化物半导体材料的MOCVD生长及特性研究[D].北京大学博士研究生学位论文,2007:4.
    [6] K. P. O’Donnell, X. Chen, Temperature dependence of semiconductor bandgaps[J]. Applied Physics Letters.1991,58(25):2924-2926.
    [7] J. Wu, W. Walukiewicz, K. M. Yu, et al. Unusual properties of thefundamental band gap of InN[J]. Applied Physics Letters.2002,80(21):3967-3969.
    [8] O. Ambacher, Growth and applications of Group III nitrides[J]. Journal ofphysics D-Applied Physics.1998,31(20):2653-2710.
    [9] E. F. Schubert. Light-Emitting Diodes[M]. Troy, New York,2006,223.
    [10] M. Razeghi, A. Rogalski, Semiconductor ultraviolet detectors. Journal ofApplied Physics[J].1996,79(10):7433-7473.
    [11] S. Nakamura, The role of structural imperfections in InGaN-Based bluelight-emitting diodes and laser diodes[J]. Science.1998,281(5379):956-961.
    [12] S. Nakamura, T. Mukai, M. Senoh, High-Brightness InGaN/AlGaNDouble-heterostructure blue-green-light-emitting diodes[J]. Journal ofApplied Physics.1994,76(12):8189-8191.
    [13] J. Wu, W. Walukiewicz, W. Shan, et al. Temperature dependence of thefundamental band gap of InN[J]. Applied Physics Letters.2003,94(7):3967-3969.
    [14] S. Nakamura, GaN growth using GaN buffer layer. Japanese journal ofapplied physics[J].1991,30(10A): L1705-L1707.
    [15] S. Nakamura, T. Mukai, M. Senoh, et al. Thermal annealing effects on p-typeMg-doped GaN films[J]. Japanese Journal of applied physics.1992,31(2B):L139-L142.
    [16] M. H. Crawford, LEDs for Solid-State Lighting: Performance Challenges andRecent Advances[J]. IEEE Journal of selected topics in quantum electronics.2009,15(4):1028-1040.
    [17] H. Hirayama. Developing the world’s highest output in deep-UVlight-emitting diode technology[J/OL]. Frontlines.2012,7(1):1.
    [2012-01-20]. http://www.rikenresearch.riken.jp/eng/frontline/6923.
    [18] H. Hirayama. Recent Progress of220-280nm AlGaN based deep-UVLEDs[C]. conference on light-Emitting Diodes-Materials, Devices, andapplications for Solid States Lighting XIV. San Francisco: Proceeding ofSPIE,2010:7617.
    [19] S. F. ChiChibu, A. C. Abare, M. S. Minsky, et al. Effective of bandgapinhomogeneity and piezoelectric field in InGaN/GaN multiquantum wellstructures [J]. Applied Physics Letters.1998,73(14):2006-2008.
    [20] M. A. Khan, R. A. Skogman, G. M. Van Hove, et al. Photoluminescencecharacteristics of AlGaN-GaN-AlGaN quantum wells. Applied PhysicsLetters[J].1990,56(13):1257-1259.
    [21] J. Han, M. H. Crawford, R. J. Shul, et al. AlGaN/GaN quantum wellultraviolet light emitting diodes[J]. Applied Physics Letters.1998,73(12):1688-1690.
    [22] T. Nishida, N. Kobayashi,346nm emission from AlGaN multi-quantum-welllight emitting diodes [J]. Physica Status Solidi a–Applied Research[J].1999,176(1):45-48.
    [23] N. Otsuka, Room temperature339nm emission fromAl0.13Ga0.87N/Al0.10Ga0.90N double heterostucture light-emitting diode onsapphire substrate [J]. Japanese journal of applied physics.2000,39(5B):L445-L448.
    [24] M. Razeghi, M. Henini, Optoelectronic device: III-nitrides[M]. Oxford:Elsevier.2004:1-9.
    [25] T. Nishida, H. Saito, K. Kumakura, et al. Selectively enhanced Mgincorporation into AlGaN barrier layer of strained layer superlattice[C].Proceeding of International workshop on Nitride Semiconductors (IWN2000), IPAP conference Series2000,1:725-727.
    [26] H. Amano, M. kito, M. Hiramatsu, et al. P-type conduction in Mg-doped GaNtreated with low-energy electron beam irradiation (LEEBI). Japanese Journalof applied physics.1989,28(12): L2112-L2114.
    [27] S. Nakamura, Y. Harada, M. Seno. Novel metalorganic chemical vapordeposition system for GaN growth[J]. Applied Physics Letters.1991,58(18):2021-2023.
    [28] Y. Ohba, A. Hatana. Growth of high–quality AlN and AlN/GaN/AlNheterostructure on sappire substrate[J]. Japanese Journal of applied physics.1996,35(8B): L1013-L1015.
    [29] Y. Ohba, R. Stato, K. Kaneko, et al. Two-dimensional growth of AlN and GaNon lattice-relaxed Al0.4Ga0.6N buffer layers prepared withhigh-temperature-grown AlN buffer on sappire substrates and fabrication ofmultiple-quantum-well structures[J]. Japanese Journal of applied physics.2001,40(12A): L1293-L1296.
    [30] T. Nishida, H. Saito, N. Kobayashi, et al. Efficient and high-powerAlGaN-based ultraviolet light-emitting diode grown on bulk GaN[J]. AppliedPhysics Letters.2001,79(6):711-712.
    [31] H. Hirayama, T. Yatabe, N. Nogochi, et al. Development of230-270nmAlGaN-Based Deep-UV LEDs[J]. Electronics and Communications in Japan.2010,93(3):748-756.
    [32] N. Otsuka, A. Tsujimura, Y. Hasegawa, et al.339nm deep-UV emission fromAl0.13Ga0.87N/Al0.10Ga0.90N double heterostructure light-emitting diode onsapphire substrate[C]. Proceedings of the international workshop on nitridesemiconductors. IPAP Conference series.2000.1:837-840.
    [33] M. F. Schubert. Overcoming the efficiency droop in GaInN Light-emittingdiodes and novel technologies for c-plane GaInN polarized emitters[D].Rensselaer Polytechnic Institute,2009:9.
    [34] O. Brandt, K. H. Ploog, Solid-state lighting: The benefit of disorder[J].Nature Materials.2006,5(10):769-770.
    [35] K. Motoki, T. Okahisa, N. Matsumoto, et al. Preparation of large freestandingGaN substrates by hydride vapor phase epitaxy using GaAs as a startingsubstrate[J]. Japanese journal of applied physics part2-letters.2001,40(2B):L140-L143.
    [36] Y. Ohba, R. Sato, Growth of AlN on sapphire substrates by using a thin AlNbuffer layer grown two-dimensionally at a very low V/III ratio[J].2000,221(1):258-261.
    [37] M. A. Khan, J. N. Kuzina, D. T. Olson, et al. GaN/AlN digital alloyshort-period superlattices by switched atomic layer metalorganic chemicalvapor deposition[J]. Applied Physics Letters.1993,65(25):3470-3472.
    [38] K. Balakrishnan, A. Bandoh, M. Iwaya, et al. Influence of high temperature inthe growth of low dislocation content AlN bridge layers on patterned6H-SiCsubstrates by metalorganic chemical vapor deposition[J]. Japanese Journal OfApplied Physics Part2-Letters Express Letters.2007,46(12-16): L307-L310.
    [39] A. D. Bykhovski, B. L. Gelmont, M. S. Shur, et al. Elastic strain relaxationand piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattice [J].Journal of Applied Physics.1997,81(9):6332-6338.
    [40] J. P. Zhang, H. M. Wang, M. E. Gaevski, et al. Crack-free thick AlGaN grownon sapphire using AlN/AlGaN superlattice for strain management [J].Applied Physics Letters.2002,80(19):3542-3544.
    [41] S. F. Chichibu, A. Uedono, T. Onuma, et al. Origin of defect-insensitiveemission probability in In-containing (Al, In, Ga)N alloy semiconductors[J].Nature Materials.2006,5:810-816.
    [42] T. Matsuoka, N. Yoshimoto, T. Sasaki, et al. Wide-gap semiconductor InGaNand InGaAlN grown by MOVPE[J]. Journal of Eletronic Materials.1992,21(2):157-163.
    [43] F. G. Mclntosh, K. S. Boutros, S. M. Bedair, et al. Growth and Characterationof AlInGaN quaternary alloys[J]. Applied Physics Letters.1996,68(40):40-42.
    [44] M. E. Aumer, S. F. Leboeuf, F. G. Mclntosh, et al. High optical qualityAlInGaN by metalorganic chemical vapor deposition[J]. Applied PhysicsLetters.1999,75(21):3315-3317.
    [45] J. Han, J. J. Figiel, G. A. Petersen, et al. Metal-Organic Vapor-Phase EpitaxialGrowth and Characterization of Quaternary AlGaInN [J]. Japanese Journal ofapplied physics.2000,39(4B):2372-2375.
    [46] J. Li, K. B. Nam, K. H. Kim, et al. Growth and optical properties ofInxAlyGa1-x-yN quaternary alloys[J]. Applied Physics Letters.2001,78(61):61-63.
    [47] H. Hirayama, A. Kinoshita, T. Yamabi, et al. Marked enhancement of320~360nm ultraviolet emission in quaternary InxAlyGa1-x-yN withIn-segregation effect [J]. Applied Physics Letters.2002,80(2):207-209.
    [48] C. Q. Chen, J. W. Yang, M. Y. Ryu, et al. Pulsed metalorganic chemical vapordeposition of quaternary AlInGaN layers and multiple quantum wells forultraviolet light emission [J]. Japanese Journal of applied physics.2002,41(4A):1924-1928.
    [49] Y. Liu, T. Egawa, H. Ishikawa, et al. High-quality quaternary AlInGaNepilayers on sapphire [J]. Physica Status Solidi A-Applications And MaterialsScience.2003,200(1):36-39.
    [50] Y. B. Pan, T. J. Yu, Z. J. Yang, et al. Influence of growth rate on structure andoptical properties of AlInGaN quaternary epilayers[J]. Journal Of CrystalGrowth.2007,298(SI):341-344.
    [51] N. X. Liu, J. X. Wang, J. C. Yan, et al. Characterization of quaternaryAlInGaN epilayers and polarization-reduced InGaN/AlInGaN MQW grownby MOCVD[J]. Journal of Semiconductors.2009,30(11):113003.
    [52] T. N. Oder, J. Li, J. Y. Lin, et al. Photoresponsivity of ultraviolet detectorsbased on InxAlyGa1-x-yN quaternary alloys [J]. Applied Physics Letters.2000,77(6):791-793.
    [53] J. P. Zhang, J. Yang, G. Simin, M. A. Khan, et al. Enhanced Luminescence inInGaN multiple quantum well with quaternary AlInGaN barriers [J]. AppliedPhysics Letters.2000,77(17):2668-2670.
    [54] S. H. Park, D. Ahn, J. W. Kim, et al. Optical gain in InGaN/InGaAlN quantumwell structures with zero internal field [J]. Applied Physics Letters.2008,92(17):171115.
    [55] H. Hirayama, Y. Enomoto, A. Kinoshita, et al. Room-temperature intense320nm band ultraviolet emission from quaternary InAlGaN-basedmultiple-quantum wells[J]. Applied Physics Letters.2002,80(9):1589-1591.
    [56] T. Onuma, S. Keller, S. P. Denbaars, S. F. Chichibu, et al. Recombinationdynamics of a268nm emission peak inAl0.53In0.11Ga0.36N/Al0.58In0.02Ga0.40N multiple quatum wells[J]. AppliedPhysics Letters.2006,80(3):111912.
    [57] Y. He, Y. K. Song, A. V. Nurmikko, et al. Optically pumped ultravioletAlGaInN quantum well laser at340nm wavelength [J]. Applied PhysicsLetters.2004,84(4):463-464.
    [58] C. H. Kuo, C. W. Kuo, C. M. Kuo, et al. Nitride-based light-emitting diodeswith p-AlInGaN surface layers prepared at various temperature[J]. AppliedPhysics Letters.2006,89(19):191112.
    [59] T. Lim, R. Aidam, P. Waltereit, et al. GaN-Based submicrometer HEMTs withlattice-matched InAlGaN barrier grown by MBE[J]. IEEE Electron deviceletters,2010,31(7):671-673.
    [60] B. R. Yeom, R. Navamathavan, J. H. Park, Growth behavior of GaN epilayerson Si(111) grown by GaN nanowires assisted epitaxial lateral overgrowth[J].Crystengcom.2012,14(17):5558-5563.
    [61]徐军,周圣明,杨卫桥,et al. InN和GaN系衬底材料的研究和发展[J].中国有色金属学报,2004,14(1):386-390.
    [62]王如刚,陈振强,胡国永,几种LED衬底材料的特征对比与现状研究[J]。材料科学与工程,2006,02:1671-1815.
    [63] S. Chichibu, T. Azuhata, T. Sota, et al. Spontaneous emission of localizedexcitons in InGaN single and multiquantum well structures[J]. AppliedPhysics Letters.1996,69(27):4188-4190.
    [64] S. Chichibu, T. Azuhata, T. Sota, Luminescences from localized states inInGaN epilayers[J]. Applied Physics Letters.1997,70(21):2822-2824.
    [65] S. Chichibu, K.Wada, S. Nakamura, et al. Spatially resolvedcathodoluminescence spectra of InGaN quantum wells[J]. Applied PhysicsLetters.1997,71(16):2346-2348.
    [66] T. M. Smeeton, M. J. kappers, J. S. barnard, et al. Electron-beam-inducedstrain within InGaN quantum wells: False indium “cluster” detection in thetransmission electron microscope[J]. Applied Physics Letters.2003,83:5419.
    [67]陆大成,段树坤,金属有机化合物气相外延基础及应用[M].北京:科学出版社,2009:93-95.
    [68] Qi. Yundong, MOCVD frowth of Gallium NITRIDE fabrication ofAlGaN/GaN Double heterostructure LED[D]. University of MassachusettsAmherst2002,3—35.
    [69] J. S. Cabalu, Development of GaN-based ultraviolet and visible light-emittingdiodes using HYDRIDE VAPOR-PHASE EPITAXY and MOLECULARBEAM EPITAXY[D]. BOSTON UNIVERSITY.2006,30-35.
    [70] H. Amano, N. Sawaki, I. Akasaki, et al. Metalorganic vapor-phaseepitaxial-growth of a high-quality GaN film using an AlN buffer layer[J].Applied Physics Letters.1986,48(5):353-355.
    [71] S. Nakamura, GaN growth using GaN buffer layer[J]. Japanese Journal ofApplied Physics Part2-Letters.1991,30(10A): L1705~L1707.
    [72] T. Suski, P. Perlin, H. Teisseyre, et al. Mechanism of yellow luminescence inGaN[J]. Applied Physics Letters.1995,67(15):2188-2190.
    [73] M. A. Moram, M. E. Vicker, X-ray diffraction of III-nitrides [J]. Report OnProgress In Physics.2006,88(9):111912.
    [74] U. Choedhury, MOCVD growth for UV photodeetecotors and light Diodes[D].The University of Texas at Austin,2002.20-25.
    [75] Y. R. Zai, MOCVD growth of AlGaN for Deep ultraviolet Light Emittingdiodes[D]. Yale University,2007.80-89.
    [76] L. Y. Shi, Raman spectroscopy study of wurzite crystals: Gallium nitride andzinc oxide[D]. Arizona state university.2003,58-60.
    [77] A. E. Romanov, T. J. Baker, S. Nakamura, et al. Strain-induced polarization inwutzite III-nitride semiplor layers[J]. Journal of Applied Physics.2006,100(2):023522.
    [78] S. Y. Karpov, Y. N. Makarov, Dislocation effect on light emission efficiencyin Gallium Nitride[J]. Applied Physics Letters.2002,81(25):4721-4723.
    [79]刘恩科,半导体物理学[M].北京:国防工业出版社.2006:51-70.
    [80] W. Shockley, W. T. Read, Statistics of the recombinations of holes andelectrons[J]. Phys. Rev.1952,87(2):835.
    [81]叶良修,半导体物理学上册[M].北京:高等教育出版社.2007:236-240.
    [82] M. A. Jacobson, D. K. Nelson, O. V. Konstantinov, et al. The tail oflocalized states at the forbidden band of quantum well in GaN and its effecton the photoluminescence spectrum at the laser excitation[J].Semiconductors.2005,39:1410.
    [83] F. Lecourt, A. Agboton, N. Ketteniss, et al. Power performance at40GHz onQuaternary barrier InAlGaN/GaN HEMT [J]. IEEE electron device letters.2013,34(8):978-980.
    [84] W. Lee, J. S. Kwak, Reduced operating voltage of AlInGaN-based laser diodeby using high pressure grown Mg-doped AlGaN/GaN superlattice p-typecladding layer[J]. Electronic Materials Letters.2013,9(4):451-453.
    [85] Y. A. Chang, Y. R. Lin, J. Y. Chang, Design and Characterization ofPolarization-Reversed AlInGaN Based Ultraviolet Light-Emitting Diode[J].IEEE Journal of Quantum Electronic.2013,49(6):553-559.
    [86] M. Y. Ryu, C. Q. Chen, E. Kuokstis, et al. Luminescence mechanisms inquaternary AlxInyGa1-x-yN materials[J]. Applied Physics Letters.2002,80(20):3730-3732.
    [87] A. Zhu, M. J. Kappers, P. M. F. J. Costa, et al. A comparative study ofnear-UV emitting InGaN quantum wells with AlGaN and AlInGaN barriers[J]. Physica Status Solidia-Applications and Materials Science.2006,203(7):1819-1823.
    [88] F. Omnes, N. Marenco, B. Beaumont, et al. Metalorganic vapor-phaseepitaxy-grown AlGaN materials for visible-blind ultraviolet photodetectorapplications[J]. Journal of Applied Physics.1999,86(9):5286-5292.
    [89] H. Hirayama, T. Yataba, N. Noguchi, et al.231-261nm AlGaNdeep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffersgrown by ammonia pulse-flow method on sapphire[J]. Applied PhysicsLetters.2007,91(7):071901.
    [90] S. Nakamura, M. Senoh, S. I. Nagahama, et al. Characteristics of InGaNmulti-quantum-well-structre laser diodes[J]. Applied Physics Letters.1996,68(23):3269-3271.
    [91] W. Shan, W. Walukiewicz, E. E. Haller, et al. Optical properties of InxGa1-xN alloys grown by metalorganic chemical vapor deposition[J].Journal of Applied Physics.1998,84(8):4452-4458.
    [92] J. P. Liu, B. S. Zhang, M. Wu, et al. Structure and optical properties ofquaternary AlInGaN epilayers grown by MOVPE with various TMGa flows[J]. Journal of Crystal Growth.2004,260(3-4):388-393.
    [93] J. P. liu, R. Q. Jin, J. C. Zhang, et al. Indium mole fraction effect on thestructural and optical properties of quaternary AlInGaN epilayers[J]. Journalof Physics D-Applied physics.2004,37(15):2060-2063.
    [94] T. J. Yu, Y. B. Pan, Z. J. Yang, et al. Influence of III/V flux ratio on electricalproperties of AlInGaN/GaN hereostructures grown by MOVPE[J]. Journal ofCrystal Growth.2007,298(S1):211-214.
    [95] H. K. Cho, K. H. Lee, S. W. Kim, et al. Influence of growth temperature andreactor pressure on microstructural and optical properties of InAlGaNquaternary epilayers[J]. Journal of Crystal Growth.2004,267(1-2):67-63.
    [96] S. F. Yu, S. J. Chang, R. M. Lin, et al. Growth of quaternary AlInGaN withvarious TMI mole rates[J]. Journal of Crystal Growth.2010,312:1920-1924.
    [97] O. Ambacher, Growth and applications of group III nitrides[J]. Journal ofPhysics D-Applied Physics.1998,31(20):2653-2701.
    [98] K. Nakashima, Y. Kawaguchi, A new method for analysing peak broadeningcaused by compositional fluctuation in X-ray diffraction measurements[J].Journal of Applied Crystallography.2000,34:681-690.
    [99] J. Q. Wu, When group-III nitrides go infrared: New properties andperspectives[J]. Journal of Applied Physics.2009,106(1):01101.
    [100]T. F. Huang, J. S. H. Jr, Growth of epitaxial AlxGa1-xN films by pulsed laserdeposition[J]. Applied Physics Letters.1998,72(10):1158-1160.
    [101]刘乃鑫,闫建昌,马平,等,“采用MOVPE技术在蓝宝石衬底上生长四元AlInGaN外延层及其特性”[C].第五届中国国际半导体照明论坛(深圳),2008.
    [101]W. G. Bi, C. W. Tu, Bowing parameter of the band-gap energy of GaNxAs1-x[J]. Applied Physics Letters.1997,70(12):1608-1610.
    [102]J. Wu, W. Walukiewicz, K. M. Yu, et al. Small band gap bowing in In1-xGaxN alloys[J]. Applied Physics Letters.2002,85(25):4741-4743.
    [103]E. Sakalauskas, B. Reuters, L. Rahimzadeh, et al. Dielectric function andoptical properties of quaternary AlInGaN alloys[J]. Journal of AppliedPhysics.2011,110(1):013102.
    [104]S. F. Chichibu, A. C. Abare, M. P. Minsky, et al. Optical properties of InGaNquantum wells[J]. Materials Science and Engineering:B.1999,59(1-3):298-306.
    [105]S. M. Bedair, F. G. McIntosh, J. C. Roberts, et al. Growth andcharacterization of In-based nitride compounds[J]. Journal of Crystal Growth.1997,178(1-2):32-44.
    [106]刘乃鑫, AlInGaN四元合金的MOVPE生长及InGaN/AlInGaN LED器件性能研究[D].2009年,中国科学院半导体所.
    [107]H. Hirayama. Quaternary InAlGaN-based high-efficiency ultravioletlight-emitting diodes[J]. Journal of Applied Physics.2005,97(9):091101.
    [108]J. E. Northrup, L. T. Romano, J. Neugebauer, Surface energetics, pitformation, and chemical ordering in InGaN alloys[J]. Applied Physics Letters.1999,74(16):2319-2321.
    [109]W. C. Lai, S. J. Chang, M. Yokoyam, et al. InGaN-AlInGaNMultiquantum-Well LEDs[J]. IEEE Photonics Technology Letters.2001,13(6):559-561.
    [110]T. Matsuoka, InGaAlN and II-VI systems for blue-green light-emittingdevices[J]. Advanced materials,1996,8(6):469-479.
    [111]J. Li, K. B. Nam, K. H. Kim, et al. Growth and optical properties ofInxAlyGa1-x-yN quaternary alloys[J]. Applied Physics Letters.2001,78(1):61-63.
    [112]M. F. Schubert, J. Xu, J. K. Kim, et al. Polarization-matched GaInN/AlGaInNmulti-quantum-well light-emitting diodes with reduced efficiency droop[J].Applied Physics Letters.2008,93(4):041102.
    [113]Y. Liu, T. Egawa, H. Ishikawa, et al. Growth and characterization ofhigh-quality quaternary AlInGaN epilayers on sapphire[J]. Journal of CrystalGrowth.2003,259(3):36-39.
    [114]A. Yasan, R. McClintock, K. Mayes, et al. Top-emission ultravioletlight-emitting diodes with peak emission at280nm[J]. Applied PhysicsLetters.2002,81(5):801-802.
    [115]H. Hirayama, S. Fujikawa, N. Noguchi, et al.222-282nm AlGaN andInAlGaN-based deep-UV LEDs fabricated on high-quality AlN onsapphire[J]. Phys. Status. Solidi A.2009,206(6):1176-1182.
    [116]I. H. Ho, G. B. Stringfellow, Solid phase immiscibility in GaInN[J]. AppliedPhysics Letters.1996,69(18):2701-2703.
    [117]S. C. Jain, M. Willander, J. Narayan, et al. III--nitrides: Growth,characterization, and properties[J]. Journal of Applied Physics.2000,87(3):965-1006.
    [118]F. Y. Meng, M. Rao, N. Newman, et al. Phase separation and atomic orderingin In(x)Al(y)Ga(1-x-y)N layers[J]. Acta Materialia.2008,56(19):5552-5559.
    [119]J. J. Wu, J. M. Li, G. W. Cong, et al. Temperature dependence of theformation of nano-scale indium clusters in InAlGaN alloys on Si(111)substrates[J]. Nanotechnology.2006,17(5):1251-1254.
    [120]J. J. Shi, S. A. Zhang, M. Yang, et al. Light emission from several-atom In-Nclusters in wurtzite Ga-rich InGaN alloys and InGaN/GaN strained quantumwells[J]. Acta Materialia.2011,59(7):2773-2782.
    [121]V. Lemos, E. Silveira, J. R. Leite, et al. Evidence for phase-separatedquantum dots in cubic InGaN layers from resonant Raman scattering[J].Physical Review Letters.2000,84(16):3666-3669.
    [122]G. Tamulaitis, K. Kazlauskas, S. Jursenas, et al. Optical bandgap formation inAlInGaN alloys [J]. Applied Physics Letters.2000,77(14):2136-2138.
    [123]C. H. Chen, Y. F. Chen, Z. H. Lan, et al. Mechanism of enhancedluminescence in InxAlyGa1-x-yN quaternary epilayers[J]. Applied PhysicsLetters.2004,84(9):1480-1482.
    [124]S. W. Feng, Y. C. Cheng, Y. Y. Cheng, et al. Strong green luminescence inquaternary InAlGaN thin films[J]. Applied Physics Letters.2003,82(9):1377-1379.
    [125]A-K. K. Balakrishnan, T. Katona, et al. Ultraviolet light-emitting diodesbased on group three nitrides[J]. Nature.2008,2(2):77-84.
    [126]M. Marques, L. K. Teles, L. G. Ferreira, et al. Energy gap and bond lengths ofAlxGayIn1-x-yN, AlxGayIn1-x-yP and AlxGayIn1-x-yAs quaternary alloys [J].Physica Status Solidi (c).2007,4(2):229-233.
    [127]M. Marques, L. K. Teles, L. M. R. Scolfaro, et al. Lattice parameter andenergy band gap of cubic AlGaInN quaternary alloys[J]. Applied PhysicsLetters.2003,83(5):890-892.
    [128]M. Marques, L. K. Teles, L. M. R. Scolfaro, et al. Microscopic description ofthe phase separation process in AlxGayIn1-x-yN quaternary alloys[J]. PhysicalReview B.2004,70(7):073202.
    [129]J. Baur, K. Maier, M. Kunzer, et al. Infrared luminescence of residual irondeep-level acceptors in Gallium Nitride (GaN) epitaxial layers[J]. AppliedPhysics Letters.1994,64(7):857-859.
    [130]H. J. Chang, C. H. Chen, Y. F. Chen, et al. Direct evidence ofnanocluster-induced luminescence in InGaN epifilms[J]. Applied PhysicsLetters.2005,86(2):021911.
    [131]H. Teisseyre, P. Perlin, T. Suski, et al. Temperature dependence of the energygap in GaN bulk single crystals and epitaxial layer[J]. Applied PhysicsLetters.1994,76(4):2429-2431.
    [132]Y. P. Varshni, et al. Temperature dependence of the energy gap insemiconductor[J]. Physica.1967,34:149-154.
    [133]H. Teisseyre, P. perlin, T. Suski, et al. Temperature dependence of the energygap in GaN bulk single crystals and epitaxial layer[J]. Journal of AppliedPhysics.1994,76(4):2429-2434.
    [134]E. L. Piner, F. G. Mclntosh, J. C. Roberts, et al. Growth and properties ofInGaN and AlInGaN thin films on (0001) sapphire[J]. MRS Internet Journalof nitride Semiconductor research.1(1-46):U333-U339.
    [135]H. C. Wang, S. C. Lin, Y. C. Lu, et al. Carrier relaxation in InGaN/GaNquantum wells with nanometer-scale cluster structures[J]. Applied PhysicsLetters.2004,85(8):1371-1373.
    [136]Y. C. Lu, C. Y. Chen, H. C. Wang, et al. Carrier trapping effects onphotoluminescence decay time in InGaN/GaN quantum wells withnanocluster structures[J]. Journal of Applied Physics.2007,101(6):063511.
    [137]Y. H. Cho, G. H. Gainer, A. J. Fischer, et al."S-shaped"temperature-dependent emission shift and carrier dynamics in InGaN/GaNmultiple quantum wells[J]. Applied Physics Letters.1998,73(10):1370-1372.
    [138]Y. G. Hong, A. Nishikawa, C. W. Tu, Effect of nitrogen on the optical andtransport properties of Ga0.48In0.52NyP1-y grown on GaAs(001) substrates [J].Applied Physics Letters.2003,83(26):5446-5448.
    [139]K. M. Yu, W. Walukiewicz, W. Shan, et al. Synthesis and optical properties ofII-O-VI highly mismatched alloys [J]. Journal of Applied Physics.2004,95(11):6232-6238.
    [140]Q. Li, S. J. Xu, M. H. Xie, et al. Origin of the 'S-shaped' temperaturedependence of luminescent peaks from semiconductors [J]. Journal ofPhysics-Condensed Matter.2005,17(30):4853-4858.
    [141]P. G. Eliseev. The red sigma (2)/kT spectral shift in partially disorderedsemiconductors[J]. Journal of Applied Physics.2003,93(9):5404-5415.
    [142]J. Christen, D. Bimberg, Line-shapes of intersubband and excitonicrecombination in quantum-wells-influence of final-state interaction,statistical broadening, and momentum conservation[J]. Physical. Review B.1990,42(11):7213-7219.
    [143]T. Prutskij, G. Attolini, V. Lantratov, et al. Optical method of estimation ofdegree of atomic ordering within quaternary semiconductor alloys[J]. Journalof Applied Physics.2012,112(2):023102.
    [144]R. W. Martin, P. G. Middleton, K. P. O’Donnel, et al. Exciton localization andthe Stokes’ shift in InGaN epilayers[J]. Applied Physics Letters.1999,74(2):263-265.
    [145]F. Wang, S.-S. Li, J.-B. Xia, et al. Effects of the wave function localization inAlInGaN quaternary alloys[J]. Applied Physics Letters.2007,91(6):061125.
    [146]M. Yoshikawa, J. Wagner, H. Obloh, et al. Resonant Raman scattering fromburied AlxGa1-xN (X≤0.17) layers in (Al, Ga, In) N heterostructures[J].Journal of Applied Physics.1999,87(6):2853-2856.
    [147]S. W. Feng, T. Y. Tang, Y. C. Lu, et al. Cluster size and compositionvariations in yellow and red light-emitting InGaN thin films upon thermalannealing[J]. Applied Physics Letters.2004,95(10):5388-5390.
    [148]P. Waltereit, O. Brandt, A. Trampert, et al. Electrostatic fileds for efficientwhite light-emitting diodes[J]. Nature.2000,406(24):865.
    [149]I. Brener, M. Olszakier, E. Cohen, et al. Particle localization and phononsidesbands in GaAs/AlxGa1-xAs multiple quantum wells[J]. Physical.Review B.1992,46(12):7927~7930.
    [150]J. Zippel, S. Heitsch, M. Stozel, et al. Optical properties of homo-andheteroepitaxial ZnO/MgxZn1-x O single quantum wells grown bypulsed-laser deposition[J]. Journal of luminescence.2010,130(3):520~526.
    [151]A. K. Meikap, Y. Y. Chen, J. J. Lin, et al. Anomalous temperature anddioorder dependences of electron-phonon scattering rate in impure V1-xAlx alloys[J]. Physical. Review B.2004,69(21):212202.
    [152]X. B. Zhang, T. Taliercio, S. Kolliakos, et al. Influence of electron-phononinteraction on the optical properties of III nitride semiconductors[J]. Journalof physics-condensed matter.2001,13(32):7053-7074.
    [153]J. B. Wang, H. M. Zhong, Z. F. Li, et al. Raman study for E-2phonon of ZnOin Zn1-xMnxO nanoparticles[J]. Journal of Applied Physics.2005,97(8):086105.
    [154]P. parayanthal, F. H. Pollak, Raman Scattering in alloy Semiconductors:“Spatial correlation” model[J]. Physical Review Letters.1984,52(20):1822-1825.
    [155]S. Y. Hu, Y. C. Lee, Z. C. Feng, et al. Raman spectra investigation ofInAlGaN quaternary alloys grown by metalorganic chemical vapor deposition[J]. Journal of Applied Physics.2012,112(6):063111.
    [156]A. Lemaitre, A. D. Ashmore, J. J. Finley, et al. Enhanced phonon-assistedabsorption in single InAs/GaAs quantum dots[J]. Phys. Rev. B.2001,63(16):161309.
    [157]B. V. Shanabrook, S. Rudin, T. L. Reinecke, et al. LO-phonon-assistedemission edge of free-excitons in GaAs and GaAs/GaxAl1-xAs quantum wells[J]. Phys. Rev. B.1990,41(3):1577-1580.
    [158]L. T. Tan, R. W. Martin, K. P. O’Donnell, et al. Photoluminescence andphonon statellites of single InGaN/GaN quantum wells eith varying GaN capthichness[J]. Applied Physics Letters.2006,89(10):101910.
    [159]M. Lange, J. Kupper, C. P. Dietrich, et al. Exciton localization and phononsidebands in polar ZnO/MgZnO quantum wells[J]. Phys. Rev. B.2012,86(4):045318.
    [160]M. Smith, J. Y. Lin, H. X. Jiang, et al. Exciton-Phonon interaction inInGaN/GaN and GaN/AlGaN multiple quantum wells[J]. Applied PhysicsLetters.1997,70(21):2882-2884.
    [161]W. Liu, M. F. Li, S. J. Xu, et al. Phonon-assisted photoluminescence inwurtzite GaN epilayer [J]. Semiconductor Science and Technology.1998,13(7):769-772.
    [162]A. Chernikov, V. Bornwasser, M. Koch, et al. Carrier-phonon coupling inGaAs1-xBix/GaAs quantum wells[J]. Semiconductor Science and Technology.2012,27(8):1-4.
    [163]W. K. Hong, G. Jo, M. Choe, et al. Influence of surface structure on thephonon-assisted emission process in the ZnO nanowires grown onhomoepitaxial films[J]. Applied Physics Letters.2009,94(4):043103.
    [164]G. Ariyawansa, M. B. M. Rinzan, M. Alevli, et al. GaN/AlGaNultraviolet/infrared dual-band detector [J]. Applied Physics Letters.2006,89(9):091113.
    [165]S. C. jain, M. Willander, J. Narayan, et al. III-nitrides: Growth,characterization, and properties [J]. Journal of Applied Physics.2010,87(3):965-1006.
    [166]E. Monroy, M. Hamilton, D. Walker, et al. High-quality visible-blind AlGaNp-i-n photodiodes [J]. Applied Physics Letters.1999,74(8):1171-1173.
    [167]D. Y. Jiang, X. Y. Zhang, Q. S. Liu, et al. Characterization ofMg0.20Zn0.80O metal-semiconductor-metal photodetectors [J]. MaterialsScience and Engineering B.2010,175(1):41-43.
    [168]张南红, Si(111)上GaN的NH3-MBE生长及MSM紫外探测器研究,中国科学院半导体所,2005,73-75.
    [169]S. Liang, H. Sheng, Y. Liu, et al. ZnO Schottky ultraviolet photodetectotrs [J].Journal of Crystal Growth.2001,225:110-113.
    [170]S. Majumdar, P. Banerji, Temperature dependent electrical transport inP-ZnO/n-Si heterojunction formed by pulsed laser deposition [J]. Journal ofApplied Physics.2009,105(4):043704.
    [171]J. S. Liu, C. X. Shan, B. H. Li, et al. High responsivity ultravioletphotodetector realized via a carrier-trapping process [J]. Applied PhysicsLetters.2010,97(25):251102.
    [172]L. W. Ji, S. M. Peng, Y. K. Su, et al. Ultraviolet photodetectors based onselectively grown ZnO nanorod arrays [J]. Applied Physics Letters.2009,94(20):203106.
    [173]D. B. Li, X. J. Sun, H. Song, et al. Influence of threading dislocations onGaN-based metal-semiconductor-metal ultraviolet photodetectors [J].Applied Physics Letters.2011,98(1):011108.
    [174]C. H. Chen, AlInGaN310nm ultraviolet metal-insulator-semiconductorsensors with photo-chemical-vapor-deposition SiO2cap layers [J].2009,16(3):371-374.
    [175]J. Xing, H. Y. Wei, E. J. Guo, et al. High sensitive fast-response UVphotodetectors based on epitaxial TiO2films [J]. Journal of Physics D:Applied Physics.2011,44(37):375104.
    [176]K. W. Liu, J. Y. Zhang, J. G. Ma, et al. Zn0.8Mg0.2O-basedmetal-semiconductor-metal photodiodes on quartz for visible-blindultraviolet detection [J]. Journal of Physics D: Applied Physics.2007,40(9):2765-2768.
    [177]X. Z. Kong, C. X. Liu, W. Dong, et al. Metal-semiconductor-metal TiO2ultraviolet detectors with Ni electrodes [J]. Applied Physics Letters.2009,94(12):123502.
    [178]P. G. Eliseev, M. Osin’ski, H. Li, et al. Recombination balance ingreen-light-emitting GaN/InGaN/AlGaN quantum wells [J]. Applied PhysicsLetters.1999,75(24):3838-3840.
    [179]X. D. Wang, W. D. Hu, X. S. Chen, et al. Photoresponse study of visible blindGaN/AlGaN p-i-n ultraviolet photodetectors [J]. Opt Quant Electron.2011,42(11-13):755-764.
    [180]R. K. Ahrenkiel, R. Ellingson, S. Johnston, et al. Recombination lifetime ofIn0.53Ga0.47As as a function of doping density [J]. Applied Physics Letters.1998,72(26):3470-3472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700