脉冲激光沉积羟基磷灰石/生物玻璃复合薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石(Hydroxyapatite,HA)因其具有良好的生物相容性和生物活性,并且存在于动物的骨和牙等硬组织中,已成为临床医学上应用比较广泛的种植体材料。但是块状HA强度低、脆性大,不能应用于人体的承载部位。为了改善种植体的机械性能,可将HA作为薄膜材料沉积到金属基体如钛及其合金表面来获得机械性能和生物性能都优异的种植体。目前HA薄膜的制备方法有等离子喷涂、溶胶-凝胶、磁控溅射、电泳沉积等方法,这些传统方法在HA薄膜的制备方面都取得了一定的成功,但所制备的薄膜存在HA分解、非晶化严重、与基体结合强度低等缺点。上世纪80年代发展起来的脉冲激光沉积技术(Pulsed Laser deposition,PLD)因其能够制备化学成分计量比准确、与基体结合强度高的薄膜,在薄膜制备中逐渐显示出其优势,也为HA生物薄膜的制备提供了一项新技术。另外,HA与钛合金在热膨胀系数等机械性能上差别较大,种植体在环境温度发生变化时会导致种植体表面裂纹的产生,影响种植体的使用寿命。因此可以将生物活性更高、热膨胀系数低但溶解速度快的45S5玻璃与HA混合,制备HA/45S5复合薄膜,不但可以提高薄膜的结合强度,而且有利于薄膜生物活性的增加。本文采用脉冲激光沉积技术在钛合金Ti-6Al-4V表面制备HA/45S5复合生物薄膜,综合利用扫描电镜(SEM)、电子探针(EPMA)、X-射线衍射(XRD)、傅立叶转换红外光谱(FTIR)、原子力显微镜(AFM)等测试方法对沉积的薄膜的微观组织结构进行表征,通过体外模拟体液浸泡试验研究薄膜的生物活性,并对薄膜的生物安全性进行评价。
     试验结果表明,脉冲激光沉积HA/45S5复合薄膜的表面存在大量的直径为0.2~3μm的球形和不规则形状的颗粒。靶材中原有45S5成分在沉积后仍旧以非晶的形式存在,HA则会部分发生分解生成β-Ca_3(PO_4)_3,其结晶度受到沉积工艺条件的影响很大。薄膜沉积后HA晶格中的羟基丢失,Si-O-Si四面体网络结构发生畸变,导致Si-O键的振动吸收峰向低值偏移,并产生Si-O非桥氧键(Si-O-NBO)。
     脉冲沉积工艺对薄膜的组织结构、相组成、薄膜的结合强度等影响很大。衬底温度的升高为等离子体在基体表面的沉积注入了新的能量,有利于更多的粒子在表面沉积,导致薄膜表面颗粒数目增多,粗糙度增加,同时有利于提高薄膜的结晶度以及薄膜与基体的结合强度。衬底温度的升高还加速P的丢失,使薄膜中的Ca/P原子比增大。
     反应气氛压力的减小意味着反应室中气体分子密度的降低,等离子羽辉中粒子与气体分子碰撞的几率降低,能量损失减少,沉积到基体表面的粒子所具有的动能更大,与基体的结合强度更高。但气氛压力减小会使等离子羽辉的锥角变大,P更容易丢失,薄膜粗糙度和结晶度都随之降低。微氧气氛可促使低熔点的P氧化,在薄膜冷却过程中减少P元素的丢失,降低薄膜的Ca/P原子比,并且存在CO_3~(2-)离子替代OH~-离子的现象。另外,薄膜形成的初始阶段,沉积的粒子沿着基体表面外延生长,与基体间存在很好的晶格匹配,因此激光脉冲数目越少,薄膜与基体的结合力越大。
     靶材成分不同对薄膜的表面形貌影响不大,主要影响薄膜中P、Na元素的丢失程度,靶材中45S5的相对含量越高,薄膜的P、Na元素丢失越严重。45S5玻璃的添加会引起薄膜结晶度的降低,同时会影响HA的晶格取向,当45S5添加量为20 wt.%和50 wt.%时,薄膜中HA发生c轴择优取向。HA晶体结构中OH~-具有严格的[0001]取向,激光烧蚀过程中OH~-极易失去,形成了c轴取向的空穴通道。薄膜形成过程中,在外来粒子的作用下,磷灰石晶体便有可能沿着[0001]方向生长形成c轴取向。45S5的添加会降低薄膜与基体间热膨胀系数的差异,有利于提高薄膜与基体的结合强度,但过高的45S5添加量又会导致薄膜非晶化严重,使结合强度降低。本试验中,当45S5的添加量为20 wt.%时,薄膜结合强度最大,临界载荷为18.7N。
     45Pa氩气气氛下,衬底温度为200℃时50 wt.%HA+50 wt.%45S5薄膜为非晶态,适当热处理可有效提高薄膜的结晶度以及与基体的结合力。600℃热处理1h后薄膜的临界载荷为17.5N,但随着温度的提高和保温时间的延长,热处理又会破坏薄膜的完整性,使薄膜与基体的结合强度呈下降趋势。热处理温度一定时,随着保温时间的延长,薄膜晶粒尺寸逐渐增大。保温时间为2h时,700℃热处理的薄膜中的HA呈现a轴取向,薄膜表面析出细小的颗粒物,800℃热处理的薄膜的HA则呈现c轴取向,薄膜表面析出针状组织。热处理温度的提高和保温时间的延长会使Si-O四面体网状结构中由外来粒子引起的晶格畸变程度降低,导致FTIR结果中Si-O单非桥氧功能团吸收峰强度减弱甚至消失,同时使739cm~(-1)附近的Si-O弯曲振动吸收峰向高值区偏移。
     体外模拟体液浸泡试验表明生物薄膜在模拟体液浸泡过程中的初始阶段溶解行为占主导地位,而后以沉淀行为为主,所制备的HA/45S5薄膜具有良好的生物活性,但薄膜的溶解和沉淀速率受到结晶度的影响。
     含有45S5成分的薄膜在浸泡过程中,薄膜中的Na~+、Ca~(2+)等离子会迅速与体液中的H~+或者H_3O~+发生离子交换,P元素则以PO_4~(3-)、HPO_4~(2-)、H_2PO_4~-等形式快速溶于体液中,而薄膜中的Si-O-Si键遭到破坏后Si元素以Si(OH)_4的形式溶解于体液中。体液中Si(OH)_4在薄膜表面附近浓度很大,极易发生缩聚反应形成[SiO_2]聚合体,并在薄膜表面沉积后形成多孔网状结构的富Si凝胶层,加上Zeta电势的作用,当薄膜表面附近体液中Ca~(2+)、PO_4~(3-)离子浓度达到饱和时,Ca~(2+)、PO_4~(3-)离子的扩散会在凝胶层上形成非晶CaO-P_2O_5,非晶CaO-P_2O_5与OH~-、CO_3~(2-)等离子结合后便结晶形成羟基磷灰石或者碳酸磷灰石。HA薄膜在模拟体液浸泡时,新钙磷层的形成过程主要受Zeta电势的影响。当薄膜表面附近的溶液中Ca~(2+)、PO_4~(3-)离子达到饱和时,Ca~(2+)、PO_4~(3-)离子便会交替在薄膜表面沉积形成新的钙磷层。
     薄膜在模拟体液浸泡后的FTIR结果表明溶解过程中原始薄膜的基团的吸收峰强度逐渐减弱甚至消失,随后新沉积的磷灰石的基团的吸收峰出现并不断增强。在沉积过程中,磷灰石结构中容易形成CO_3~(2-)离子的B型替代形成碳酸磷灰石。XRD结果表明随着浸泡时间的延长,非晶薄膜逐渐有HA析出,结晶度逐渐升高,而结晶度较高的HA薄膜和衬底温度为600℃时50 wt.%HA+50 wt.%45S5薄膜浸泡后其结晶度经历先降低后增高的过程。
     通过溶血试验、L929细胞毒性作用试验和急性全身毒性试验对所制备的薄膜进行了生物安全性评价。结果表明,本试验中所制备的薄膜无细胞毒性作用,不会引起溶血反应和急性全身毒性反应,对细胞生长和增殖无抑制现象,对试验动物没有产生毒害作用,具有良好的生物相容性,符合生物安全性要求。
Hydroxyapatite (HA, Ca_(10)(PO_4)_6(OH)_2) which has the similar chemical composition and structure to the nature Ca phosphate mineral present in a biological hard tissue, is one of the most attractive materials for human hard tissure implant due to its excellent biocompatibility and bioactivity properties. However, the brittle nature of HA ceramic limits its clinical use in a load-bearing situation. It is the only advantage if it is used as a film material based on a metal substrate such as titanium and its alloy, and this kind of implants combines the mechanical benefits of metal alloy with the biocompatibility of bioceramic. Nowadays, HA films have been widely studied by many methods including plasma spraying, sol-gel, magnetron sputterin, electrophoretic deposition and so on, and a certain successful application has been obtained by these traditional methods especially by plasma spraying. However, there are many drawbacks of the films produced by these methods: decomposition of HA, low crystallinity, poor mechanical bonding between the film and the substrate. Pulsed laser deposition (PLD) offers a new technique for preparing HA film because PLD can deposite the films which have good mechanical bonding and similar stoichiometry of the target. In addition, the difference of the coefficient of thermal expansion between HA and Ti alloy induces the formation of cracks which decreases the service life of the implant. One of the solution way is to mixture HA with 45S4 bioglass which has better bioactivity, low coefficient of thermal expansion and rapid dissolution rate in simulated body fluid (SBF), and this kind of HA/45S5 composite films would have higher bioactivity and bonding strength between film and substate. In this paper, HA/45S5 composite films were deposited by PLD on Ti-6A1-4V, the microstructure, phase constitution, functional groups characteristic and bonding strength of the deposited films were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), electron probe microanalysis (EPMA), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and so on, the bioactivity was studied by immersion in SBF, and biological safety was evaluated by hemolysis test, in vitro cytotoxicity test and acute systemic toxicity test.
     The experimental results show that there are many global and irregular particles with a diameter of 0.2-3μm on the PLD HA/45S5 composite film surface. The compositions in 45S5 remain amorphous state after deposition, part of HA decomosite intoβ-Ca_3(PO_4)_3 and the crystallinity is influenced the deposited parameters greatly. Hydroxyl groups in HA crystal lose, and the tetrahedron network structure of Si-O-Si is rearranged which results in the shift of peak position of Si-O vibration towards lower values in infrared absorbance spectra, simultaneously non-bridging silicon-oxygen (Si-O-NBO) bonds form.
     There are great influences of deposition parameters on the microstructure, phase constitution, bonding strength of the HA/45S5 composite films. High substrate temperature can compensate for the energy loss of vaporized species and contribute to deposition process of more species on the substrate surface, consequently the particles density and the surface roughness increases. High substrate temperature also increases the crystallinity of the film which is helpful for the increase of the bonding strength between film and substrate. However, high substrate temperature accelerates the loss of P element, thus increases the Ca/P atomic ratio of the film.
     The reduction of the atmosphere pressure means the decrease of the gas molecule density in the reaction chamber, which induces the decrease of the collision probability between the species in plumes and gas molecule, hence decrease the energy loss. So the species which reach the substrate surface have more kinetic energy, consequently the bonding strength between film and substrate increases. With the decrease of the atmosphere pressure, the surface roughness and the crystalinity of the film increase, and the cone angle become larger which diminish the restraint for the species and accelerate the P loss. In micro-oxygen atmosphere, the P element with low melting point is easily oxidized, and the P loss can be decreased during cooling processing which can decrease the Ca/P ratio. What's more, phenomenon of the CO_3~(2-) substitution for PO_4~(3-) was observed. The first deposited species, which have the epitaxial growth characteristic along the substrate surface, have good lattice matching with the substrate, so the bonding strength increases with the pulses number decreasing.
     The target composition has little influence on the surface morphology, but has great influence on the P and Na loss degree. Generally, the higher the relative content of 45S5 in target material is, the more serious P and Ca lose. The addition of 45S5 decreases the crystallinity of the whole film and affects the crystal orientation of HA. When the additive quantity of 45S5 is 20 wt.% or 50 wt.%, c-axis preferred orientation occurs. As we all know, the OH~- has the strict [0001] orientation in HA crystal, and OH~- easily loses during PLD process which induces the formation of cavity channel with the [0001] direction. During the film forming process, apatite maybe grows along the [0001] direction to form c-axis orientation with the action of foreign particles. The addition of 45S5 also can decrease the difference of the coefficient of thermal expansion between HA and Ti alloy which is helpful to enhance the bonding strength between the film and the substrate. However, excessively high addition quantity of 45S5 enhances the non-crystallization trend of the film, consequently decrease the bonding strength. In this experiment, when the addition quantity of 45S5 is 20 wt.%, the bond strength reaches maximum value, and the critical load is 18.7N.
     50 wt.% HA+50 wt.% 45S5 film deposited with a substrate of 200℃at 45 Pa Ar atmosphere is amorphous, and proper post-heat treatment can increase the crystallinity and the bond strength of the film. The critical load of the film treated at 600℃for 1h is 17.5N, and with the increase of temperature and prolongation of holding time, the integrality of the film is destroyed by the heat treatment, thus the bond strength has the downward trend. When temperature remains constant, the crystal grows up with the prolongation of time. When the holding time is 2h, the film treated at 700℃has the characteristics of a-axis preferred orientation, and fine granular particles precipitate, while the film treated at 800℃has the characteristics of c-axis preferred orientation, and acicular structure was observed in the surface. With the increase of temperature and prolongation of holding time, the degree of lattice distortion of the tetrahedron network structure of Si-O-Si induced by the foreign particles decreases, which weakens the absorption intensity and even eliminates its existence of Si-O-NBO bonds. Furthermore, the bend vibration absorption peak of Si-O at 739 cm~(-1) shifts towards high values in infrared absorbance spectra.
     The in vitro immersion tests indicate that the PLD composite films have good bioactivity, and the dissolution and reprecipitation rate are influenced by the film crystallinity. After immersion in SBF, the dissolution behavior of the PLD films will dominate at the beginning and then reprecipitation behavior dominates.
     During the immersion process of the films contained 45S5 composition, ions exchange occurs immediately between the Na~+, Ca~(2+) ions in film and the H~+ or H_3O~+ in solution, P element dissolves into the solution by the forms of PO_4~(3-), HPO_4~(2-), H_2PO_4~-, and Si element dissolves by the forms of Si(OH)_4 after Si-O-Si bonds are destroyed. When the concentration of Si(OH)_4 near the film surface is saturated, [SiO_2] polymer easily forms after condensation reaction, and the [SiO_2] polymer can precipitate on the film surface to form a SiO_2-rich layer which has a porous network structure. With the action of zeta potential, Ca~(2+) and PO_4~(3-) ions will reprecipitate onto the SiO_2-rich layer to form amorphous CaO-P_2O_5 layer. After incorporation of OH~-, CO_3~(2-) from solution, crystallization of amorphous CaO-P_2O_5 leads to the formation of HA or carbonated apatite. For HA film, after the dissolution of Ca~(2+), PO_4~(3-) ions into solution, the reprecipitate process is mainly controlled by the zeta potential. Once the Ca~(2+), PO_4~(3-) ions in the solution near the film surface is saturated, they will reprecipitate onto the film surface alternatively to form new CaP film.
     After immersion in SBF, the FTIR results show that the characteristic absorption peak intensity of the as-deposited films decreases gradually and even vanishes, afterward the characteristic absorption peak of newly formed apatite appears and then enhances. By the way, carbonated apatite easily forms by B-type substitution of CO_3~(2-) ion. The XRD results show that with the prolongation of the immersion time, the crystallinity of the amorphous films increase gradually, while for the films with high crystallinity, the crystallinity decreases first and decreases afterward.
     The biological safety of PLD films was evaluated by hemolysis test, in vitro cytotoxicity test and acute systemic toxicity test. The results indicate that the films deposited in our experiments have no hemolysis action, no cytotoxicity and no acute systemic toxicity. No obvious inhibitive effect was observed on the growth and proliferation of L929 cells, and no poisoning effect was observed on the tested animals, which means the PLD films deposited in our experiments have good biocompatibility and exhibite good biological safety for clinical trial.
引文
1 Hench L L.Biomaterials:a forecast for the tuture[J].Biomaterials.1998,19(16):1419-1423
    2 时东陆,Shi D.生物材料与组织工程[M].北京:清华大学出版社,2004:246
    3 郑玉峰,李莉.生物医用材料学[M].哈尔滨:哈尔滨工业大学出版社,2005:530
    4 Park J,Lakes R S.Biomaterials:an introduction[M].New York:Springer,2007:561
    5 Suda Y,Kawasaki H,Ohshima T,Nakashima S,Kawazoe S,Toma T.Hydroxyapatite coatings on titanium dioxide thin films prepared by pulsed laser deposition method[J].Thin Solid Films.2006,506-507:115-119
    6 Mayor B,Arias J,Chiussi S,Garcia F,Pou J,BLeonFong,MPerez-amor.Calcium phosphate coatings grown at different substrate temperatures by pulsed ArF-laser deposition[J].Thin Solid Films.1998,317:363-366
    7 吴永智,栗卓新,李红,李国栋.等离子喷涂制备羟基磷灰石复合梯度涂层研究进展[J].机械工程材料.2007,31(8):5-7
    8 Quek C H,Khor K A,Cheang P.Influence of processing parameters in the plasma spraying of hydroxyapatite/Ti-6Al-4V composite coatings[J].Journal of Materials Processing Technology.1999,89-90:550-555
    9 Hwang K,Lim Y.Chemical and structural changes of hydroxyapatite films by using a sol-gel method[J].Surface and Coatings Technology.1999,115(2-3):172-175
    10 Hsieh M F,Perng L H,Chin T S.Hydroxyapatite coating on Ti6A14V alloy using a sol-gel derived precursor[J].Materials Chemistry and Physics.2002,74(3):245-250
    11 Chen M,Liu D,You C,Yang X,Cui Z.Interfacial characteristic of graded hydroxyapatite and titanium thin film by magnetron sputtering[J].Surface and Coatings Technology.2007,201(9-11):5688-5691
    12 杨名宇,陈敏,李长敏,张庆瑜.磁控溅射羟基磷灰石薄膜的研究现状与展望[J].材料导报.2006,20(4):34-37
    13 Albayrak O,El-atwani O,Altintas S.Hydroxyapatite coating on titanium substrate by electrophoretic deposition method:Effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition[J].Surface and Coatings Technology.2008,202(11):2482-2487
    14 黄紫洋,刘榕芳,肖秀峰.电泳沉积羟基磷灰石生物陶瓷涂层的研究进展[J].硅酸盐学报.2003,31:591-597
    15 Johnson S,Haluska M,Narayan R J,Snyder R L.In situ annealing of hydroxyapatite thin films[J].Materials Science and Engineering:C.2006,26(8):1312-1316
    16 Hench L.The story of Bioglass[J].Journal of Materials Science:Materials in Medicine.2006,17(11):967-978
    17 Eason R.Pulsed Laser Deposition of Thin Films:Applications-Led Growth of Functional Materials[M].Hoboken,New Jersey:Wiley-Interscience,2007
    18 杨述华,邱贵兴.关节置换外科学[M].北京:清华大学出版社,2005:920
    19 Reis R L,Weiner S.Learning from Nature How to Design New Implantable Biomaterials[M].Printed in the Netherlands:Kluwer Academic Publishers,2004:252
    20 李世普.生物医用材料导论[M].武汉:武汉工业大学出版社,2000:387
    21 Wang A,Lu Y,Zhu R,Li S,Ma X.Effect of process parameters on the performance of spray dried hydroxyapatite microspheres[J].Powder Technology.2009,191(1-2):1-6
    22 Abdel-aal E A,El-midany A A,El-shall H.Mechanochemical-hydrothermal preparation of nano-crystallite hydroxyapatite using statistical design[J].Materials Chemistry and Physics.2008,112(1):202-207
    23 Tang Y J,Tang Y F,Lv C T,Zhou Z H.Preparation of uniform porous hydroxyapatite biomaterials by a new method[J].Applied Surface Science.2008,254(17):5359-5362
    24 Fathi M H,Hanifi A,Mortazavi V.Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder[J].Journal of Materials Processing Technology.2008,202(1-3):536-542
    25 Koch C F,Johnson S,Kumar D,Jelinek M,Chrisey D B,Doraiswamy A,Jin C,Narayan R J,Mihailescu I N.Pulsed laser deposition of hydroxyapatite thin films[J].Materials Science and Engineering:C.2007,27(3):484-494
    26 Kokubo T.Surface chemistry of bioactive glass ceramic[J].J.Non-Crystalline Solids.1990,120(1-2):138-151
    27 Kokubo T,Kim H M,Kawashita M.Novel bioactive materials with different mechanical properties[J].Biomaterials.2003,24(13):2161-2175
    28 Xin R,Leng Y,Chen J,Zhang Q.A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo[J].Biomaterials.2005,26(33):6477-6486
    29 Hench L L.Bioceramics:from concept to clinic[J].Journal of the American Ceramic Society.1991,74(7):1487-1510
    30 Serra J,PGonzalez,Liste S,Chiussi S,BLeon,MPerez-amor,Yanen H O,Hupa M.Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses[J].Journal of Materials Science:Materials in Medicine.2002,113(12):1221-1225
    31 肖秀兰,陈志刚.羟基磷灰石涂层制备技术的可行性研究[J].材料导报.2003,17(4):32-34
    32 杨梅,邵忠财,崔作兴.钦基生物陶瓷涂层制备方法评述[J].有色矿冶.2007,23(4):58-61
    33 徐淑华,王迎军,罗承萍.生物羟基磷灰石涂层材料的研究进展[J].材料导报.2002,16(1):48-50
    34 Morks M F,Kobayashi A.Influence of gas flow rate on the microstructure and mechanical properties of hydroxyapatite coatings fabricated by gas tunnel type plasma spraying[J].Surface and Coatings Technology.2006,201(6):2560-2566
    35 Cizek J,Khor K A,Prochazka Z.Influence of spraying conditions on thermal and velocity properties of plasma sprayed hydroxyapatite[J].Materials Science and Engineering:C.2007,27(2):340-344
    36 Tong W,Chen J,Xingdong Z.Amorphorization and recrystallization during plasma spraying of hydroxyapatite[J].Biomaterials.1995,16(11):829-832
    37 吕宇鹏,陈艳梅,朱瑞富,李木森,雷延权.等离子喷涂羟基磷灰石涂层的相组成及其结构[J].材料科学与工艺.2007,15(4):492-495
    38 Inagaki M,Yokogawa Y,Kameyama T.Bond strength improvement of hydroxyapatite/titanium composite coating by partial nitriding during RF-thermal plasma spraying[J].Surface and Coatings Technology.2003,173(1):1-8
    39 Park E,Condrate R A.Graded coating of hydroxyapatite and titanium by atmospheric plasma spraying[J].Materials Letters.1999,40(5):228-234
    40 Khor K A,Gu Y W,Quek C H,Cheang P.Plasma spraying of functionally graded hydroxyapatite/Ti-6Al-4V coatings[J].Surface and Coatings Technology.2003,168(2-3):195-201
    41 徐威,胡望宇,李美妲,Wen Cui E.溶胶-凝胶法合成HA/TiO_2生物薄膜[J].钛工业进展.2006,23(2):17-20
    42 李宝娥,罗宏杰.溶胶凝胶法制备钛基体羟基磷灰石涂层[J].材料导报.2004,18:243-246
    43 Bezzi G,Celotti G,Landi E,La T T,Sopyan I,Tampieri A.A novel sol-gel technique for hydroxyapatite preparation[J].Materials Chemistry and Physics.2003,78(3):816-824
    44 Liu D M,Troczynski T,Tseng W J.Aging effect on the phase evolution of water-based sol-gel hydroxyapatite[J].Biomaterials.2002,23(4):1227-1236
    45 Liu D M,Yang Q,Troczynski T.Sol-gel hydroxyapatite coatings on stainless steel substrates[J].Biomaterials.2002,23(3):691-698
    46 Hwang K,Song J,Kang B,Park Y.Sol-gel derived hydroxyapatite films on alumina substrates[J].Surface and Coatings Technology.2000,123(2-3):252-255
    47 Cheng K,Han G,Weng W,Qu H,Du P,Shen G,Yang J,Ferreira J M.Sol-gel derived fluoridated hydroxyapatite films[J].Materials Research Bulletin.2003,38(1):89-97
    48 Weng W,Zhang S,Cheng K,Qu H,Du P,Shen G,Yuan J,Han G.Sol-gel preparation of bioactive apatite films[J].Surface and Coatings Technology.2003, 167(2-3):292-296
    49 Cheng K,Weng W,Han G,Du P,Shen G,Yang J,Ferreira J M.The effect of triethanolamine on the formation of sol-gel derived fluoroapatite/hydroxyapatite solid solution[J].Materials Chemistry and Physics.2003,78(3):767-771
    50 Zhang S,Wang Y S,Zeng X T,Cheng K,Qian M,Sun D E,Weng W J,Chia W Y.Evaluation of interfacial shear strength and residual stress of sol-gel derived fluoridated hydroxyapatite coatings on Ti6Al4V substrates[J].Engineering Fracture Mechanics.2007,74(12):1884-1893
    51 Cheng K,Zhang S,Weng W.Sol-gel prepared[beta]-TCP/FHA biphasic coatings[J].Thin Solid Films.2006,515(1):135-140
    52 李霞.溶胶-凝胶法CaO-P_2O_5-SiO_2系生物玻璃的制备及机理探讨[J].玻璃与搪瓷.2003,31:37-40
    53 Fathi M H,Doostmohammadi A.Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant[J].Journal of Materials Processing Technology.2009,209(3):1385-1391
    54 刘守华,周廉,罗宏杰,牛金龙.溶胶-凝胶法生物玻璃/Ti涂层的制备[J].包装工程.2005,26:33-36
    55 武丽华,张健,张相春,陈福.医用Ti合金表面生物玻璃涂层的制备与研究[J].山东陶瓷.2008,31:7-9
    56 徐芳.浅析磁控溅射玻璃镀膜原理[J].中国玻璃.2008,33(6):38-44
    57 张彩珍,李运,汤玉斐,赵康.射频磁控溅射法制备羟基磷灰石/β-磷酸三钙生物涂层[J].生物骨科材料与临床研究.2008,5(2):48-50
    58 林东洋,赵玉涛,张钊.用磁控溅射技术制备钛合金表面HA生物涂层[J].生物骨科材料与临床研究.2004,1(6):5-8
    59 陈民芳,刘枝文,王玉红,由臣,杨贤金.射频磁控溅射TiO_2/HA复合生物薄膜的制备与表征[J].复合材料学报.2003,20:53-56
    60 张钊,赵玉涛,林东洋,张红杰.射频磁控溅射技术制备羟基磷灰石生物涂层及其微结构[J].硅酸盐学报.2004,32:849-853
    61 Mardare C C,Mardare A I,Fernandes J R,Joanni E,Pina S C,Fernandes M H,Correia R N.Deposition of bioactive glass-ceramic thin-films by RF magnetron sputtering[J].Journal of the European Ceramic Society.2003,23(7):1027-1030
    62 倪军,刘榕芳,肖秀峰.电泳沉积HA/Ti复合涂层的结合强度和热稳定性[J].稀有金属材料与工程.2006,35(1):119-122
    63 王建民,刘君武,郑治祥,邢晓沽,汤文明,吕君.电泳沉积制备Ca_(10)(PO_4)_6(OH)_2/TiO_2/Ti复合涂层[J].特种铸造及有色合金.2007,27(8):575-577
    64 Pang X,Zhitomirsky I.Electrophoretic deposition of composite hydroxyapatite-chitosan coatings[J].Materials Characterization.2007,58(4):339-348
    65 陈晓明,焦玉恒,等.电泳沉积制备羟基磷灰石/生物玻璃梯度涂层的研究[J].材料科学与工程.2002,20(4):545-548
    66 陈晓明,李世普,韩庆荣,周学东,许传波.在非水溶液体系中电泳沉积Ti6A14V/BG/HA梯度涂层[J].硅酸盐学报.2001,29:565-568
    67 Stojanovic D,Jokic B,Veljovic D,Petrovic R,Uskokovic P S,Janackovic D.Bioactive glass-apatite composite coating for titanium implant synthesized by electrophoretic deposition[J].Journal of the European Ceramic Society.2007,27(2-3):1595-1599
    68 Venkatesan T,Green S M.Pulsed Laser Deposition:Thin Films in a Flash[J].The Industrial Physicist.1996:22-24
    69 Douglas B.Chrisey G K H.Pulsed laser deposition of thin films[M].New York:Wiley,1994
    70 Cleries L,Fernandez-pradas J M,Sardin G,Morenza J L.Application of dissolution experiments to characterise the structure of pulsed laser-deposited calcium phosphate coatings[J].Biomaterials.1999,20(15):1401-1405
    71 Schoning M J,Mourzina Y G,Schubert J,Zander W,Legin A,Vlasov Y G,HL(u|¨)th.Pulsed Laser Deposition-An Innovative Technique for Preparing Inorganic Thin Films[J].Electroanalysis.2001,13(8-9):727-732
    72 张瑞明,赵修建,李智华,赵青南,关丽,韩建军.脉冲激光沉积动力学与玻璃基薄膜[M].武汉:湖北科学技术出版社,2006:443
    73 Jenner A G,Hayes J P,Stone L A,Snelling H V,Greenough R D.Pulsed laser deposition-an alternative route to the growth of magnetic thin films[J].Applied Surface Science. 1999, 138-139: 408-412
    
    74 Boyd I W. Thin film growth by pulsed laser deposition[J]. Ceramics International. 1996, 22(5): 429-434
    
    75 Kakehi Y, Okamoto A, Sakurai Y, Nishikawa Y, Yotsuya T, Ogawa S. Epitaxial growth of LiNbO3 thin films using pulsed laser deposition[J]. Applied Surface Science. 2001, 169-170: 560-563
    
    76 Neubeck W, Ranno L, Hunt M B, Vettier C, Givord D. Epitaxial MnO thin films grown by pulsed laser deposition[J]. Applied Surface Science. 1999, 138-139: 195-198
    
    77 Baeri P, Torrisi L, Marino N, Foti G. Ablation of hydroxyapatite by pulsed laser irradiation[J]. Applied Surface Science. 1992, 54: 210-214
    
    78 Cotell C M, Chrisey D B, Grabowski K S, Sprague J A, Gossett C R. Pulsed laser deposition of hydroxylapatite thin films on Ti-6A1-4V[J]. Journal of Applied Biomaterials. 1992, 3: 87-93
    
    79 Zeng H. Evaluation of bioceramic coatings produced by pulsed laser deposition and ion beam sputtering[D]. Birmingham, Alabama: University of Alabama at Birmingham, 1997
    
    80 Zeng H, Lacefield W R, Mirov S. Structural and morphological study of pulsed laser deposited calcium phosphate bioceramic coatings: Influence of deposition conditions, laser parameters, and target properties[J]. Journal of Biomedical Materials Research. 2000, 50(2): 248-258
    
    81 Zeng H, Lacefield W R. The study of surface transformation of pulsed laser deposited hydroxyapatite coatings[J]. Journal of Biomedical Materials Research. 2000, 50(2): 239-247
    
    82 Zeng H, Lacefield W R. XPS, EDX and FTIR analysis of pulsed laser deposited calcium phosphate bioceramic coatings: the effects of various process parameters[J]. Biomaterials. 2000, 21(1): 23-30
    
    83 Blind O, Klein L H, Dailey B, Jordan L. Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6A1-4V substrates[J]. Dental Materials. 2005, 21(11): 1017-1024
    84 Kim H, Camata R, Vohra Y, Lacefield W. Control of phase composition in hydroxyapatite/tetracalcium phosphate biphasic thin coatings for biomedical applications[J]. Journal of Materials Science: Materials in Medicine. 2005, 16(10): 961-966
    
    85 Kim H, Camata R P, Lee S, Rohrer G S, Rollett A D, Vohra Y K. Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings[J]. Acta Materialia. 2007, 55(1): 131-139
    
    86 Nelea V, Pelletier H, Iliescu M, Werckmann J, Craciun V, Mihailescu I N, Ristoscu C, Ghica C. Calcium phosphate thin film processing by pulsed laser deposition and in situ assisted ultraviolet pulsed laser deposition[J]. Journal of Materials Science: Materials in Medicine. 2002, 13(12): 1167-1173
    
    87 Nelea V, Craciun V, Iliescu M, Mihailescu I N, Pelletier H, Mille P, Werckmann J. Growth of calcium phosphate thin films by in situ assisted ultraviolet pulsed laser deposition[J]. Applied Surface Science. 2003, 208-209: 638-644
    
    88 Nelea V, Morosanu C, Iliescu M, Mihailescu I N. Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study[J]. Applied Surface Science. 2004, 228(1-4): 346-356
    
    89 Nelea V, Morosanu C, Bercu M, Mihailescu I. Interfacial titanium oxide between hydroxyapatite and TiAlFe substrate[J]. Journal of Materials Science: Materials in Medicine. 2007, 18(12): 2347-2354
    
    90 Nakayama T, Tanaka T, Tsumoto Y, Katayama H, Katto M. High-quality hydroxyapatite coating on biocompatible materials by laser-assisted laser ablation method[J]. Journal of Materials Science: Materials in Medicine. 2004, 79(4): 833-836
    
    91 Katto M, Nakamura M, Tanaka T, Nakayama T. Hydroxyapatite coatings deposited by laser-assisted laser ablation method[J]. Applied Surface Science. 2002, 197-198: 768-771
    
    92 Katto M, Kurosawa K, Yokotani A, Kubodera S, Kameyama A, Higashiguchi T, Nakayama T, Tsukamoto M. Poly-crystallized hydroxyapatite coating deposited by pulsed laser deposition method at room temperature[J]. Applied Surface Science. 2005,248(1-4):365-368
    93 Garcia-sanz F J,Mayor M B,Arias J L,Pou J,Leon B,Perez-amor M.Hydroxyapatite coatings:a comparative study between plasma-spray and pulsed laser deposition techniques[J].Journal of Materials Science:Materials in Medicine.1997,8(12):861-865
    94 Arias J L,Mayor M B,Pou J,Leng Y,Le B,Amor M P.Micro-and nano-testing of calcium phosphate coatings produced by pulsed laser deposition[J].Biomaterials.2003,24(20):3403-3408
    95 Arias J L,Garc S F,Mayor M B,Chiussi S,Pou J,Le B,P A M.Physicochemical properties of calcium phosphate coatings produced by pulsed laser deposition at different water vapour pressures[J].Biomaterials.1998,19(10):883-888
    96 Hontsu S,Matsumoto T,Ishii J,Nakamori M,Tabata H,Kawai T.Electrical properties of hydroxyapatite thin films grown by pulsed laser deposition[J].Thin Solid Films.1997,295(1-2):214-217
    97 Fernandez-pradas J M,Cleries L,Sardin G,Esteve J,Morenza J L.Calcium phosphate coatings deposited by laser ablation at 355 nm under different substrate temperatures and water vapour pressures[J].Applied Physics A:Materials Science & Processing.2000,71:37-42
    98 Fernandze-pradas J M,Cleries L,Sardin G,Morenza J L.Characterization of calcium phosphate coatings deposited by Nd:YAG laser ablation at 355nm:influence of thickness[J].Biomaterials.2002,23(9):1989-1994
    99 Fern P J,Sardin G,Cl L,Serra P,Ferrater C,Morenza J L.Deposition of hydroxyapatite thin films by excimer laser ablation[J].Thin Solid Films.1998,317(1-2):393-396
    100 Fern P J,Garc C M,Cl L,Sardin G,Morenza J L.Influence of the interface layer on the adhesion of pulsed laser deposited hydroxyapatite coatings on titanium alloy[J].Applied Surface Science.2002,195(1-4):31-37
    101 Bao Q,Chen C,Wang D,Liu J.The influences of target properties and deposition times on pulsed laser deposited hydroxyapatite films[J].Applied Surface Science.2008,255(2):619-621
    102 Bao Q, Chen C, Wang D, Ji Q, Lei T. Pulsed laser deposition and its current research status in preparing hydroxyapatite thin films[J]. Applied Surface Science. 2005,252(5): 1538-1544
    
    103 Cheng G J, Pirzada D, Cai M, Mohanty P, Bandyopadhyay A. Bioceramic coating of hydroxyapatite on titanium substrate with Nd-YAG laser[J]. Materials Science and Engineering: C. 2005, 25(4): 541-547
    
    104 Feddes B, Vredenberg A M, Wehner M, Wolke J C, Jansen J A. Laser-induced crystallization of calcium phosphate coatings on polyethylene (PE)[J]. Biomaterials. 2005, 26(14): 1645-1651
    
    105 Katto M, Nakamura M, Tanaka T, Matsutani T, Kuwata M, Nakayama T. Hydroxyapatite coatings using novel pulsed laser ablation methods[J]. Surface and Coatings Technology. 2003, 169-170: 712-715
    
    106 Borrajo J P, Serra J, Liste S, Gonzalez P, Chiussi S, Leon B P M. Pulsed laser deposition of hydroxyapatite thin films on biomorphic silicon carbide ceramics[J]. Applied Surface Science. 2005, 248: 355-359
    
    107 Dinda G P, Shin J, Mazumder J. Pulsed laser deposition of hydroxyapatite thin films on Ti-6Al-4V: effect of heat treatment on structure and properties[J]. Acta Biomaterialia. 2009, In Press, doi:10.1016/j.actbio.2009.01.027
    
    108 Garcia F, Arias J.I, Mayor B, Pou J, Rehman I, Knowles J, Best S, Leon B, Perez-amor M B W. Effect of heat treatment on pulsed laser deposited amorphous calcium phosphate coatings[J]. Journal of Biomedical Materials Research. 1998, 43(1): 69-76
    
    109 Cl L, Fern P J, Morenza J L. Behavior in simulated body fluid of calcium phosphate coatings obtained by laser ablation[J]. Biomaterials. 2000, 21(18): 1861-1865
    
    110 Teuberova Z, Seydlova M, Dostalova T, Dvorankova B, Smetana K, Jelinek M, Masinova P, Kocourek T, Kolarova K, Wilson J. Biological and physical properties of pulsed-Laser-deposited zirconia/hydroxyapatite on titanium: In vitro study[J]. Journal of Materials Science: Materials in Medicine. 2007, 17(1): 45-49
    
    111 De C A, Lusqui F, Pou J, Le B, P A M, Driessens F, Hing K, Best S, Bonfield W. In vitro testing of Nd:YAG laser processed calcium phosphate coatings[J]. Lasers in Medical Science. 2006, 17(11): 1153-1160
    
    112 Yang Y, Kim K H, Ong J L. A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying[J]. Biomaterials. 2005, 26(3): 327-337
    
    113 DAL, Teghil R, Zaccagnino M, Zaccardo I, Ferro D, Marotta V. Pulsed laser ablation and deposition of bioactive glass as coating material for biomedical applications[J]. Applied Surface Science. 1999, 138-139: 527-532
    
    114 Teghil R, D A L, Ferro D, Barinov S M. Hardness of bioactive glass film deposited on titanium alloy by pulsed laser ablation[J]. Journal of Materials Science: Materials in Medicine. 2002, 21(5): 379-382
    
    115 Tanaskovic D, Jokic B, Socol G, Popescu A, Mihailescu I N, Petrovic R, Janackovic D. Synthesis of functionally graded bioactive glass-apatite multistructures on Ti substrates by pulsed laser deposition[J]. Applied Surface Science. 2007, 254(4): 1279-1282
    
    116 Borrajo J, Serra J, GonzPio, Le B, Mu F, L M. In vivo evaluation of titanium implants coated with bioactive glass by pulsed laser deposition[J]. JOM Journal of the Minerals, Metals and Materials Society. 2007, 18(12): 2371-2376
    
    117 Liste S, GonalezP, Serra J, Borrajo J P, Chiussi S, LeónB, Pérez-amorM, GarcLópezJ, Ferrer F J, Morilla Y, Respaldiza M A. Study of the stoichiometry transfer in pulsed laser deposition of bioactive silica-based glasses[J]. Thin Solid Films. 2004, 453-454: 219-223
    
    118 Zhao Y, Song M, Chen C, Liu J. Effects of the substrate temperature on the bioglass films deposited by pulsed laser[J]. Applied Surface Science. 2008, 254(21): 6897-6901
    
    119 Berbecaru C, Alexandru H V, Ianculescu A, Popescu A, Socol G, Sima F, Mihailescu I. Bioglass thin films for biomimetic implants[J]. Applied Surface Science. 2009, 255(10): 5476-5479
    
    120 Zhao Y, Song M, Chen C, Liu J. The role of the pressure in pulsed laser deposition of bioactive glass films[J]. Journal of Non-Crystalline Solids. 2008, 354(33): 4000-4004
    121 Peitl O,Dutra Z E,Hench L L.Highly bioactive P2O5-Na2O-CaO-SiO_2glass-ceramics[J].2001,292(1-3):115-126
    122 Saboori A,Rabiee M,Moztarzadeh F,Sheikhi M,Tahriri M,Karimi M.Synthesis,characterization and in vitro bioactivity of sol-gel-derived SiO_2-CaO-P2O_5-MgO bioglass[J].2009,29(1):335-340
    123 Radin S,Ducheyne P,Falaize S,Hammond A.In vitro transformation of bioactive glass granules into Ca-P shells[J].Journal of Biomedical Materials Research.2000,49(2):264-272
    124 马世昌.化学物质辞典[M].陕西科学技术出版社,1999:1021
    125 Kassing R,Petkov P,Kulisch W,Popov C.Functional Properties of Nanostructured Materials[M].Netherlands:Springer,2006:183-196
    126 Shih W J,Wang J W,Wang M C,Hon M H.A study on the phase transformation of the nanosized hydroxyapatite synthesized by hydrolysis using in situ high temperature X-ray diffraction[J].Materials Science and Engineering:C.2006,26(8):1434-1438
    127 Choi D,Marra K G,Kumta P N.Chemical synthesis of hydroxyapatite/poly([var epsilon]-caprolactone) composites[J].Materials Research Bulletin.2004,39(3):417-432
    128 Carayon M T,Lacout J L.Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings[J].Journal of Solid State Chemistry.2003,172(2):339-350
    129 Luo P,Nieh T G.Synthesis of ultrafine hydroxyapatite particles by a spray dry method[J].Materials Science and Engineering:C.1995,3(2):75-78
    130 Clupper D C,Mecholsky J J,Latorre G P,Greenspan D C.Bioactivity of Bioglass-steel and Bioglass-titanium laminate composites[J].Journal of Orthopaedic Science.2001,20(10):959-960
    131 Chern L J,Chen K S,Ju C P.Biocorrosion behavior of hydroxyapatite/bioactive glass plasma sprayed on Ti6A14V[J].Materials Chemistry and Physics.1995,41(4):282-289
    132 Sygnatowicz M,Tiwari A.Controlled synthesis of hydroxyapatite-based coatings for biomedical application[J].Materials Science and Engineering:C.,In Press,Corrected Proof
    133 Popescu A C,Sima F,Duta L,Popescu C,Mihailescu I N,Capitanu D,Mustata R,Sima L E,Petrescu S M,Janackovic D.Biocompatible and bioactive nanostructured glass coatings synthesized by pulsed laser deposition:In vitro biological tests[J].Applied Surface Science.2009,255(10):5486-5490
    134 赵亚凡.钛合金表面脉冲激光沉积生物玻璃薄膜的研究[D].山东大学,2007
    135 Khodan A N,Guyard S,Contour J P,Crete D G,Jacquet E,Bouzehouane K.Pulsed Laser Deposition of epitaxial SrTiO3 films:Growth,structure and functional properties[J].Thin Solid Films.2007,515(16):6422-6432
    136 Hegde M.Epitaxial oxide thin films by pulsed laser deposition:Retrospect and prospect[J].Journal of Chemical Sciences.2001,113(5):445-458
    137 Li M,Wang Z,Xiong G,Fan S,Zhao Q,Lin K.Epitaxial growth characteristics of oxide thin films prepared by pulsed laser deposition[J].Thin Solid Films.2000,375(1-2):271-274
    138 Nelea V,Pelletier H,Mille P,Muller D.High-energy ion beam implantation of hydroxyapatite thin films grown on TiN and ZrO2 inter-layers by pulsed laser deposition[J].Thin Solid Films.2004,453-454:208-214
    139 CleriesL,Martinez E,Fernandez-pradasJ,Sardin G,Esteve J,Morenza J.Mechanical properties of calcium phosphate coatings deposited by laser ablation[J].Biomaterials.2000,21(9):967-971
    140 Bach F W,Laarmann A,Wenz T.Modern Surface Technology[M].Weinheim,German:Wiley-VCH,2006:346
    141 Tancred D C,Mccormack B A,Carr A J.A quantitative study of the sintering and mechanical properties of hydroxyapatite/phosphate glass composites[J].Biomaterials.1998,19(19):1735-1743
    142 陈传忠,王佃刚,包全合,张亮,雷廷权.纯钛表面激光合成钙磷生物陶瓷涂层的组成与结构[J].生物骨科材料与临床研究.2003,1(1):51-54
    143 Lusquinos F,Pou J,Arias J L,Boutinguiza M,Leon B,Perez-amor M,Driessens F C M.Alloying of hydroxyapatite onto Ti6Al-4V by high power laser irradiation[J].Applied Physics A:Materials Science & Processing.2002,13(6):601-605
    144 Mihailescu I N,Torricelli P,Bigi A,Mayer I,lliescu M,Werckmann J,Socol G,Miroiu F,Cuisinier F,Elkaim R,Hildebrand G.Calcium phosphate thin films synthesized by pulsed laser deposition:Physico-chemical characterization and in vitro cell response[J].Applied Surface Science.2005,248(1-4):344-348
    145 Alvarez R,Evans L A,Milham P J,Wilson M A.Effects of humic material on the precipitation of calcium phosphate[J].Geoderma.2004,118(3-4):245-260
    146 Li X,Yasuda H,Umakoshi Y.Bioactive ceramic composites sintered from hydroxyapatite and silica at 1200℃:preparation,microstructures and in vitro bone-like layer growth[J].Journal of Materials Science:Materials in Medicine.2006,17(6):573-581
    147 Kweh S W,Khor K A,Cheang P.High temperature in-situ XRD of plasma sprayed HA coatings[J].Biomaterials.2002,23(2):381-387
    148 Tkalcec E,Sauer M,Nonninger R,Schmidt H.Sol-gel-derived hydroxyapatite powders and coatings[J].Journal of Materials Science:Materials in Medicine.2001,36(21):5253-5263
    149 Fern P J,Cl L,Mart E,Sardin G,Esteve J,Morenza J L.Influence of thickness on the properties of hydroxyapatite coatings deposited by KrF laser ablation[J].Biomaterials.2001,22(15):2171-2175
    150 Fern P J,Garc C M,Morenza J L.Analysis of the interface between a pulsed laser deposited calcium phosphate coating and a titanium alloy substrate[J].Journal of Materials Engineering and Performance.2005,80(2):325-331
    151 陈传忠,王佃刚,徐萍,包全合,张亮,雷廷权.激光熔覆HA生物陶瓷梯度涂层的微观组织结构[J].中国激光.2004,31(8):1021-1024
    152 Manso M,Herrero P,MFernandez,Langlet M,JMMartinez-duart.Textured hydroxyapatite interface onto biomedical titanium-based coatings[J].Journal of Biomedical Materials Research Part A.2003,64A(4):600-605
    153 Inagaki M,Kameyama T.Phase transformation of plasma-sprayed hydroxyapatite coating with preferred crystalline orientation[J].Biomaterials.2007,28(19): 2923-2931
    
    154 Haman J D, Chittur K K, Crawmer D E, Lucas L C. Analytical and mechanical testing of high velocity oxy-fuel thermal sprayed and plasma sprayed calcium phosphate coatings[J]. Journal of Biomedical Materials Research. 1999, 48(6): 856-860
    
    155 Diaz-estrada J R, Camps E, Escobar-alarc6n L, Ascencio J A. Mechanical improvement of hydroxyapatite by TiOx nanoparticles deposition[J]. Journal of Materials Science. 2007, 42(4): 1360-1368
    
    156 Liao Y M, de Feng Z, Li S W. Preparation and characterization of hydroxyapatite coatings on human enamel by electrodeposition[J]. Thin Solid Films. 2008, 516(18): 6145-6150
    
    157 Inagaki M, Yokogawa Y, Kameyama T. Effects of plasma gas composition on bond strength of hydroxyapatite/titanium composite coatings prepared by rf-plasma spraying[J]. Journal of the European Ceramic Society. 2006, 26(4-5): 495-499
    
    158 Li-yun C, Chuan-bo Z, Jian-feng H. Influence of temperature, [Ca2+], Ca/P ratio and ultrasonic power on the crystallinity and morphology of hydroxyapatite nanoparticles prepared with a novel ultrasonic precipitation method[J]. Materials Letters. 2005, 59(14-15): 1902-1906
    
    159 Rend A J, Yanagisawa K, Ishizawa N, Oishi S. Conversion of Calcium Fluorapatiteinto Calcium Hydroxyapatite under Alkaline Hydrothermal Conditions[J]. Journal of Solid State Chemistry. 2000, 151(1): 65-72
    
    160 Roome C M, Adam C D. Crystallite orientation and anisotropic strains in thermally sprayed hydroxyapatite coatings[J]. Biomaterials. 1995, 16(9): 691-696
    
    161 Sato K, Kogure T, Kumagai Y, Tanaka J. Crystal Orientation of Hydroxyapatite Induced by Ordered Carboxyl Groups[J]. Journal of Colloid and Interface Science. 2001, 240(1): 133-138
    
    162 Tong W, Chen J, Li X, Feng J, Cao Y, Yang Z, Zhang X. Preferred orientation of plasma sprayed hydroxyapatite coatings[J]. Journal of Materials Science. 1996, 31(14): 3739-3742
    
    163 Yamato Y, Matsukawa M, Yanagitani T, Yamazaki K, Mizukawa H, Nagano A. Correlation between Hydroxyapatite Crystallite Orientation and Ultrasonic Wave Velocities in Bovine Cortical Bone[J]. Calcified Tissue International. 2008, 82(2): 162-169
    
    164 Hashimoto Y, Kawashima M, Hatanaka R, Kusunoki M, Nishikawa H, Hontsu S, Nakamura M. Cytocompatibility of calcium phosphate coatings deposited by an ArF pulsed laser[J]. Journal of Materials Science. 2007, 18(7): 1457-1464
    
    165 Mami M, Lucas-girot A, Oudadesse H, Dorbez-sridi R, Mezahi F, Dietrich E. Investigation of the surface reactivity of a sol-gel derived glass in the ternary system SiO_2-CaO-P_2O_5[J]. Applied Surface Science. 2008, 254(22): 7386-7393
    
    166 Floroian L, Savu B, Stanciu G, Popescu A C, Sima F, Mihailescu I N, Mustata R, Sima L E, Petrescu S M, Tanaskovic D, Janackovic D. Nanostructured bioglass thin films synthesized by pulsed laser deposition: CSLM, FTIR investigations and in vitro biotests[J]. Applied Surface Science. 2008, 255: 3056-3062
    
    167 Kim H M, Himeno T, Kokubo T, Nakamura T. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid[J]. Biomaterials. 2005, 26(21): 4366-4373
    
    168 Elbatal H A, Azooz M A, Khalil E M, Soltan M A, Hamdy Y M. Characterization of some bioglass-ceramics[J]. Materials Chemistry and Physics. 2003, 80(3): 599-609
    
    169 Wan Y Z, Huang Y, Yuan C D, Raman S, Zhu Y, Jiang H J, He F, Gao C. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications[J]. 2007, 27(4): 855-864
    
    170 Ni J, Wang M. In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite[J]. 2002, 20(1-2): 101-109
    
    171 Fathi M H, Mohammadi Z E. Mechanical alloying synthesis and bioactivity evaluation of nanocrystalline fluoridated hydroxyapatite[J]. Journal of Crystal Growth. 2009, 311(5): 1392-1403
    1 Koch C F, Johnson S, Kumar D, Jelinek M, Chrisey D B, Doraiswamy A, Jin C, Narayan R J, Mihailescu I N. Pulsed laser deposition of hydroxyapatite thin films[J]. Materials Science and Engineering: C. 2007, 27(3): 484-494.
    
    2 Park J, Lakes R S. Biomaterials: an introduction[M]. New York: Springer, 2007: 561.
    
    3 ClèriesL, Fernández-pradasJ, Sardin G, Morenza J L. Dissolution behaviour of calcium phosphate coatings obtained by laser ablation[J]. Biomaterials. 1998, 19(16): 1483-1487.
    
    4 Zeng H. Evaluation of bioceramic coatings produced by pulsed laser deposition and ion beam sputtering[D]. Birmingham, Alabama: University of Alabama at Birmingham, 1997.
    
    5 Hench L L. Bioceramics: from concept to clinic[J]. Journal of the American Ceramic Society. 1991, 74(7): 1487-1510.
    
    6 Hench L L. Biomaterials: a forecast for the tuture[J]. Biomaterials. 1998: 1419-1423.
    
    7 Tancred D C, Mccormack B A, Carr A J. A quantitative study of the sintering and mechanical properties of hydroxyapatite/phosphate glass composites[J]. Biomaterials. 1998, 19(19): 1735-1743.
    
    8 Lopez-sastre A, Gonzalo-orden J M, Alt J A, Alt J R, Orden M A. Coating titanium implants with bioglass and with hydroxyapatite[J]. Journal of Materials Science: Materials in Medicine. 1998, 22(6): 380-383.
    
    9 Quek C H, Khor K A, Cheang P. Influence of processing parameters in the plasma spraying of hydroxyapatite/Ti-6Al-4V composite coatings[J]. Journal of Materials Processing Technology. 1999, 89-90: 550-555.
    
    10 Hsieh M F, Perng L H, Chin T S. Hydroxyapatite coating on Ti6A14V alloy using a sol-gel derived precursor[J]. Materials Chemistry and Physics. 2002, 74(3): 245-250.
    
    11 Chen M, Liu D, You C, Yang X, Cui Z. Interfacial characteristic of graded hydroxyapatite and titanium thin film by magnetron sputtering[J]. Surface and Coatings Technology. 2007, 201(9-11): 5688-5691.
    
    12 Albayrak O, El-atwani O, Altintas S. Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: Effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition[J]. Surface and Coatings Technology. 2008,202(11): 2482-2487.
    
    13 Antonov E N, Bagratashvili V N, Popov V K, Sobol E N, Howdle S M. Determination of the stability of laser deposited apatite coatings in phosphate buffered saline solution using Fourier transform infrared (FTIR) spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 1996, 52(1): 123-127.
    
    14 Inagaki M, Kameyama T. Phase transformation of plasma-sprayed hydroxyapatite coating with preferred crystalline orientation[J]. Biomaterials. 2007,28(19): 2923-2931.
    
    15 Liao Y M, de Feng Z, Li S W. Preparation and characterization of hydroxyapatite coatings on human enamel by electrodeposition[J]. Thin Solid Films. 2008, 516(18): 6145-6150.
    
    16 Li-yun C, Chuan-bo Z, Jian-feng H. Influence of temperature, [Ca2+], Ca/P ratio and ultrasonic power on the crystallinity and morphology of hydroxyapatite nanoparticles prepared with a novel ultrasonic precipitation method[J]. Materials Letters. 2005, 59(14-15): 1902-1906.
    
    17 Roome C M, Adam C D. Crystallite orientation and anisotropic strains in thermally sprayed hydroxyapatite coatings[J].Biomaterials.1995,16(9):691-696.
    18 Tong W,Chen J,Li X,Feng J,Cao Y,Yang Z,Zhang X.Preferred orientation of plasma sprayed hydroxyapatite coatings[J].Journal of Materials Science.1996,31(14):3739-3742.
    19 Yamato Y,Matsukawa M,Yanagitani T,Yamazaki K,Mizukawa H,Nagano A.Correlation between Hydroxyapatite Crystallite Orientation and Ultrasonic Wave Velocities in Bovine Cortical Bone[J].Calcified Tissue International.2008,82(2):162-169.
    20 Manso M,Herrero P,MFernandez,Langlet M,JMMartinez-duart.Textured hydroxyapatite interface onto biomedical titanium-based coatings[J].Journal of Biomedical Materials Research Part A.2003,64A(4):600-605.
    21 Kim H,Camata R P,Lee S,Rohrer G S,Rollett A D,Vohra Y K.Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings[J].Acta Materialia.2007,55(1):131-139.
    1 Park J,Lakes R S.Biomaterials:an introduction[M].New York:Springer,2007:561.
    2 Bang-Yen Chou,Edward Chang.Microstructural characterization of plasma-sprayed hydroxyapatite-10 wt%ZrO_2 composite coating on titanium.Biomaterial,1999,20:1823-1832.
    3 Suda Y,Kawasaki H,Ohshima T,Nakashima S,Kawazoe S,Toma T.Hydroxyapatite coatings on titanium dioxide thin films prepared by pulsed laser deposition method[J].Thin Solid Films.2006,506-507:115-119.
    4 Bastiaan Feddes,Arjen M.Vredenberg,Martin Wehner,Joop C.G.Wolke,John A.Jansen.Laser-induced crystallization of calcium phosphate coatings on polyethylene(PE).Biomaterial,2005,26:1645-1651.
    5 Hu Y,Miao X.Comparison of hydroxyapatite ceramics and hydroxyapatite/borosilicate glass composites prepared by slip casting[J].Ceramics International.2004,30:1787-1791.
    6 Zhang E,Zou C,Zeng S.Preparation and characterization of silicon-substituted hydroxyapatite coating by a biomimetic process on titanium substrate[J].Surface and Coatings Technology.2009,203(8):1075-1080.
    7 Narayan R J.Hydroxyapatite-diamondlike carbon nanocomposite films[J].Materials Science and Engineering:C.2005,25(3):398-404.
    8 Capuccini C,Torricelli P,Sima F,Boanini E,Ristoscu C,Bracci B,Socol G,Fini M,Mihailescu I N,Bigi A.Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition:In vitro osteoblast and osteoclast response[J].Acta Biomaterialia.2008,4(6):1885-1893.
    9 Chern L J,Chen K S,Ju C P.Biocorrosion behavior of hydroxyapatite/bioactive glass plasma sprayed on Ti6A14V[J].Materials Chemistry and Physics.1995,41(4):282-289.
    10 Chern L J,Lin H J,Ding S J,Ju C P.Characterization of immersed hydroxyapatite-bioactive glass coatings in Hank's solution[J].Materials Chemistry and Physics.2000,64(3):229-240.
    11 Nistor L C,Ghica C,Teodorescu V S,Nistor S V,Dinescu M,Matei D,Frangis N,Vouroutzis N,Liutas C.Deposition of hydroxyapatite thin films by Nd:YAG laser ablation:a microstructural study[J].Materials Research Bulletin.2004,39(13):2089-2101.
    12 Katto M,Nakamura M,Tanaka T,Matsutani T,Kuwata M,Nakayama T.Hydroxyapatite coatings using novel pulsed laser ablation methods[J].Surface and Coatings Technology.2003,169-170:712-715.
    13 J.L.Arias,M.B.Mayor,J.Pou,B.Leon,M.Perez-Amor.Pulse repetition rate dependence of hydroxylapatite deposition by laser ablation.Vacuum,2002,67:653-657.
    14 Arias J L,Garc S F,Mayor M B,Chiussi S,Pou J,Le B,P A M.Physicochemical properties of calcium phosphate coatings produced by pulsed laser deposition at different water vapour pressures[J].Biomateriais.1998,19(10):883-888.
    15 Eason R.Pulsed Laser Deposition of Thin Films[M].Hoboken,New Jersey:Wiley-Interscience,2007.
    16 Clupper D C, Mecholsky J J, Latorre G P, Greenspan D C. Bioactivity of Bioglass?-steel and Bioglass?-titanium laminate composites[J]. Journal of Orthopaedic Science. 2001, 20(10): 959-960.
    
    17 Kassing R, Petkov P, Kulisch W, Popov C. Functional Properties of Nanostructured Materials[M]. Netherlands: Springer, 2006: 183-196.
    
    18 Shih W J, Wang J W, Wang M C, Hon M H. A study on the phase transformation of the nanosized hydroxyapatite synthesized by hydrolysis using in situ high temperature X-ray diffraction[J]. Materials Science and Engineering: C. 2006,26(8): 1434-1438.
    
    19 Luo P, Nieh T G. Synthesis of ultrafine hydroxyapatite particles by a spray dry method[J]. Materials Science and Engineering: C. 1995, 3(2): 75-78.
    
    20 Blind O, Klein L H, Dailey B, Jordan L. Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates[J]. Dental Materials. 2005, 21(11): 1017-1024.
    
    21 Nistor L C, Ghica C, Teodorescu V S, Nistor S V, Dinescu M, Matei D, Frangis N, Vouroutzis N, Liutas C. Deposition of hydroxyapatite thin films by Nd:YAG laser ablation: a microstructural study[J]. Materials Research Bulletin. 2004, 39(13): 2089-2101.
    
    22 Zeng H, Lacefield W R. XPS, EDX and FTIR analysis of pulsed laser deposited calcium phosphate bioceramic coatings: the effects of various process parameters[J]. Biomaterials. 2000, 21(1): 23-30.
    
    23 Serra J, PGonzález, Liste S, Chiussi S, BLe6n, MPérez-amor, Yanen H O, Hupa M. Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses[J]. Journal of Materials Science: Materials in Medicine. 2002,113(12): 1221-1225.
    
    24 Liste S, GonálezP, Serra J, Borrajo J P, Chiussi S, Le6nB, Pérez-amorM, GarcLópezJ, Ferrer F J, Morilla Y, Respaldiza M A. Study of the stoichiometry transfer in pulsed laser deposition of bioactive silica-based glasses[J]. Thin Solid Films. 2004,453-454: 219-223.
    
    25 Zhao Y, Song M, Chen C, Liu J. The role of the pressure in pulsed laser deposition of bioactive glass films[J]. Journal of Non-Crystalline Solids. 2008, 354(33): 4000-4004.
    
    26 Arias J L, Mayor M B, Pou J, Leng Y, Le B, Amor M P. Micro- and nano-testing of calcium phosphate coatings produced by pulsed laser deposition[J]. Biomaterials. 2003, 24(20): 3403-3408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700