多相材料有效性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多相介质有极为广泛的应用,但是关于它的有效性质的已有各种方法都存
     在不同程度的问题,有的甚至在概念上含糊不清。本文着重对多相材料的有效
     性质做了理论研究。并与文献中和郑泉水老师的研究小组所做的大量数值结果
     做了对比。具体完成的工作可划分为两个方面:
     1.提出和发展了如下新方法:
     IDD法和等效自洽法:提出并发展了具有简单表示、计及夹杂形状和空间
     分布、适合于多相和各向异性材料的具有体积分数二阶精度的新的细观力
     学方法-相互作用直推法(IDD)。大量数值模拟和试验结果表明,IDD确
     实具有很好的精度,可望用之替换普遍采用的Mori-Tanaka方法。同时IDD
     可以普遍适用于各种有效线性物理特征的估计。本文具体针对弹性、电导
     和热弹性给出了IDD估计。
     等效加载法:提出了等效加载法,结合IDD估计给出的等效载荷,使得可
     以用简单的半解析的方法,达到分析缺陷间的空间分布相互作用并获得较
     精确的局部场的目的。该方法是宏细观关联的范例,做为一个应用,该方
     法简便地给出了等效强度。
     复合相互作用模型:针对具有多重拓扑结构的细观准周期复合材料,在
     IDD估计的基础上,提出了复合相互作用的概念,并具体应用于分析核工
     业材料Zr-2.5Nb。复合相互作用概念对于分析一大类高等材料提供了新的
     处理思路。克服了传统细观力学方法只能处理简单空间分布的局限。
     2.指出并修正了现有方法中普遍忽视的几个关键缺陷问题:
     证明了Eshelby张量的若干性质,在此基础上分析了以伪面力法为代表的
     一类叠加法应用于分析有限大和无限大复合材料时所存在的问题,并分别
     提出了简单修正方法;
     证明了广义自洽法与无关性定理的一致性。提出了利用无关性的内禀概
     念,不仅可以保证数值模拟结果的无关性,还可以用来化简形式;
     讨论了Cauchy-Voigt争论在平面问题中的结论,证明了对于特定的平面压
     电问题,对应的Cauchy-Voigt争论中Cauchy的观点是正确的,由此也发现
     了CLM不变性平移的内在本质。
There have been a lot of studies on the effective properties of multiphase materials widely used in industry. But various existing methods have their own drawbacks, some even ambiguous in concepts. This dissertation focuses on the theoretical study of some problems associated with the effective properties of multiphase materials, and compared the results with the enormous numerical works accomplished by the research group of Prof. Zheng. The specific works finished are listed below:
    1.Developed the following new methods
    IDD and Effective self-consistent method: Starting from the topological structure and spatial distribution, a new micromechanical method-interaction direct derivation (IDD) was developed, which accounts for inclusion shapes and spatial distribution, suitable for multiphase and anisotropic materials, while having the precision up to the second order of volume fraction. Comparison with various numerical and experimental results showed that IDD indeed has excellent precision and it can expected to replace the widely used Mori-Tanaka method. At the same time, IDD is applicable for the estimation of various effective linear physical properties. This dissertation gives the IDD estimation for elasticity, electric conductivity and thermoelasticity specifically.
    Equivalent loading method: In combination with IDD, this method can use simple semi-analytic method to analyze the spatial distribution induced interactions among defects and to give more precise local fields. This method is an paradigm of micro-macro correlation, as an application, it gives effective strength quite easily.
    Double interaction model: Based on IDD estimate, the concept of double interaction was proposed for micro-quasi-periodic composites with multi-level topological structure. As an example, this concept is used to analyze Zr-2.5Nb used in nuclear industry. This concept also provides a new approach for analyzing a wide class of advanced materials, in contrast with traditional micro -mechanical models which can only deals with simple spatial distributions.
    2.Pointed out and revised the several essential drawbacks of existing method:
    A series of properties of Eshelby tensor were proved. Based on these properties, the problems associated with the kind of method similar to pseudo traction
    
    
    
    
    method for both finite and infinite composites were analyzed, simple revisions were proposed correspondingly.
    The consistency between the generalized self-consistent method and the independence theorem was confirmed. The concept of intrinsic was proposed, which utilizes the independence properties, this concept can both guarantee the independence of the numerical simulation results and simplify the results.
    The plane version of Cauchy-Voigt dispute was discussed. It is proved that for certain plane piezoelectricity problem, Cauchy's view is correct. As a byproduct, the essence of the CLM invariant transformation was discovered.
引文
1. Nghiem S V, Kwok R, Kong J A, et al. An electrothermodynamic model with distributed properties for effective permittivities of sea ice. Radio Sci., 1996, 31(2) : 297.
    2. Woo C H. in: Proceeding on the international conference on materials for nuclear reactor core applications. London: British Nuclear Energy Society, 1987. 65.
    3. Tome C N, So C B, Woo C H. Philosophical Magazine A.1994, 67(4) : 917-930
    4. Oleinik O.A, Shamaev A S, Yosifian, G A. Mathematical Problems in Elasticity and Homogenization. North-Holland, New York. 1992.
    5. Huang Y, Hwang K C, Hu K X, Chandra, A. A unified energy approach to a class of micromechanics models for composite materials Acta Mechanica Sinica, 1995, 11(1) : 59-75.
    6. Nemat-Nasser S, Hori M. Micromechanics: Overall properties of heterogeneous elastic solids, Lecture Notes. initiated at UCSD, 1993.
    7. Budiansky Y. On the elastic moduli of some heterogeneous material J. Mech. Phys. Solids, 1965, 13: 223-7.
    8. Hill R. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids, 1965, 13: 213-222
    9. Norris A N.A differential scheme for the effective moduli of composites. Mech. Mater., 1985,4: 1-16.
    10. Christensen R M, Lo K H. Solutions for effective shear properties in three phase sphere and cylinder models J. Mech. Phys. Solids, 1979, 27: 315-330.
    11. Mori T, Tanaka K.Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta. Metall., 1973, 21:571-583.
    12. Weng G J. Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int. J. Eng. Sci., 1984, 22: 845-856.
    13. Benveniste Y. A new approach to the application of Mori-Tanaka's theory in composite materials. Mech. Mater., 1987, 6: 147-157.
    14. Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Roy. Soc. London, 1957, A241, 376-396.
    15. Kachanov M, Tsukrov 1, Shafiro B. Effective moduli of solids with cavities of various shapes. Appl. Mech. Rev., 1994, 47, S151-S174.
    16. Markenscoff X. Inclusions with constant eigenstress. Journal of the Mechanics and Physics of Solids, 1998, 46(12) : 2297-2301
    17. Kerner E H. Proc. Phys. Soc. Lond., 1945, 69b: 808
    18. Smith J C. Correction and extension of van der Poel's method for calculating the shear modulus of a particialate composite. Journal of Research of the National Bureau of Standards, Section a (Physics & Chemistry), 1974, 78A(3) : 355-61
    
    
    19. Smith J C. Simplification of van der Poel's formula for the shear modulus of a particulate composite. Journal of Research of the National Bureau of Standards, Section a (Physics & Chemistry), 1975, 79A(2) : 419-23
    20. Aboudi J, Benveniste Y. The effective moduli of cracked bodies in plane deformations. Engng. Fracture. Mech., 1987,26: 171-184.
    21. Huang Y, Hu K X, Chandra A. A generalized self-consistent mechanics methods for microcracked solids J. Mech. Phys. Solids, 1994, 42(8) : 1273-1291.
    22. Kachanov M. Effective elastic properties of cracked solids: critical review of some basic concepts. Appl. Mech. Rev., 1992, 45(8) : 304.
    23. Ponte-Castaneda P, Willis J R. The effect of spatial distribution on the effective behavior of composite materials and cracked media. J. Mech. Phys. Solids, 1995,43: 1919-1951.
    24. Hori M, Nemat-Nasser S. Double-inclusion model and overall moduli of multi-phase composites. Mech. Mater., 1993, 14: 189-206.
    25. Christensen R M. A critical evaluation for a class of micro-mechanics models. J. Mech. Phys. Solids, 1990, 38: 379-404.
    26. Christensen R M. Two theoretical elasticity micromechanics models. Journal of Elasticity, 1998,50(1) : 15-25.
    27. Hashin Z. The elastic moduli of heterogeneous materials. J. Appl. Mech., 1962, 29: 143-150.
    28. Cohen L J, Ishai O. The elastic properties of three-phase composites. J. Composite Mater., 1967, 1:390.
    29. Huang Y, Hu K X, Wei X, Chandra A. A generalized self-consistent mechanics method for composite materials with multiphase inclusions. Journal of the Mechanics & Physics of Solids, 1994, 42(3) :.491-504.
    30. Hill R. The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. A, 1952, 65: 349-354.
    31. Voigt W. Uber die Beziehung zwischen den beiden Elastizit. atskonstanten isotroper Koerper, Wied. Ann., 38 (1889) ,573-587.
    32. Reuss A. Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizit. atsbedingung fur Einkristalle,Z. angew. Math. Mech., 1929, 9: 49-58.
    33. Hashin Z, Shtrikman S A variational approach to the theory of the elastic behaviour of polycrystals. J. Mech. Phys. Solids, 1962, 10: 343-352.
    34. Willis J R. Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J. Mech. Phys. Solids, 1977, 25: 185-202
    35. Willis J R. Variational principles and bounds for the overall properties of composites. In Continuum Models for Discrete Systems (ed. J. W. Provan). University of Waterloo Press, Waterloo. 1978: 185-215
    36. Weng G J. The theoretical connection between Mori-Tanaka's theory and the Hashin-Shtrikman-Walpole bounds. Int. J. Engng Sci., 1990,28: 1111-1120
    
    
    37. Huang Y, Hu K X. A generalized self-consistent mechanics method for solids containing elliptical inclusions. J. Appl. Mech., 1995, 62: 566-72.
    38. Zheng Q S, Hwang K C. Reduced dependence of defect compliance on matrix and inclusion elastic properties in 2D elasticity Proc. Roy. Soc. London, 1996, A452: 2493-2507
    39. Zheng Q S, Hwang K C. Two dimensional elastic compliances of materials with holes and microcracks Proc. Roy. Soc. London, 1997, A453:353-364.
    40. Fotiu P A, Nemat-Nasser S. A universal integration algorithm for rate-dependent elastoplasticity. COM PUT. STRUCT., 1996, 59(6) : 1173-1184
    41. Nemat-Nasser S, Li Y F. An algorithm for large-scale computational finite-deformation plasticity. Mechanics of Materials, 1994, 18(3) : 231-64.
    42. Huang Y, Chandra A, HU K X. The numerical calculation of two-dimensional effective moduli for microcracked solids J. Mech. Phys. Solids, 1996, 42: 1273-1291
    43. Fang Daining, Liu Tieqi. On the effect of fiber shape and packing array on elastic properties of fiber-polymer-matrix composites. Int. J. Polymeric Mater., 1996, 34: 75-90.
    44. 陈常青,王晓明,沈亚鹏。线弹性空洞的一种半解析解,力学学报, 151.
    45. Isida M. Laurent series expansion for internal crack problems, in Method of analysis and solutions of crack problems, Chap. 2, edited by G. C. Sih, Noordhoff, Leyden, 1973.
    46. Horii H, Nemat-Nasser S. Elastic fields of internacting inhomogeneities. Int. J. Solids Struct., 1985, 21(7) : 73 1-45.
    47. Kachanov Mark. Elastic solids with many cracks a simple method of analysis. Int. J. Solids Struct., 1987, 23(1) : 23-43.
    48. Delameter W R, Herrmann G, Barnett D M. Weakening of an elastic solid to rectangular array of cracks. J. Appl. Mech., 1975,42(1) : 74-80.
    49. Isida M, Ushijima N, Kishine N. Rectangular plates, strips and wide plates containing internal cracks under various boundary conditions, trans. Japan Soc. Mech. Engrs., 1981, A 47(413) , 27-35
    50. Delameter W R, Herrmann G, Barnett D M. Erratum. J. Appl. Mech., 1977, 44: 190.
    51. Horii H, Sahasakmontri K. Mechanics properties of cracked solids: validity of self-consistent method, In: Weng G, et al. eds 'Micromechanics and Inhomogeneity', Springer-Verlag.. 1990: 137-159.
    52. Muskhelishvili N 1. Some basic problems in the mathematical theory of elasticity. Noordhoff, Groningen, 1953.
    53. Pak Y E. Electroelastic properties of cracked piezoelectric materials under longitudinal shear. Mech. Mater., . 1996, 24: 287-303.
    54. Ju J W, Chen T M. Effective elastic moduli of two-dimensional brittle solids with interacting microcracks. I. Basic formulations J. Appl. Mech., 1994, 61, 349-357.
    55. Sneddon 1 N, Lowengrub M. Crack problems in the classical theory of elasticity. John Wiley
    
     and Sons, New York, 1969.
    56. Chaboche J L. Continuum damage mechanics: Parts I and Ⅱ. J. Appl. Mech., 1988, 55: 59-72.
    57. Lemaitre J. A course on damage mechanics. Berlin: Springer, 1992.
    58. Sidoroff F. Description of anisoropic damage application to elasicity. in IUTAM Colloquium on Physical Nonliearities in Structural Analysis. Berlin: Springer. 1981: 237-44.
    59. Zheng Q S, Betten J. On damage effecive stress and equivalence hypothesis. Int. J. Damage Mech., 1996,5: 219.
    60. Zheng Q S. Theory of representations for tensor funtions a unified invariant approach to constitutive equations. Appl. Mech. Rev., 1994, 47: 545-587.
    61. 高蕴昕,郑泉水,余寿文.各向同性弹性损伤的双标量描述.力学学报, 1996,28(5) : 542-9.
    62. 沈为.各向同性损伤应满足的条件.力学与实践, 1992,14:20-3.
    63. Zheng Q S, Collins I F. The relationship between damage variables and their evolution laws and microstructural and physical properties. Proceedings of the Royal Society of London Series A-Mathematical Physical & Engineering Sciences, 1998, 454(1973) : 1469-98.
    64. Cherkaev A, Lurie K, Milton G W. Invariant properties of the stress in plane elasticity and equivalent classes of composites Proc. R. Soc. Lond. A., 1992, 438: 519-529.
    65. Moran B, Grosz M. Stress invariance in plane anisotropic elasticity. Modelling Simul. Mater. Sci. Eng., 1994,2:677-688.
    66. Dundurs J, Markenscoff X. Invariance of stresses under a change in elastic compliances. Proc. R. Soc. Lond., 1993, A443: 289-300
    67. Zheng Q S. A unified invariant description of micromechanically-based effective elastic properties for two-dimensional damaged solids. Mech. Mater., 1996, 25, 273--89.
    68. 文铭,二维损伤固体损伤常数取值范围的研究:[学士学位论文]。北京:清华大学工程力学系 , 1996, 6 .
    69. Chen T. Further results on invariant properties of the stress in plane elasticity and its extension to piezoelectricity. Mech. Res. Commun., 1997, 24(2) : 229-230.
    70. Zheng Q S, Chen T. Generalized plane deforamtion of electromagnnetic thermoelastic solids I. Correspondence and invariance shifts. Proc. R. Soc. Lond., 1999, A455: 1283-1299
    71. Zheng Q S, Chen T. Generalized plane deforamtion of electromagnnetic thermoelastic solids Ⅱ. Further results on invariance shifts and reduced dependences. Proc. R. Soc. Lond., 1999, A455: 1301-1314
    72. Norris A N. Stress invariance and redundant moduli in three-dimensional elasticity. Proc. R. Soc. Lond. A 1999. 455: 4097-4116.
    73. Mura T. Micromechanics of defects in solids, 2nd edition. The Hague, The Netherlands: Martinus Nijhoff Publishers. 1982.
    74. Zheng Q S, Du D X. An explicit and univerally applicable estimate for the effective
    
     properties of multiphase composites which accounts for the inclusion distribution. to appear in J. Mech. Phys. Solids. 2000
    75. Yang H C, Chou Y T. Generalized Plane problems of elastic inclusions in anisotropic solids. J. Appl. Mech., 1976:424.
    76. Thorpe M F. The conductivity of a sheet containing a few polygonal holes and/or superconducting inclusions. P. Roy. Soc. Lond. A, 1992, 437(1899) : 215-27
    77. Markov K Z. Elementary micromechanics of heterogeneous media. Chapter 1 in: Heterogeneous Media: Modelling and Simulation, Birkhauser Boston, 1999: 1-162, eds. K.Z. Markov & L. Preziosi.
    78. Milgrom M, Shtrikman S. Linear response of two-phase composites with cross moduli: Exact universal relations. Phys. Rev. A, 1989, 40: 1568-1575
    79. Milgrom M, Shtrikman S. Linear response of polycrystals to coupled fields: Exact relations among the coefficients. Phys. Rev. B, 1989, 40: 5991-5994
    80. Buonanno G, Carotenuto A. The effective thermal conductivity of packed beds of spheres for a finite contact area. NUMERICAL HEAT TRANSFER PART A, 2000, 37:(4) : 343-357
    81. Buryachenko V A, Rammerstorfer F G. On the thermo-elasto-statics of composites with coated randomly distributed inclusions, International Journal of Solids and Structures. 2000, 37:3177-3200.
    82. Dvorak G J, Benveniste Y. On transformation strains and uniform fields in multiphase elastic media. Proc. Roy. Soc.London, 1992, A437: 291-310.
    83. Pecullan S, Gibiansky L V, Torquato S. Scale effects on the elastic behavior of periodic and hierarchical two-dimensional composites. J. Mech. Phys. Solids, 1999, 47(7) : 1509-1542
    84. Han X L, Wang T C. Interacting circular inhomogeneities. Key Engineering Materials, 1998, 145-149, Part 1:29-34
    85. Wen Ming, Zheng Quanshui, Du Danxu. Some basic problems in numerically simulating effective properties and local fields of composite materials. Acta Mechanica Solida Sinica, 1999, 12(4) : 328-339.
    86. Du D X, Zheng Q S, Gao Y X. Consistency between independence theorems and generalized self-consistent method. Acta Mechanica Sinica, 1997, 13(4) : 355-365.
    87. Huo B, Zheng Q S. Effect of dentin tubules to the mechanical properties of dentin. Part I: stress-strain relations and strength criterion. 1999, 15(4) : 355-365.
    88. Streiffer S K, Parker C B, et al. Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments. J. Appl. Phys. 1998, 83(5) : 2742-2753
    89. Liu, X. D., Umemoto, M., Deng, W., Xiong, L. Y., Ping, D. H. and Lu, K. Characterization of nanocrystalline Ni_(33) Zr_(67) alloy J. Appl. Phys. 1997, 81(3) : 1103-1107.
    90. Woo C H. Polycrystalline effects on irradiation creep and growth in textured zirconium. Journal of Nuclear Materials, 1985, 131(2-3) : 105-17
    91. Lebensohn R A. Tome C N. A study of the stress state associated with twin nucleation and
    
     propagation in anisotropic materials. Philosophical Magazine A-Physics of Condensed Matter Defects & Mechanical Properties, 1993,.67(1) : .187-206.
    92. Hill R.. J. Mech. Phys. Solids, 1965, 13: 89.
    93. Hutchinson J W. Elastic-plastic behavior of polycrystalline metals and composites. Proceedings of the Royal Society of London Series A-Mathematical & Physical Sciences, 1970, 319(1537) , 247-72.
    94. Gao Y X, Zheng Q S,.Yu S W. Interactors and third-order interacting model for effective elastic properties of a damaged solid. Tsinghua Sci. Technology 1997, 2(2) : 633-640.
    95. Milgrom M, Shtrikamn S. ENERGY OF INCLUSIONS IN LINEAR MEDIA EXACT SHAPE-INDEPENDENT RELATIONS Journal of the Mechanics and Physics of Solids 1992, 40(5) : 927
    96. Love A E H. A Treatise on the Mathematical Theory of Elasticity. New York Dover Publications, 4th ed., 1944.
    97. Rodin G J. Eshelby's inclusion problem for polygons and polyhedra. J. Mech. Phys. Solids. 1996,44(12) : 1977-1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700