纳米团簇的结构和相变及纳米线断裂机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于其所表现出来的奇异的物理、化学性质以及潜在的应用前景而引起了广泛的关注。纳米材料中两个突出的代表,原子(或分子)团簇和金属纳米线,作为连接宏观和微观材料的桥梁,各自具有不同的物理和化学性质,因而吸引着众多的研究者。
     在本论文中,我们主要做了以下研究工作:
     1以分子动力学的计算机模拟方法为基础,提出了一种虚拟探针的方法,并用它来研究团簇的生长过程。在研究中,我们发现了团簇在生长过程中出现的生长路径的分裂与合并的现象,揭示了为何包含某种特定原子数目的团簇在质谱分析实验中具有较高的丰度。
     2对团簇表面原子给出了一个明确的定义。提出了准确划分团簇表面原子和内部原子的理论模型数学依据,为在计算机模拟过程中识别团簇的表面原子及其壳层结构提供了一个可行的数学物理方法。利用此定义,我们发现原子层对于团簇的内部结构存在压缩作用,原子层数越多,对内部原子结构的压缩效果越明显。这种压缩效应解释了为何小团簇更趋向于呈现出具有近似的球形对称的正二十面体型结构。
     3我们研究了由于团簇表面顶点处原子的迁移所引起的表面熔化现象,扩展了对于小团簇表面熔化机理的认识。发现了在受到初始扰动的LJ147团簇中存在的集体振荡现象。在结构弛豫过程中,集体振荡模式会逐渐转变为团簇内原子的无规热运动,并且,随着初始扰动强度的增大,由集体振荡模式向无规热运动方式转变的速度加快。
     4利用经典分子动力学方法,对<110>取向Au纳米线分别在恒定作用力和不同温度下,以及恒定温度和不同拉力作用下的断裂微观过程进行了研究。发现在恒定拉力作用下,Au纳米线发生断裂的时间随着温度的降低而逐渐增加;在恒定温度下,随着拉力的增加,纳米线的断裂时间逐渐变短。研究中发现了由拉力引起的Au纳米线的晶格取向由<110>方向到<100>方向的转变现象。
Nanomaterials have been widely attended because of their novel physical and chemical properties, and the potential application. As a bridge between an isolated atom and bulk material, atomic cluster and nanowire attract increasingly interest.
     1. Basing on the classic molecular dynamic method, we proposed a kind of virtual prober method, using which, we have explored the growing process of Lennard-Jones clusters. The splitting and merging of the growth path are found. Results explained why some clusters containing atoms of specified numbers are prominent in mass spectrum.
     2. A definition of the surface atom of cluster is presented in the work, basing on which, we have found the compressing effect of the atomic shells on the internal structure of the cluster, more atomic shells will provide stronger compression on the cluster structure. Results reveal that compression from the outermost surface atomic shells is responsible for the dominance of icosahedra in small clusters.
     3. The study reveals that the surface melting of 147-atom Lennard-Jones (LJ147) cluster starts from the migrating and floating of the vertex atoms on the surface, which generally extends the understanding on surface melting of clusters. The collective vibration mode in LJ147 cluster was found and the attenuation of which was studied.
     4. Using classic molecular dynamics method, we have studied the fracture of <110> Au nanowire. Results reveal that lower temperature will prolong the fracture of Au nanowire, while stronger tensile stress will shorten the time needed by the nanowire to fracture. We found that a specified tensile stress will drive the nanowire transform from initial <110> orientation to <100> orientation.
引文
[1] 王广厚,团簇的结构和奇异性质,物理学进展,1993,13(1-2):266~278
    [2] Garzón I. L., Long X. P., Kawai R. et al., Structural and dynamical properties of van der Waals clusters with impurities,Chem. Phys. Lett. 1989,158(6):525~530
    [3] Garzón I. L., Long X. P., Kawai R. et al., Structure and dynamics of Lennard-Jones clusters with impurities, Z. Physik D, 1989, 12(1-4):81~83
    [4] Rey C. and Gallego L. J., Structure, melting, and order tendencies of A13B13 Lennard-Jones heteroclusters with additive and nonadditive collision diameters, Phys. Rev. B, 1995, 51(19):13691~13696
    [5] Lopez G. E. and Freeman D. L., A study of low temperature heat capacity anomalies in bimetallic alloy clusters using J-walking Monte Carlo methods, J. Chem. Phys., 1993, 98(2):1428~1435
    [6] Zhang S. B., Cohen M. L. and Chou M. Y., Electronic shell structure of simple metal heteroclusters, Phys. Rev. B, 1987, 36(6):3455~3458
    [7] R?thlisberger U. and Andreoni W., Metal clusters with impurities: NanMg (n=6?9, 18), Chem. Phys. Lett., 1992, 198(5):478~482
    [8] Yannouleas C., Jena P. and Khanna S. N., Optical resonances in bimetallic clusters and their relation to the electronic structure, Phys. Rev. B, 1992, 46(15):9751~9760
    [9] de Coulon V., Reuse F. A. and Khanna S. N., Effect of icosahedral and cuboctahedral symmetries on the electronic and magnetic structure of MnAln, Phys. Rev. B, 1993, 48(2):814~828
    [10] Cheng H.–P., Barnett R. N. , and Landman U., Energetics and structures of aluminum-lithium clusters, Phys. Rev. B, 1993, 48(3):1820~1824
    [11] Bona?i?-Koutecky V., Fantucci P., Fuchs C., et al., Nature of excitations in small alkali metal and other mixed clusters, Z. Physik D, 1993, 26(1-4):17~22
    [12] Bol A., Alonso J. A., López J. M., Properties, Dynamics, and Electronic Structure of Condensed System Density functional theory of the collective electronic excitations in NanKn clusters, Intern. J. Quantum. Chem., 1995, 56(6):839~846
    [13] López M. J., P. A. Marcos, and J. A. Alonso, Structural and dynamical properties of Cu–Au bimetallic clusters, J. Chem. Phys., 1996, 104(3):1056~1066
    [14] Cleri F. and Rosato V., Tight-binding potentials for transition metals and alloys, Phys. Rev. B, 1993, 48(1):22~33
    [15] Jellinek J. and Krissinel E. B., NinAlm alloy clusters: analysis of structural forms and their energy ordering, Chem. Phys. Lett., 1996, 258(1-2):283~292
    [16] Mistriotis A. D., Flytzanis N. and Farantos S. C., Potential model for silicon clusters, Phys. Rev. B, 1989, 39(2):1212~1218
    [17] Li H., Wu S. C., Tian D., et al., Ultrathin films of Rh on Au{001} and Rh on Ag{001}: Growth mode and magnetism, Phys. Rev. B, 1991, 44(3):1438~1441
    [18] Etters R. D., Danliowiez R. and Dugan J., Properties of small ArN–1K + ionic clusters, J. Chem. Phys. 1997, 67(4): 1570~1575
    [19] Bréchignac C., Cahuzac Ph., Carlier F., et al., Alkali-metal clusters as prototypes of metal clusters, J. Chem. Soc., Faraday Trans., 1990, 86(13):2525~2531
    [20] Hoare M. R., Structure and Dynamics of Simple Microclusters in Advances in Chemical Physics Vol. 40, Wiley, New York, 1979
    [21] Clemenger K., Ellipsoidal shell structure in free-electron metal clusters, Phys. Rev. B, 32(2):1359~1362
    [22] Li J.-L., Jia J.-F., Liang X.-J., et al., Spontaneous Assembly of Perfectly Ordered Identical-Size Nanocluster Arrays, Phys. Rev. Lett. 2002, 88(6): 066101/1~4
    [23] Cui Y., Wei Q., Park H., et al., Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical, Science, 2001, 293(5533):1289~1292
    [24] Duan X., Huang Y., Agarwal R., et al., Single-nanowire electrically driven lasers, Nature, 2003, 421(6920):241~245
    [25] Thurn-Albrecht T., Schotter J., K?stle G. A., et al., Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates, Science, 2000, 290(5499):2126~2129
    [26] Gudiksen M. S., Lauhon L. J., Wang J., et al., Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature, 2002, 415(6872):617~620
    [27] Landman U., Luedtke W. D., Salisbury B. E., et al., Reversible Manipulations of Room Temperature Mechanical and Quantum Transport Properties in Nanowire Junctions, Phys. Rev. Lett. 1996, 77(7):1362~1365
    [28] Lauhon L. J., Gudiksen M. S., Wang D. et al., Epitaxial core?shell and core?multishell nanowire heterostructures, Nature, 2002, 420(6911):57~61
    [29] Cui Y., Lieber C. M., Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks, Science, 2001, 291(5505):851~853
    [30] 王广厚,团簇物理学,上海:上海科学技术出版社,2003
    [31] 王广厚,原子团簇的稳定结构和幻数,物理学进展,2000,20(1):52~92
    [32] Zeiri Y., Prediction of the lowest energy structure of clusters using a genetic algorithm, Phys.Rev.E,1995, 51(4):R2769~R2772
    [33] Xiang Y., Jiang H., Cai W. et al., An Efficient Method Based on Lattice Construction and the Genetic Algorithm for Optimization of Large Lennard-Jones Clusters, J. Phys. Chem. A, 2004, 108(16):3586~3592
    [34] Cai W., Feng Y., Shao X., et al., Optimization of Lennard-Jones atomic clusters, J. Mol. Struct.-THEOCHEM, 2002, 579(1):229~234
    [35] Krivov S. V., Hierarchical global optimization of quasiseparable systems: Application to Lennard-Jones clusters, Phys. Rev. E, 66:025701/1~4
    [36] Wales D. J. and Scheraga H. A., Global optimization of clusters, crystals, and biomolecules, Science, 1999, 285(5432):1368~1372
    [37] Doye J. P. K. and Wales D. J., Thermodynamics of global optimization, Phys. Rev. Lett., 1998, 80(7):1357~1360
    [38] Locatelli M. and Schoen F., Fast global optimization of difficult Lennard-Jones clusters, Computational Optimization and Applications, 2002, 21(4-7):55~70
    [39] Munro L. J., Tharrington A. and Jordan K. D., Global optimization and finite temperature simulations of atomic clusters:Use of XenArm clusters as test systems, Computer Physics Communications, 2002, 145:1~23
    [40] Lee J., Lee I.-H. and Lee J., Unbiased global optimization of Lennard-Jones clustes for N≤201 using the conformational space annealing method, Phys. Rev. Lett., 2003, 91(8):080201/1~4
    [41] Metropolis N., Rosenbluth A.W., Rosenbluth M. N., et al., "Equation of State Calculations by Fast Computing Machines," J. Chem. Phys., 1953, 21(6):1087~1092.
    [42] Penna T. J. P., Traveling salesman problem and Tsallis statistics, Phys. Rev. E, 1995, 51(1):R1~R3.
    [43] Tsallis C., Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 1988, 52(1-2):479~487
    [44] Lemes M. R., Zacharias C. R. and Dai Pino, Jr. A., Generalized simulated annealing: Application to silicon clusters, Jr.,Phys. Rev. B, 1997, 56(15):9279~9281
    [45] Holland J. H., Adaptation in Natural and Artificial Systems (The University of Michigan Press, Ann Arbor, 1975).
    [46] Goldberg D. E., Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, MA, 1989).
    [47] Deaven D. M. and Ho K. M., Molecular Geometry Optimization with a Genetic Algorithm, Phys. Rev. Lett., 1995, 75(2):288~291
    [48] Lemes M. R., Marim L. R., and Dal Pino, Jr., A., Application of artificial intelligence to search ground-state geometry of clusters, Phys.Rev. A., 2002, 66(2):023203/1~5
    [49] Marim L. R., Lemes M. R., and Dal Pino, Jr., A., Neural-network-assisted genetic algorithm applied to silicon clusters, Phys. Rev. A, 2003, 67(3):033203/1~8
    [50] Wales D. J. and Doye J. P. K., Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms, J. Phys. Chem. A, 1997, 101(28):5111~5116
    [51] Doye J. P. K. and Wales D. J., Magic numbers and growth sequences of small face-centered-cubic and decahedral clusters, Chem. Phys. Lett., 1995, 247(4-6): 339-347
    [52] Doye J. P. K., Wales D. J. and Berry R. S., The effect of the range of the potential on the structures of clusters, J. Chem .Phys., 1995, 103(10):4234~4249
    [53] Mayer M. G., On Closed Shells in Nuclei. II, Phys. Rev., 1949, 75(12):1969~1970
    [54] Echt O., Sattler K. and Rechnagle E., Magic Numbers for Sphere Packings: Experimental Verification in Free Xenon Clusters, Phys. Rev. Lett., 1981, 47(16):1121~1124
    [55] Tománek D. and Schlüter M. A., Calculation of Magic Numbers and the Stability of Small Si Clusters, Phys. Rev. Lett., 1986, 56(10):1055~1058
    [56] Knight W. D., Clemenger K., de Heer W. A., et al., Electronic Shell Structure and Abundances of Sodium Clusters, Phys. Rev. Lett., 1984, 52(24):2141~2143
    [57] Ikeshoji T., Hafskjold B., Hashi Y. et al., Molecular Dynamics Simulation for the Formation of Magic-Number Clusters with a Lennard-Jones Potential, Phys. Rev. Lett., 1996, 76(11):1792~1795
    [58] Sakurai M., Watanabe K., Sumiyama K., et al., Magic numbers in transition metal (Fe, Ti, Zr, Nb, and Ta) clusters observed by time-of-flight mass spectrometry, J. Chem. Phys., 1999, 111(1):235~238
    [59] Zimmerman J. A., Eyler J. R., Bach S. B. H., et al., 'Magic number' carbon clusters - Ionization potentials and selective reactivity, J. Chem. Phys., 1991, 94(5):3556~3562
    [60] Harris I. A., Kidwell R. S. and Northby J. A., Structure of Charged Argon Clusters Formed in a Free Jet Expansion, Phys. Rev. Lett., 1984, 53(25):2390~2393
    [61] Frantz D. D., Magic numbers for classical Lennard-Jones cluster heat capacities, J. Chem. Phys., 1995, 102(9):3747~3768
    [62] Frantz D. D., Magic number behavior for heat capacities of medium-sized classical Lennard-Jones clusters, 2001, J. Chem. Phys. 115(13):6136~6157
    [63] 王广厚,团簇物理学,上海:上海科学技术出版社,2003.
    [64] Martin. TP, From atoms to solids, Solid State Ionics, 2000, 131(1):3~12.
    [65] Martin T. P., Bergmann T., G?hlich H. et al., Observation of electronic shells and shells of atoms in large Na clusters, Chem. Phys. Lett, 1990, 172(3-4):209~213
    [66] Brack M., The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches, Rev. Mod. Phys., 1993, 65(3):677~732.
    [67] Wales D. J. and Berry S., Melting and freezing of small argon clusters, J. Chem. Phys., 1990, 92(7):4283~4295
    [68] Bréchignac C., Cahuzac P., Concina B. et al., Caloric curves of small fragmenting clusters, Phys. Rev. Lett., 2002, 89(20):203401/1~4
    [69] Blaise P. and Blundell S. A., Melting of sodium clusters in the extended Thomas-Fermi approximation, Phys. Rev. B, 2001, 63(23):235409/1~5
    [70] Wang J., Ding F., Shen W., et al., Thermal behavior of Cu-Co bimetallic clusters, Solid State Communications, 2001, 119:13~18
    [71] Rytk?nen A., H?kkinen H. and Manninen M., Melting and octupole deformation of Na40, Phys. Rev. Lett., 1998, 80(18):3940~3943
    [72] Schmidt M., Donges J., Th. Hippler et al., Influence of energy and entropy on the melting of sodium clusters, Phys. Rev. Lett., 2003, 90(10):103401/1~4
    [73] 任世伟,用分子动力学等理论方法对纳米团簇相变和 CMR 材料中磁团簇性质的研究:[博士学位论文],天津,天津大学,2001
    [74] Doye J. P. K. and Calvo F., Entropic effects on the size dependence of cluster structure, Phys. Rev. Lett., 2001, 86(16):3570~3573
    [75] Yurtsever E. and Calvo F., Many-body effects on the melting and dynamics of small clusters, Phys. Rev. B, 2000, 62(15):9977~9980
    [76] Wales D. J., Structure, dynamics, and thermodynamics of clusters: tales from topographics potential surfaces, Science, 271:925-929
    [77] Pawlow, P. über die Abh?ngigkeit des Schmelzpunktes von der Oberfl?chenenergie eines festen K?rpers. Z. Phys. Chem., 1909, 65:1~35
    [78] Takagi M., Electron diffraction study of liquid-solid transition of thin metal films, J. Phys. Soc. Jpn., 1954, 9 (3):359–363
    [79] Schmidt M. and Haberland H., Phase transitions in clusters, C. R. Physique, 2002, 3:327~340
    [80] Lai S. L., Guo J. T., Petrova V., et al., Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements, Phys. Rev. Lett., 1996, 77(1):99~102
    [81] Efremov M. Y., Schiettekatte F., Zhang M., et al., Discrete Periodic Melting Point Observations for Nanostructure Ensembles, Phys. Re. Lett., 2000, 85(17):3560~3563
    [82] Peters K. F., Chen J. B., Chung Y. W., Melting of Pb nanocrystals, Phys. Rev. B, 1998, 57(21):13430~13438
    [83] Castro T., Reifenberger R., Choi E., et al., Size-dependent melting temperature of individual nanometer-sized metallic clusters, Phys. Rev. B, 1990, 42(13):8548~8556
    [84] Berry R. S., When the melting and freezing point are not the same, Sci. Am., 1990, 263:50~56
    [85] Couchman P. R., Jesser W. R., Thresholds and breakpoints in ecosystems with a multiplicity of stable states, Nature, 1977, 269:471~477
    [86] Martin T. P., Shells of atoms, Phys. Rep., 1996, 273:199~241
    [87] Schmidt M., Kusche R. T., Von Issendorff B., et al., Irregular variations in the melting point of size-selected atomic clusters, Nature, 1998, 393(6682):238~240
    [88] Kusche R., Hippler Th., Schmidt M., et al., Melting of free sodium clusters,Eur. Phys. J. D., 1999, 9(1-4):1~4
    [89] Shvartsburg A. A. and Jarrold M. F., Solid Clusters above the Bulk Melting Point, Phys. Rev. Lett., 2000, 85(12):2530~2532
    [90] Joshi K. and Kanhere D. G., Thermodynamics of tin clusters, Phys. Rev. B, 2003, 67(23):235413/1~8
    [91] Breaux G. A., Neal C. M., Cao B., et al., Phys. Rev.B, 2005, 71(7):073410/1~4
    [92] Majumder C., Kumar V., Mizuseki H., et al., Small clusters of tin: Atomic structures, energetics, and fragmentation behavior, Phys. Rev. B, 2001, 64(23):233405/1~4
    [93] Breaux G. A., Benirschke R. C., Sugai T., et al., Hot and Solid Gallium Clusters: Too Small to Melt, Phys. Rev. Lett.,2005, 91(12):215508/1~4
    [94] Chacko S., Joshi K., Kanhere D.G., et al.,Why Do Gallium Clusters Have a Higher Melting Point than the Bulk?, Phys. Rev. Lett., 2004, 92(13):135506/1~4
    [95] Chuang F.-C., Wang C. Z., ??üt S., et al., Melting of small Sn clusters by ab initio molecular dynamics simulations, Phys. Rev. B, 2004, 69(16):165408/1~12
    [96] Majumder C., Kumar V., Mizuseki H., et al., Ionization potentials of small tin clusters: first principles calculations, Chem. Phys. Lett., 2002, 356(1-2):36~42
    [97] Tai Y., Murakami J., Majumder C., et al., Fragmentation of small tin cluster ions (Snx+:x=4~20) in the low-energy collisions with a highly oriented pyrolytic graphite surface, J. Chem. Phys., 2002, 117(9):4317~4322
    [98] Calvo F. and Spiegeiman F., On the premelting features in sodium clusters, J. Chem. Phys., 2004, 120(20):9684~9689
    [99] García-Rodeja J., Rey C., Gallego L. J., et al., Molecular-dynamics study of the structures, binding energies, and melting of clusters of fcc transition and noble metals using the Voter and Chen version of the embedded-atom model, Phys. Rev. B, 1994, 49(12):8495~8498
    [100] Calvo F. and Labastie P., Melting and Phase Space Transitions in Small Ionic Clusters, J. Phys. Chem. B, 1998, 102(11):2051~2059
    [101] Güven? Z. B. and Jellinek J., Surface melting in Ni55, Z. Phys. D: At., Mol. Clusters, 1993, 26(1-4):304~306
    [102] Kunz R. E. and Berry R. S., Coexistence of multiple phases in finite systems, Phys. Rev. Lett., 1993, 71(24):3987~3990
    [103] Kunz R. E. and Berry R. S., Multiple phase coexistence in finite systems, Phys. Rev. E, 1994, 49(3):1895~1908
    [104] Doye J. P. K. and Wales D. J., Thermally-induced surface reconstructions of Mackay icosahedra, Z. Phys. D: At., Mol. Clusters, 1997, 40(1-4):466~468
    [105] Cheng H.-P. and Berry R. S., Surface melting of clusters and implications for bulk matter, Phys. Rev. A, 1992, 45(11):7969~7980
    [106] Calvo F. and Labastie P., Evidence for surface melting in clusters made of double icosahedron units, Chem. Phys. Lett., 1996, 258(1):233~238
    [107] Mehra V., Prasad A. and Ramaswamy R., Melting behavior of heterogenous atomic clusters: Gapless coexisting phases in (Ar–Xe)13, J. Chem. Phys., 1999, 110(1):501~507
    [108] Maillet J.-B., Boutin A., and Fuchs A. H., Numerical Evidence of an Embryonic Orientational Phase Transition in Small Nitrogen Clusters, Phys. Rev. Lett., 1996, 76(23):4336~4339
    [109] Maillet J.-B., Boutin A., Buttefey S., et al., From molecular clusters to bulk matter. I. Structure and thermodynamics of small CO2, N2, and SF6 clusters, J. Chem. Phys., 1998, 109(1):329~337
    [110] Doye J. P. K., Wales D. J., and Miller M. A., Thermodynamics and the global optimization of Lennard-Jones clusters, J. Chem. Phys., 1998, 109(19):8143~8153
    [111] Doye J. P. K., Miller M. A. and Wales D. J., The double-funnel energy landscape of the 38-atom Lennard-Jones cluster, J. Chem. Phys., 1999, 110(14):6896~6906
    [112] Briant C. L., Burton, J. J.,Molecular dynamics study of the structure and thermodynamic properties of argon microclusters ,J Chem. Phys., 1975, 63(5):2045~2058
    [113] Nauchitel V. V. and Pertsin A. J., A Monte Carlo study of the structure and thermodynamic behaviour of small Lennard-Jones clusters, Mol. Phys., 1980, 40(6):1341~1355
    [114] Breaux G. A., Neal C. M., Cao B., et al., Melting, Premelting, and Structural Transitions in Size-Selected Aluminum Clusters with around 55 Atoms, Phys. Rev. Lett., 2005, 94(17):173401/1~4
    [115] Lai S. K., Lin W. D., Wu K. L., et al., Specific heat and Lindemann-like parameter of metallic clusters: Mono- and polyvalent metals, J. Chem. Phys., 2004, 121(3):1487~1498
    [116] Calvo F. and Spiegelmann F., Mechanisms of phase transitions in sodium clusters: From molecular to bulk behavior, J. Chem. Phys., 2000, 112(6):2888~2908
    [117] Aguado A., López J. M., Alonso J. A., et al., Orbital-free molecular dynamics simulations of melting in Na8 and Na20: Melting in steps, J. Chem. Phys., 1999, 111(13):6026~6035
    [118] Sebetci A. and Guvenc Z. B., Molecular dynamics simulation of the melting behaviour of 12-, 13-, 14-atom icosahedral platinum clusters, Modelling Simul. Mater. Sci. Eng., 2004, 12(6):1131~1138
    [119] Lee Y. J., Maeng J. Y., Lee E.-K., et al., Molecular dynamics simulation of the melting behaviour of 12-, 13-, 14-atom icosahedral platinum clusters, J. Comput. Chem. 2000, 21(5):380~387
    [120] Lee Y. J., Lee E.-K., Kim S., et al., Effect of Potential Energy Distribution on the Melting of Clusters, Phys. Rev. Lett., 2001, 86(6):999~1002.
    [121] Wu Y., Xiang J., Yang C., et al., Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures, Nature, 2004, 430(7071):61~65
    [122] Song J. H., Wu Y, Messer B, et al., Metal nanowire formation using Mo(3)Se(3)(-) as reducing and sacrificing templates.,Jpn. J. Appl. Phys.2001, 40:4365~4367
    [123] Landman U., Luedtke W. D., Burnham N.A. et al., Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture, Science, 1990, 248(4954):454~461
    [124] Muller C. J., van Ruitenbeek J. M., and de Jongh L. J., Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width, Phys. Rev. Lett., 1992, 69(1):140~143
    [125] Krans J. J. M., van Ruitenbeek J. M., Fisun V.V., et al.,The signature of conductance quantization in metallic point contacts, Nature, 1995, 375(6534):767~769
    [126] Pascual J. I., Mendez, J., Gomez-Herrero J., et al., Properties of metallic nanowires: from conductance quantization to localization, Science, 1995, 267(5205):1793~1795
    [127] Olesen L., Laegsgaard E., Stensgaard I., et al., Quantized conductance in an atom-sized point contact, Phys. Rev. Lett., 1994, 72(14):2251~2254
    [128] Pascual J. I., Méndez J., Gómez–Herrero J., et al., Quantum contact in gold nanostructures by scanning tunneling microscopy, Phys. Rev. Lett., 1993, 71(12):1852~1855
    [129] Agra?t N., Rodrigo J. G., and Vieira S., Conductance steps and quantization in atomic-size contacts, Phys. Rev. B, 1993, 47(18):12345~12348
    [130] Stalder A., Durig U., Study of yielding mechanics in nanometer-sized Au contacts, Appl. Phys. Lett., 1996, 68(5):637~639
    [131] Rubio G., Agra?t N., and Vieira S., Atomic-Sized Metallic Contacts: Mechanical Properties and Electronic Transport, Phys. Rev. Lett., 1996, 76(13):2302~2305
    [132] Untiedt C., Rubio G., Vieira S., et al., Fabrication and characterization of metallic nanowires, Phys. Rev. B, 1997, 56(4):2154~2160
    [133] Nakamura A., Brandbyge M., Hansen L. B., et al., Density Functional Simulation of a Breaking Nanowire, Phys. Rev. Lett., 1999, 82(7):1538~1541
    [134] H?kkinen H., Barnett R. N., and Landman U., Gold Nanowires and Their Chemical Modifications, J. Phys. Chem. B; 1999; 103(42):8814~8816
    [135] Kondo Y. and Takayanagi K., Gold Nanobridge Stabilized by Surface Structure, Phys. Rev. Lett., 1997, 79(18):3455~3458
    [136] Lisiecki I., Filankembo A., Sack-Kongehl H., et al., Structural investigations of copper nanorods by high-resolution TEM, Phys. Rev. B, 2000, 61(7):4968~4974
    [137] Yun W. S., Kim J., Park K.-H., et al., Fabrication of metal nanowire using carbon nanotube as a mask, J. Vac. Sci. Technol. A 18(4):1329~1332
    [138] Kondo Y. and Takayanagi K., Synthesis and characterization of helical multi-shell gold nanowires, Science, 2000, 289(5479):606~608
    [139] Gülseren O., Ercolessi F., and Tosatti E., Premelting of thin wires, Phys. Rev. B, 1995, 51(11):7377~7380
    [140] Horstemeyer M. F., Baskes M. I. and Plimpton S. J., Length scale and time scale effects on the plastic flow of fcc metals ,Acta Mater., 2001, 49(20):4363~4374
    [141] Kang J. W., Hwang H. J., Mechanical deformation study of copper nanowire using atomistic simulation, Nanotechnology, 2001, 12(3):295~300.
    [142] Ikeda H., Qi Y., Cagin T., et al., Strain Rate Induced Amorphization in Metallic Nanowires, Phys. Rev. Lett. 1999, 82(14):2900~2903
    [143] da Silva E. Z., da Silva A. J. R., Fazzio A., Breaking of gold nanowires , Comput. Mater. Sci., 2004, 30(1-2):73~76
    [144] da Silva E. Z., Novaes F. D., da Silva A. J. R., et al., Theoretical study of the formation, evolution, and breaking of gold nanowires, Phys. Rev. B 2004, 69(11):115411/1~11
    [145] da Silva E. Z., da Silva A. J. R., Fazzio A., How Do Gold Nanowires Break?, Phys. Rev. Lett. 2001, 87(25-27):256102/1~4
    [146] Mehrez M., Ciraci S., Fong C. Y., Erkoc S., An atomistic study on the stretching of nanowires , J. Phys.: Condens Matter,1997, 9(49):10843~10854
    [147] Wu B., Heidelberg A. and Boland J. J., Mechanical properties of ultrahigh-strength gold nanowires, Nat. Mat., 2005, 4(7):525~529
    [148] Rodrigues V., Ugarte D., Real-time imaging of atomistic process in one-atom-thick metal junctions, Phys. Rev. B, 2001, 63(7):073405/1~4
    [149] Brandbyge, M., Schiotz J., Sorensen M. R., et al., Quantized conductance in atom-sized wires between two metals, Phys. Rev. B 1995, 52(11):8499~8514
    [150] Ohnishi H., Kondo Y., Takayanagi K., Quantized conductance through individual rows of suspended gold atoms, Nature 1998, 395(6704):780~783
    [151] Yanson A. I., Bollinger G. R., van der Brom, et al., Formation and manipulation of a metallic wire of single gold atoms, Nature, 1998, 395(6704):783~785.
    [152] Rodrigues V., Fuhrer T., Ugarte D., Signature of Atomic Structure in the Quantum Conductance of Gold Nanowires, Phys. Rev. Lett. 2000, 85(19):4124~4127
    [153] Megrez H. and Ciraci S., Yielding and fracture mechanisms of nanowires, Phys. Rev. B, 1997, 56(19):12632~12642
    [154] Park H. S., and Zimmerman J. A., Modeling inelasticity and failure in gold nanowires, Phys. Rev. B, 2005, 72(5):054106/1~9
    [155] Agra?t N., Rubio G., and Vieira S., Plastic Deformation of Nanometer-Scale Gold Connective Necks, Phys. Rev. Lett., 1995, 74(20):3995~3998
    [156] Ju S.-P., Lin J.-S. and Lee W.-J., A molecular dynamics study of the tensile behaviour of ultrathin gold nanowires, Nanotechnology, 2004, 15(9):1221~1225.
    [157] Gall K., Diao J. and Dunn M. L., Nano Lett., The Strength of Gold Nanowires, 2004, 4(12):2431~2436
    [158] Diao J., Gall K. and Dunn M. L., Surface-stress-induced phase transformation in metal nanowires, Nature Materials, 2003, 2(10):656~660
    [159] Diao J., Gall K. and Dunn M. L., Surface stress driven reorientation of gold nanowires, Phys. Rev. B, 2004, 70(7):075413/1~9
    [160] Diao J., Gall K. and Dunn M. L., Nano Lett., 2004, 4(10):1863~1867
    [161] Hwang I. S., Ho M. S. and Tsong T. T., Dynamic Behavior of Si Magic Clusters on Si(111) Surfaces, Phys. Rev. Lett., 1999, 83(1):120~123
    [162] Vitali L., Ramsey M. G. and Netzer F. P., Nanodot Formation on the Si(111)- (7 x 7) Surface by Adatom Trapping, Phys. Rev. Lett., 1999, 83(2):316~319
    [163] S. A. Harris and I. J. Ford, A dynamical definition of quasibound molecular clusters, J. Chem. Phys., 2003, 118(20):9216~9223
    [164] Solov’yov I. A., Solov’yov A. V. and Greiner W., Cluster Growing Process and a Sequence of Magic Numbers, Phys. Rev. Lett., 2003, 90(5):053401/1~4
    [165] Sun C. Q., Wang Y., Tay B. K., et al., Correlation between the Melting Point of a Nanosolid and the Cohesive Energy of a Surface Atom, J. Phys. Chem. B, 2002, 106(41):10701~10705
    [166] Athanasopoulos D. C., Simulation of the formation process for small neutral xenon clusters, Surf. Sci., 2000, 462(1-3):55~60
    [167] Northby J. A., Structure and binding of Lennard-Jones clusters: 13 N 147, J. Chem. Phys., 1987, 87(10):6166~6177
    [168] Ikeshoji T., Hafskjold B., Hashi Y., et al., Molecular dynamics simulation for the cluster formation process of Lennard-Jones particles: Magic numbers and characteristic features, J. Chem. Phys., 1996, 105(12):5126~5137
    [169] Mackay A. L., A dense non-crystallographic packing of equal spheres, Acta Crystallogr., 1962, 15(9):916~918
    [170] Pang T., An Introduction to Computational Physics, Cambridge University Press; Cambridge, UK, 1997.
    [171] Wales D. J., Doye J. P. K., A. Dullweber,et al., URL http://www-wales.ch.cam.ac.uk/CCD.html.
    [172] 王恩哥,薄膜生长中的表面动力学(Ⅰ),物理学进展,2003,23(1):1~61
    [173] Liu H. H., Jiang E. Y., Bai H. L., et al., Possible paths towards magic clusters formation, J. Mol. Struct.: THEOCHEM, 2005, 728(1-3):203~207
    [174] Feynman R. P.,There’s Plenty of Room at the Bottom, the classic talk on December 29th 1959 at the annual meeting of the American Physical Society at the California Institute of Technology, the transcript is available on the web http://www.zyvex.com/nanotech/feynman.html.
    [175] Rossi G., Rapallo A., Mottet C., et al., Magic Polyicosahedral Core-Shell Clusters, Phys. Rev. Lett., 2004, 93(10):105503/1~4
    [176] Polak W., Patrykiejew A., Local structures in medium-sized Lennard-Jones clusters: Monte Carlo simulations, Phys. Rev. B, 2003, 67(11):115402/1~11
    [177] Shao X., Xiang Y., Cai W., Formation of the central vacancy in icosahedral Lennard-Jones clusters, Chem. Phys., 2004, 305(1-3):69~75
    [178] H?berlen O. D., Chung S.-C., Stener M., et al., From clusters to bulk: A relativistic density functional investigation on a series of gold clusters Aun, n = 6,…,147, J. Chem. Phys, 1997, 106(12):5189~5201
    [179] Calvo F. and Spiegelmann F., Geometric Size Effects in the Melting of Sodium Clusters, Phys. Rev. Lett., 1999, 82(11):2270~2273.
    [180] Lai M. Y. and Wang Y. L., Direct Observation of Two Dimensional Magic Clusters, Phys. Rev. Lett., 1998, 81(1):164~167
    [181] Soler J. M., Beltrán M. R., Michaelian K., et al.,Metallic bonding and cluster structure, Phys. Rev. B, 2000, 61(8):5771~5780
    [182] Martin T. P., From atoms to solids, Solid State Ionics, 2000, 131(1):3~12
    [183] Martin T. P., N?her U., Bergmann T., et al., Observation of icosahedral shells and subshells in calcium clusters, Chem. Phys. Lett., 1991, 183(1-2):119~124
    [184] N?her U., Zimmermann U., and Martin T. P., Geometrical shell structure of clusters, J. Chem. Phys., 1993, 99(3):2256~2260
    [185] Bona?i?-Koutecky V., Jellinek J., Wiechert M., et al., Ab initio molecular dynamics study of solid- to liquidlike transitions in Li9+, Li10, and Li11+ clusters, J. Chem. Phys., 1997, 107(16):6321~6334
    [186] Hotokkka M., Molecular dynamics simulations, Department of physical chemistry, Abo Akademi University, 2002
    [187] Zhong W. H., Sun C. Q., Li S., et al., Impact of bond-order loss on surface and nanosolid magnetism, ACTA MATERIALIA, 2005, 53:3207~1324
    [188] Liu H. H., Jiang E. Y., Bai H. L., et al., Impact of atomic shells on the structure of cluster, Chem. Phys. Lett., 2005, 412(1-3):195~199
    [189] Chacko S., Kanhere D. G. and Blundell S. A., First principles calculations of melting temperatures for free Na clusters, Phys. Rev. B, 2005, 71(15):155407/1~6
    [190] Lai S. L., Guo J. Y., Petrova V., et al., Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements, Phys. Rev. Lett. 1996, 77(1):99~103
    [191] Cleveland C. L., Luedtke W. D. and Landman U., Melting of Gold Clusters: Icosahedral Precursors, Phys. Rev. Lett. 1998, 81(10):2036~2039
    [192] Arslan H. and Güven M. H., Melting dynamics and isomer distributions of small metal clusters, New J. Phys., 2005, 7:60/1~22
    [193] Haberland H., Hippler T., Donges J., et al., Melting of Sodium Clusters: Where Do the Magic Numbers Come from?, Phys. Rev. Lett. 2005, 94(3):035701/1~4
    [194] Hendy S. C., Stability of phase coexistence in atomic clusters, Phys. Rev. B, 2005, 71(11):115404/1~5
    [195] Ding F., Rosén A. and Bolton K., Size dependence of the coalescence and melting of iron clusters: A molecular-dynamics study, Phys. Rev. B, 2004, 70(7):075416/1~6
    [196] Breaux G. A., Neal C. M., Cao B. et al., Melting, Premelting, and Structural Transitions in Size-Selected Aluminum Clusters with around 55 Atoms, Phys. Rev. Lett., 2005, 94(17):173401
    [197] Salian U. A., Behera S. N. and Ramamurthy V. S., Relaxation of collective excitations in LJ-13 cluster, J. Chem. Phys.,1996, 105(9):3679~3685
    [198] Xiang Y., Cheng L., Cai W. et al., Structural Distribution of Lennard-Jones Clusters Containing 562 to 1000 Atoms, J. Phys. Chem. A, 2004, 108(44):9516~9520
    [199] Sun C. Q., Scanning tunneling microscopy of Dy@C82 and Dy@C60 adsorbed on Si(111)-(7×7) surfaces, Phys Rev. B, 2004, 69(4):045105/1~5
    [200] Diao J., Gall K. and Dunn M. L., Ab initio study of 4 ? armchair carbon nanoropes: Orientation-dependent properties, Phys. Rev. B, 2004, 70(7):075403/1~10
    [201] Mehrez H. and Ciraci S., Yielding and fracture mechanisms of nanowires, Phys. Rev. B, 1997, 56(19):12632~12642
    [202] Onuki A., Nonlinear strain theory of plastic flow in solids, J. Phys.: Condens. Matter, 2003, 15(11):S891~S901
    [203] Lin J-S., Ju S-P. and Lee W-J., Mechanical behavior of gold nanowires with a multishell helical structure, Phys. Rev. B, 2005, 72(8):085448/1~6
    [204] Legoas S. B., Galv?o D. S., Rodrigues V. et al., Origin of Anomalously Long Interatomic Distances in Suspended Gold Chains, Phys. Rev. Lett.,2002, 88(7): 076105/1~4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700