MOCVD异质外延硅基ZnO和SiC薄膜及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC是一种宽禁带半导体材料,其具有优秀的电学、化学和导热性能,因此SiC器件经常被应用于高温、高电场、高辐射这些应用领域。单晶SiC薄膜生长一直是研究的重点。同质外延单晶SiC薄膜较为容易实现,但是SiC很昂贵。Si衬底具有十分优秀的性能而且比较廉价,但是异质外延SiC/Si比较困难,主要由于晶格失配和热膨胀失配等因素造成的。本论文就SiC/Si薄膜的制备展开了研究。
     ZnO是一种Ⅱ-Ⅵ族直接带隙的宽禁带半导体材料,其室温下的禁带宽度为3.36eV,由于其具有紫外发光的特性,近来受到研究者的广泛关注。ZnO在高效率光散发设备和其它光学方面有应用前景,所以要进行高质量的ZnO薄膜制备的研究。由于晶格失配,ZnO/Si的异质结质量不高,现在主要应用过渡层或表面处理的方法进行改善。本论文围绕ZnO薄膜的MOCVD异质外延这个课题开展了研究,通过ZnO薄膜生长条件的探索以及Si衬底上各种过渡层生长ZnO薄膜的研究,最终利用3C-SiC作为过渡层,在Si(111)衬底上实现了单晶ZnO薄膜的异质外延。主要的研究工作及结果如下:
     1.高质量单晶SiC薄膜的制备
     利用低压高温MOCVD系统,成功的在Si(111)和Si(100)基片上外延出了具有高质量的SiC薄膜。通过XRD和微区拉曼测量表明外延的SiC薄膜为3C-SiC。SiC/Si薄膜具有良好的结晶质量,SiC(111)X射线摇摆半宽仅为0.3度,这在国内报道中属于领先水平。
     2.RF预处理对ZnO/Si生长的影响
     用MOCVD设备生长ZnO/Si薄膜,除了对衬底进行常规的化学清洗以外,在生长前进行Ar RF的预处理,是氩离子对硅表面进行一定的破坏,处理能量从0~150W进行了梯度变化,再以同样的生长条件进行原位生长。对于样品我们分别作了XRD、PL、AFM测量,发现Ar-RF预处理对薄膜结晶有很大影响,未作处理的样品一般呈多晶态,而处理后的样品在一定能量范围内晶格取向有显著提高,但随预处理能量达到一定限值后取向性被破坏。预处理对于发光也有很大的影响,在一定能量范围内发光强度只随处理能量加大缓慢衰减,但在高能量状态下,发光明显减弱,峰位也随之变化可见氩离子轰击硅表面形成了缺陷,这些缺陷在生长中顺延在ZnO部分,并且这些缺陷是发光淬灭中心,随能量的增加而增加。
     3.缓冲层生长ZnO薄膜
     利用直流溅射,先在Si衬底上溅射一层ZnO多晶薄膜,通过对直流溅射时间的控制,可以得到不同厚度的ZnO缓冲层。再利用MOCVD设备生长高质量的ZnO薄膜。通过研究发现,直流溅射ZnO薄膜的厚度对于最终的薄膜质量有很大的影响。随着缓冲层的引入,双晶衍射XRD的摇摆半宽有显著下降,并且随着最终ZnO薄膜质量上升,光致发光也有显著的提升。可见缓冲层的引入对ZnO/Si薄膜的质量和发光强度有很大的贡献。另外我们试验了用SiC作为过渡层的生长方法,在Si基片上外延出高质量的ZnO薄膜。测量了样品的XRD和摇摆曲线,以及室温下的PL谱。实验结果表明,SiC过渡层的引入的确大大提高了ZnO薄膜的质量和发光性能,并实现了实现Si上制备ZnO单晶薄膜这一前沿课题。
     4.等离子辅助生长ZnO薄膜,实现N掺杂
     利用改造的等离子辅助生长设备,进行了ZnO薄膜的等离子辅助生长。X射线衍射谱表明利用此方法生长的ZnO薄膜具有良好的结晶质量。为了验证裂解氮气是否能够进行ZnO的N掺杂,对样品进行了二次离子质谱的测量,发现N在ZnO薄膜中的浓度很高,实现了高浓度的N掺杂,但是由于表面电阻率高,无法进行Hall测量,ZnO薄膜的导电类型无法进行判断。
Silicon carbide is a wide gap semiconductor which exhibits outstanding electronic properties associated with chemical and thermal stability. The SiC-based devices ability to function at high temperature, high power and high radiation conditions will enable large performance enhancements to a wide variety of systems and applications. It attracted more attention for the preparation of single crystal SiC films, which makes easy for homo-epitaxy. However, the SiC crystal wafer is too expensive. Si is a powerful substrate for its low cost. But hetero-epitaxy growth of SiC film directly on Si substrate is very difficult because of the large lattice mismatch and mismatch of thermal expansion coefficients. The present paper has launched the research on the SiC/Si thin film preparation.
     ZnO is a II -VI compound semi-conductor material with a wide direct band gap of 3.36eV at room temperature. Recently, it has attracted great attention due to its ultraviolet luminescence. For the use of ZnO in high-efficiency light emitting devices and other optical applications, high quality single crystal ZnO films are required. But it is difficult to get high quality ZnO films on the Si substrates because of the large lattice mismatch. Using the buffer layer or substrate pretreatment is a way to get high quality ZnO films. This thesis focus on hetero-epitaxy of ZnO films by MOCVD, researching on the growth condition and using some kinds of buffer layers to grow ZnO films on Si substrates, the single crystal ZnO films on Si substrates using a 3C-SiC buffer layers. The major works and conclusions as follows:
     1. Single crystal SiC films were successfully prepared on Si substrates.
     Poly-crystal SiC films were successfully prepared on Si(111) and Si (100) substrates by low pressure metal-organic chemical vapor deposition (LP-MOCVD). The structure of the films has been investigated by X-ray diffraction (XRD) and micro-Raman spectra. 3C-SiC films were grown on Si(111) substrates. The FWHM of SiC(111) rocking curve is only 0.3 arcdegree.
     2. Effect on Radio Frequency Plasma Pretreatment on ZnO/Si Thin Film
     ZnO films have been deposited on Si (111) substrates by low-pressure
     MOCVD. Si (111) substrates were pretreated by RF plasma before growth. The power of RF plasma was arranged from 0W to 110W. Then ZnO thin films were grown in-situ. The great effect of RF plasma pretreatment on the structure and luminescence properties was investigated by X-ray diffraction (XRD), atomic force microscope (AFM) and photoluminescence (PL) spectrum at room temperature. The quality and surface roughness of ZnO thin films using pretreatument are better. The orientation of ZnO films was degraded when the pretreatment energy achieved the certain limiting value. The UV emission intensity decreased because the argon ion bombardment silicon surface has formed the crystal defect which makes quenching of luminescence in growth.
     3. Using buffer layers to grow high quality ZnO films on Si substrates
     Different buffer layers such as 3C-SiC, DC sputtered ZnO films have been employed, Buffer layers prepared on Si substrates by DC reactive sputtering system is reported in this paper. The thickness of buffer layer depends on the sputtering time. Then the high quality ZnO thin films were grown on the Si substrates by low pressure metal-organic chemical vapor deposition (LP-MOCVD) with sputtering buffer layers. The effect of sputtering buffer layer thickness on the structure and luminescence properties was investigated. The full width at half maximum (FWHM) of rocking curve of ZnO (002) peak was reduced by using sputtering buffer layer and annealing. And the intensity of luminescence was increased. High quality ZnO thin films were deposited on Si(111) substrates by LP-MOCVD with double connected, using SiC buffer layer. The effect of SiC buffer layer on the structure and luminescence properties has been investigated by X-ray diffraction (XRD), photoluminescence (PL) spectra at room temperature. The full-width at half maximum (FWHM) of rocking curve of ZnO (002) reflection is reduced by using SiC buffer layer. And the intensity of luminescence of ZnO films is also increased. In addition, with the SiC buffer layer, green luminescence is appeared which was considered to be from the electron transition from conduction band bottom to the O_(Zn) level formed in the band gap. With the optimized condition for the SiC buffer layer and ZnO film growth, the single crystal ZnO films were successfully prepared on Si(111) substrates.
     4. Nitrogen doping in ZnO films by plasma-assisted MOCVD
     Nitrogen doped ZnO films are grown by the plasma-assisted metal-organic chemical vapor deposition(MOCVD) on Si. X-ray diffraction spectra show that they are strongly c-oriented while the N-doped sample is high crystal quality. Secondary-ion mass Spectrometry (SIMS) analysis confirmed the presence of N, The N concentration is rather high, and this means that the values are very uncertain. But p-type ZnO films were not obtained.
引文
1. F. Hamdani et al., J. Appl. Phys. 83,983_1998_.
    2. X. Gu, M. A. Reshchikov, A. Teke, D. Johnstone, H. Morkoc, B. Nemeth, and J. Nause, Appl. Phys. Lett. 84, 2268_2004_; J. Mater. Sci. 15,373 (2004)
    3. Tan C,WU XL, Deng S S, et al, Physics Letters A, 2003, 310:236
    4. B. J. Baliga. High Voltage Silicon Carbide Devices[J]. in Proc. MRS Symp. 1998, 512: 77~89.
    5. Sarro P M, Sensors and Actuators, 2000, 82:210
    6. Power J A, Matus L G, Katcamrski M A. Jourmal of Electrochemical Society.1986, 13_4(6): 1558
    7. D. C. Look and B. Claflin, Phys. Status Solidi B 241,624 (2004)
    8. D. C. Look, B. Claflin, Ya. I. Alivov, and S. J. Park, Phys. Status Solidi A 201,2203 (2004)
    9. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Superlattices Microstruct. 34, 3 (2004)
    10. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Prog. Mater. Sci. 50,293 (2005)
    11. D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, Mater. Today 7, 34 (2004)
    12. V. A. Nikitenko, J. Appl. Spectrosc. 52, 367 (1992)
    13.郝跃,彭军,杨银堂,碳化硅宽带隙半导体技术(2000年第一版)科学出版社
    14. Jepps N W, Page T F1 Progrl Crystl Growth Charactl, 1983,7 : 2592307
    15. Pensl G1 Physica B 1993,185: 2642283
    16. Barrett D L, Seidensticker R G, et all Journal of Crystal Growth 1991, 109: 17223
    17. Casady J. B and Johnson R W a Review Solid State Electronics, 1996Ⅰ 39 (10)1409
    18. Davi. R F Thin Films J of Crystal(1994; 137(1/2): 51)
    19. J. A. Lely, Ber. Dent. Keram. [JJ. Ges, 1955, 28: 229.]
    20. Yu. M . Tairov, V. F. Tsvetkov. Journal of CrystalGrowtho 1978. 43:209—212.
    21. Yu. m. Tairov, V. F. Tsvetkov. JournalofCrystal Growth, 1981。52: 146—150.
    22.简红彬,康建波,于威,马蕾,彭英才,纳米材料与结构,1671-4776(2006)
    23. http://www.grc.nasa.Gov/www/SiC/SiC.html
    24.杨克武,潘静,杨银堂.SiC半导体材料及其器件应用.半导体情报,2000,37(2):13215.
    25. Cooper J A J r, Agarwal A K, Hara K, et al Issue on Silicon Carbide Electronic Devices[C] .New York : IEEE, 1999. 442.
    26. Zu, P.; Tang, Z.K.; Wong, G.K.L.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y. Source: Solid State Communications, v 103, n 8, Aug, 1997,p 459-463
    27. Liang, S.; Cai, W.; Li, Y.; Liu, Y.; Lu, Y.; Tran, C.A.; Karlicek, R.F., Jr.; Ferguson, I. Source: Materials Research Society Symposium - Proceedings, v 449, Ⅲ-V Nitrides, 1997, p 1221-1225
    28. Emanetoglu, Nuri W. ; Liang, Shaohua; Gorla, Chandrasekhar; Lu, Yicheng; Jen, Shen; Subramanian, Rajan Source: Proceedings of the IEEE Ultrasonics Symposium, v l, 1997, p 195-199
    29. H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura, H. Hosono, Appl. Phys. Lett. 77(2000)475.
    30. W. W. Wenas, A. Yamada and K. Takahashi, J. Appl. Phys., 70(1991)7119;
    31. U. Ozgur, et al, J. Appl. Phys. 98, 041301(2005)
    32. Z. L. Wang, J. Phys.: Condens. Matter 16 R829 (2004).
    33. U. Ozgtur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morko J. Appl. Phys. 98, 041301 (2005)
    34. Ishido M.. Sensors and Actuators A, 1994, 44(3): 183~189
    35. Anisimkin V I, Penza M, Valentini A et al.. (SAW) delay line. Sensors and Actuators B, 1995, 23(2~3): 197~201
    36. Hickernell F S. J. Vac. Sci. Technol., 1975, 12(4): 879~883
    37. Hickemell F S. IEEE Trans. Sonics and Ultrasonics, 1985, SU-32(5): 621~629
    38. Kim Y, Hunt W D, Hickemell F S et al. IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control., 1995, 42(3): 351~361
    39. Inukai T, Matsuoka M, Ono K. Thin Solid Films, 1995, 257(1): 22~27
    40. Raimondi D L, Kay E. J. Vac. Sci. Technol., 1970, 7(1): 96~99
    41. Shiosaki T, Kawabata A. Appl. Phys. Lett., 1974, 25(1): 10~11
    42. Krupanidhi S B, Sayer J. Appl. Phys., 1984, 56(11): 3308~3318
    43. Hauden D, Hoummady M, Choujaa A. Sensors and Actuators A, 1992, 33(1~2): 99~102
    44. Motamedi M E. Acoustic accelerometers. IEEE Trans. Ultrasonic Ferroelectrics & Frequency Control., 1987, UFFC-34(2): 237~242
    45. van Mullem C J, Blom F R, Fluitman J H J. Piezoelectrically Sensors and Actuators A, 1991, 26(1~3): 379~383
    46. Itoh T, Suga T. Japn. J. Appl. Phys., 1994, 33(1A): 334~340
    47.王新强,杜国同,姜秀英等.半导体光电,2000,21(4):233~237
    48. Igasaki Y, Ishikawa M, Shimaoka G. J. Vac. Soc. Jpn., 1987, 30(5): 467~470
    49. H. S. Kang, J. S. Kang, J. W. Kim, S. Y. Lee, J. Appl. Phys. 95, 1246(2004).
    50. K. Vanheusen. et al, Appl. Phys. Lett. 68, 43(1996).
    51. K. Vanheusen. et al, J. Appl. Phys. 79, 7983(1996).
    52. Bixia lin, Zhuxi Fu, Yunbo Jia Appl. Phys. Lett. 2001, 79(7): 943-945
    53. Minegishi K, Koiwwai Y, Kikuchi Y et al.. Jpn. J. Appl. Phys., Part 2 1997, 36: L1453
    54. Tsukazaki, Atsushi; Kubota, Masashi; Ohtomo, Akira; Onuma, Takeyoshi; Ohtani, Keita; Ohno, Hideo; Chichibu, Shigefusa F.; Kawasaki, Masashi Source: Japanese Journal of Applied Physics, Part 2: Letters, v 44, n 20-23, 2005, p L643-L645
    55. Wahab Q, Glass R S C, Ivanov I P, et al. Journal of applied physics, 1993, 74: 1663—1667.
    56. Wahab Q, Hultman L, Ivanov I P, et al. structure and stoichiometry[J]. Thin Solid Films, 1995, 261(1-2): 317—321.
    57. Valentini, A., Convertino, A.; Alvisi, M.; Cingolani, R.; Ligonzo, T.; Lamendola, R.; Tapfer, L. Source: Thin Solid Films, v 335, n 1-2, Dec 14, 1998, p 80-84
    58. Sonoda, Nobuo; Sun, Yong; Miyasato, Tatsuro Source: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, v 15, n 1, Jan-Feb, 1997, p18
    59. Sun, Yong; Miyasato, Tatsuro; Wigmore, J. Keith; Sonoda, Nobuo; Watari, Yoshihiko Source: Journal of Applied Physics, v 82, n 5, Sep 1, 1997, p 2334-2341
    60. Jeong, S. H.; Lee, J. W.; Lee, S. B.; Boo, J. H. Source: Thin Solid Films, v 435, n 1-2, Jul 1, 2003, p 78-82
    61. Muto, Hachizo; Kamiya, Shin-Ichiro; Kusumori, Takeshi Source: Optical Materials, v 23, n 1-2, July/August, 2003, p 43-47
    62. Vasco, E.; Zaldo, C.; Vazquez, L. Source: Journal of Physics Condensed Matter, v 13, n 28, Jul 16, 2001, p L663-L672
    63. Adachi, Yutaka; Ryouken, Haruki; Sakaguchi, Isao; Ohashi, Naoki; Haneda, Hajime; Takenaka, Tadashi Source: Key Engineering Materials, v 248, 2003, p 83-86
    64. Kim, Gun Hee; Ahn, Byung Du; Kang, Hong Seong; Lim, Sung Hoon; Lee, Sang Yeol Source: Superlattices and Microstructures, v 39, n 1-4, January/April, 2006, E-MRS 2005 Symposium G: ZnO and Related Materials Part 2, p 50-59
    65. Suzuki, A.; Ikeda, M.; Nagao, N.; Matsunami, H.; Tanaka, T. Source: Journal of Applied Physics, v 47, n 10, Oct, 1976, p 4546-4550
    66.孟广耀,化学气相淀积与无机新材料,(1984年第一版)科学出版社
    67. Nieberding, W. C. Source: Industrial Research & Development, v 25, n 9, Sep, 1983, p 148-150
    68. Power J A, Matus L G, Katcamrski M A. Jourmal of Electrochemical Society。1986, 13_4(6): 1558
    69. Sasaki K。Sskuma E, Misava S, et al. Applied Physics Letters, 1984, 45(1): 72
    70. S. Nisino, J. A. Powell, H. A. Will, Appl. Phys. Lett, 1983, 42, 460
    71. Cheng, Kuan-Lun; Cheng, Huang-Chung; Liu, Chih-Chien; Lee, Chiapyng; Yew, Tri-Rung Source: Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, v 34, n 10, Oct, 1995, p 5527-5532
    72.吴自勤,王兵,薄膜生长(2001年第一版)科学出版社
    73. Hahn,B, Heindel,G, Pschorr E, et,al .Semiconductor Science Technology,1998,13:788.
    74. Akinwunmi, Eleruja MA.. Optical Materials, 1999,13: 2552259.
    75.江凤益,李述体,等.发光学报,2000,21(2):1202124.
    76. C. K. Lau, S. K. Tiku, and K. M. Lakin, J. Electrochem. Soc. 127, 1843 (1980)
    77. F. T. J. Smith, Appl. Phys. Lett. 43, 1108 (1983)
    78. C. Kirchner, T. Gruber, F. Reuss, K. Thonke, A. Waag, C. Giessen, and M.Heuken, J. Cryst. Growth 248, 20 (2003)
    79. K. Ogata, K. Maejima, Sz. Fujita, and Sg. Fujita, J. Electron. Mater. 30, 659(2001)
    80. K. Ogata, T. Kawanishi, K. Maejima, K. Sakurai, Sz. Fujita, and Sg. Fujita, J.Cryst. Orowth 237, 553 (2002)
    81. K. Ogata, K. Maejima, Sz. Fujita, and Sg. Fujita, J. Cryst. Growth 248, 25 (2003)
    82. A. Dadgar et al., J. Cryst. Growth 267, 140 (2004)
    1. Zhu, Junjie; Lin, Bixia; Yao, Ran; Zhao, Guoliang; Fu, Zhuxi Source: Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, v25, n12, December, 2004,
    2. Zhu, Junjie; Lin, Bixia; Sun, Xiankai; Yao, Ran; Shi, Chaoshu; Fu, Zhuxi Source: Thin Solid Films, v 478, n 1-2, May 1, 2005
    3.傅竹西、李晓光、王秋来、刘世闯,专利
    4. Zhu, Junjie; Yao, Ran; Liu, Cihui; Lee, In-Hwan; Zhu, Lala; Ju, Jin-woo; Baek, Jong Hyeob; Lin, Bixia; Fu, Zhuxi Source: Thin Solid Films, v 514, n 1-2, Aug 30, 2006,
    5. Yao Ran, Zhu Jun-jie, Zhong Sheng, Zhu La-la, Fu Zhu-xi, JOURNAL OF SYNTHETIC CRYSTALS, 2006, 35(1) 91-94
    6. Zhuxi Fu, Bixia Lin, Jie Zu, Thin Solid Films, 2002, 402(1-2):302-306
    7.唐伟忠,薄膜材料制备原理、技术及应用,2003年第二版
    8.阎承沛,真空热处理工艺与设备设计
    9. Xinqiang Wanga,, Shuren Yang, Jinzhong Wang, Mingtao Li, Xiuying Jiang, Guotong Dua, Xiang Liu, R. P. H. Chang, Journal of Crystal Growth 226(2001) 123-129
    1. Tan C, WUXL, Deng S S, et al, Physics Letters A, 2003, 310: 236
    2. Sarro P M, Sensors and Actuators, 2000, 82: 210
    3.崔梦,胡明,严如岳.SiC 薄膜材料在MEMS中应用的研究进展,压电与声光,2004,26(6):482
    4. B. J. Baliga. High Voltage Silicon Carbide Devices[J]. in Proc. MRS Symp. 1998, 512: 77~89.
    5. Power J A, Matus L G, Katcamrski M A. Jourmal of Electrochemical Society。1986, 13_4(6): 1558
    6. Sasaki K。Sskuma E, Misava S, et al. Applied Physics Letters, 1984, 45(1): 72
    7. W. G Spitzer, D. A. Kleinman, C. J. Frosch, Phys. Rev, 1959, 113, 133
    8. H. Matsunami, S. Nisino, H. Ono, IEEE Trans. Elec. Dev. 1981, 10, 1238
    9. S. Nisino, J. A. Powell, H. A. Will, Appl. Phys. Lett, 1983, 42, 460
    10.吴自勤,王兵,薄膜生长(2001年第一版)科学出版社
    11.邓景发,范康年,物理化学(1993年第一版)高等教育出版社
    12.孟广耀,化学气相淀积与无机新材料,(1984年第一版)科学出版社
    13. Ehrlich G, Hudda F G. J Chem Phys[J]. 1966, 44: 1039~1043.
    14. Schwoebel R L, Shipsey E J. J Appl Phys[J]. 1966, 37: 3682~3686.
    15.郝跃,彭军,杨银堂,碳化硅宽带隙半导体技术(2000年第一版)科学出版社
    16. L. jiping, thisis, University of Cincinnati(1994)
    17. Autheony P J.. J Electrochem Soc, 1987, 134(6): 1558~1565.
    18. Makoto Kitabatake. Surface [J]. J Appl Phys, 1993,74(7): 4438~4445.
    19. Mo, YH; Shajahan, M; Lee, KS; et al. DIAM RELAY MATER, 11 (9): 1703-1708 SEP 2002
    20. Zhao, Q; Wang, B; Li, JC; et al. DIAM RELAT MATER, 12 (9): 1505-1509 SEP 2003
    21. Park, MG; Choi, WS; Boo, JH; et al. J PHYS Ⅳ, 12 (PR4): 155-160 JUN 2002
    22. Krafcsik, OH; Radnoczi, GZ; Toth, L; et al. INST PHYS CONF SER, (169): 189-192 2001
    23. Chassagne, T; Ferro, G; Gourbeyre, C; et al. MATER SCI FORUM, 353-3: 155-158 2000
    24. Cloitre, T; Moreaud, N; Vicente, P; et al. MATER SCI FORUM, 353-3:159-162 2000
    25. Bakin, AS; Ivanov, AA; Piester, D; et al. MATER SCI FORUM, 353-3:163-166 2000
    26. C. Stinespring, J. C. Wormhoudt. J APPL PHYS 65 (1989) 1733
    27. F. Bozso, J. T. Yates, W. J. Choyke, L. Muehihoff, J APPL PHYS 57 (1985) 2771
    28. T. Takai, T. Halicoglu, W. A. Tiller, Suface Science 164 (1985) 327
    29. Y. Sun, T. T. Miyasato, N. Sonoda, Journal of Applied Physics 84 (1998) 6451-6453
    30. HWANG, JD; FANG, YK; SONG, YJ; et al. JPN J APPL PHYS 1, 34 (3): 1447-1450 MAR 1995
    31. Wessels, B.; Gatos, H. C.; Witt, A. F. AFIPS Conference Proceedings, 1974, p 25-32
    32. J. Chaudhuri, R. Thokala, J. H. Edgar, B. S. Sywe, Thin Solid Films 274 (1996) 23-30
    33. J. W. Mathews, S. Mader and T. B. Light, J. Appl. Phys., 41 (1970) 380.
    34. C. G. Darwin, Philos. Mag., 27 (1914) 315,675.
    35. T. Takami, S. Ishidzuka, Y. Igari, H. Range, I. Kusunoki, Thin Solid Films, 2000,367,89
    36. A. T. S. Wee, K. Li, C. C. Tin, Appl. Surf, Sci. 1998 126 34
    37. YAMANAKA, M; IKOMA, K; OHTSUKA, M; et al. JPN J APPL PHYS 1, 33 (2): 997-998 FEB 1994
    38. S. Nakashima and H. Harima: phys. stat. sol. (a) 162, 39 (1997)
    39. S. Nakashima and K. Tahara, Phys. Rev. B 40, 6345 (1989).
    40. S. Nakashima, Y. Nakakura, A. Wada, and K. Kunc, J. Phys. Soc. Japan 57, 3228 (1988).
    41. S. Nakashima and M. Hangyo, Solid State Commun. 80, 21 (1991).
    42. S. Nakashima, K. Kisoda, and J.-P. Gauthier, J. Appl. Phys. 75, 5354 (1994).
    43. FENG, ZC; TIN, CC; WILLIAMS, J THIN SOLID FILMS, 266 (1): 1-7 SEP 15 1995
    44. B. Jusserand, P. Voisin, M. Voos, L. L. Chang, E. E. Mendez, L. Esaki, Appl. Phys. Lett. 46 (1985) 678
    45. H. Mukaida, H. Okumura, et al, Journal of Applied Physics 62 (1987) 254-257
    1. LOOK D C. Materials Science and Engineering, 2001, B80:3832387.
    2. H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura, H. Hosono, Appl. Phys. Lett. 77 (2000) 475.
    3. W. W. Wenas, A. Yamada and K. Takahashi, J. Appl. Phys., 70 (1991) 7119; U. Ozgur, et al, J. Appl. Phys. 98, 041301 (2005); Z. L. Wang, J. Phys.: Condens. Matter 16 R829 (2004).
    4. C. Klingshirn, J. Cryst. Growth 117, 153 (1992).
    5. Y. Kayamura, Phys. ReV. B 38, 9797 (1988).
    6. W. Wegscheider et al., Phys. ReV. Lett. 71, 4071 (1993).
    7. P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun. 103 (1997) 459.
    8. K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe, S. Fujita, and S. Fujita, J. Cryst. Growth 209, 522 (2000).
    9. H. Kato, M. Sano, K. Miyamota, and T. Yao, Jpn. J. Appl. Phys., Part 242, L1002 (2003).
    10. P. Fons, K. Iwata, S. Niki, A. Yamata, K. Matsubara, and M. Watanabe, J. Cryst. Growth 200, 532(2000).
    11. R. J. Lad, P. D. Funkenbusch, and C. R. Aita, J. Vac. Sci. Technol. 17,808(1980).
    12. M. A. L. Johnson, S. Fujita, W. H. Rowland, Jr., W. C. Hughes, J. W. Cook, Jr. and J. F. Schetzina, J. Electron. Mater. 21, 157(1992).
    13. Ryu Y R, Zhu S, Look D C, et al. Journal of Crystal Growth, 2000, 216: 330-334.
    14. Ryu Y R, KimW J, white HW. Journal of Crystal Growth, 2000, (219): 419-422.
    15. Nakahara K, Takasu H et al. Journal of Crystal Growth, 2002, (237): 544.
    16. Guo X L, Tabata H, Kawai T. Journal of Crystal Growth, 2001, (223): 135-139.
    17. Ouo X L, rabata H, Kawai T. Journal of Crystal Growth, 2002, (237): 544.
    18. Zhao X, Komuro S, Isshiki H et al. Luminescence, 2000, (87-89): 1254.
    19. Tuzemen S, Xiong G, wilkinson J, et al. Physica B, 2001, (308-310): 1197-1200.
    20. Yao Ran, Zhu Jun-jie, Zhong Sheng, Zhu La-la, Fu Zhu-xi, JOURNAL OF SYNTHETIC CRYSTALS, 2006, 35(1) 91-94
    21. Zhu, Junjie; Yao, Ran; Liu, Cihui; Lee, In-Hwan; Zhu, Lala; Ju, Jin-woo; Baek, Jong Hyeob; Lin, Bixia; Fu, Zhuxi Source: Thin Solid Films, v 514, n 1-2, Aug 30, 2006, p 306-309
    22. U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. -J. Cho, and H. Morkoc JOURNAL OF APPLIED PHYSICS 98, 041301(2005)
    23. Zhu, Junjie; Lin, Bixia; Yao, Ran; Zhao, Guoliang; Fu, Zhuxi Source: Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, v 25, n 12, December, 2004, p 1662-1665
    24. T. Shiosaki, S. Ohnishi, A. Kawabata, J. Appl. Phys 50(1979) 3113-3117
    25. Yao Ran, Zhu Jun-jie, Zhong Sheng, Zhu La-la, Fu Zhu-xi, JOURNAL OF SYNTHETIC CRYSTALS, 2006, 35(1) 135-138
    26. M. Liu, A. H. Kitai, P. Mascher, J. Lumin. 54(1992) 35
    27. Bixia lin, Zhuxi Fu, Yunbo Jia, Appl. Phys. Lett. 2001, 79(7): 943-945
    28. Lin Bixia, Fu Zhuxi, Jia Yunbo, Liao Guihong, J. Electrochemical Society, 2001. 148(3): G110
    29.孙玉明,ZnO及其缺陷电子的结构的FP-LMTO研究,博士论文,中国科学技术大学(2000)
    30.王玉丽,谢家纯,刘文齐,半导体光电 25 (2004)25-28
    31.叶志镇,张银珠,陈汉鸿,何乐年,邹璐,黄靖云,吕建国,电子学报11(2003)1605-1607
    32.李成,杨沁清,王启明,半导体光电 20 (1999)226-230
    33.许小亮,杨晓杰,付竹西.功能材料,2003,34(2):121-1251
    34. Aoki. T, Hatanaka. Y, Look D. C. Appl. Phys. Lett, 2000, 76(22), 3257-3258
    35. Hwang, Deuk-Kyu; Lim, Sang-Wook; Myoung, Jae-Min Source: Journal of Crystal Growth, v 250, n 3-4, April, 2003, p 437-443
    36. Hiroaki Matsui, Hiromasa Saeki, Tomoji Kawai, and Hitoshi Tabata J. Appl. Phys., Vol. 95, No. 10
    37. Y. Sato and S. Sato, Thin Solid Films 281-282, 445-448
    38. C. G. Gerardi, R. Zonca, B. Crivelli, and M. Alessandri, J. Electrochem. Soc. 146, 3058 1999.
    39. N. Koyama, T. Endoh, H. Fukuda, and S. Nomura, J. Appl. Phys. 79, 1464 1996.
    40. N. Y. Garces, L. Wang, N. C. Giles, L. E. Halliburton, G. Cantwell, and D. B. Eason, J. Appl. Phys. 94, 519 2003.
    41. H. Maki, I. Sakaguchi, N. Ohashi, S. Sekiguchi, H. Haneda, J. Tanaka, andN. Ichnose, Jpn. J. Appl. Phys., Part 1 42, 75 2003.
    42. K. Tamura, T. Makino, A. Tsukazaki, M. Sumiya, S. Fuke, T. Furumochi, M. Lippmaa, C. H. Chia, Y. Segawa, H. Koinuma, and M. Kawasaki, Solid State Commun. 127, 265 2003.
    43. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 2002.
    44. A. Kascher, U. Haboeck, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, Appl. Phys. Lett. 80, 1909 2002.
    45. A. Tsukazaki, H. Saito, K. Tamura, M. Ohtani, H. Koinuma, M. Sumiya, S. Fuke, T. Fukumura, and M. Kawasaki, Appl. Phys. Lett. 81, 235 2002.
    46. T. Ohshima, T. Ikegami, K. Ebihara, J. Asmussen, and R. Thareja, Thin Solid Films 435, 49 2003.
    47. G. Wang, S. P. Lau, X. H. Zhang, H. W. Lee, H. H. Hug, and B. K. Tay, J. Cryst. Growth 252, 265 2003.
    48. K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. lawata, K. Matsubara, R. Hunger, and S. Niki, Appl. Phys. Lett. 79, 4139 2001.
    49. M. Joseph, H. Tabata, and T. Kawai, Jpn. J. Appl. Phys., Part 2 38, L2505 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700