雷帕霉素固体新制剂的制备及其在大鼠体内的药动学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷帕霉素(Rapamycin,Rapa)最初从吸水链霉菌中分离出来作为抗真菌药物应用,后续研究中人们发现了雷帕霉素在器官移植方面的潜在价值,目前作为第三代强效免疫抑制剂广泛应用于临床。体外试验表明雷帕霉素的免疫抑制活性是环孢素A的100倍,并且在各种动物肾移植模型中的应用证实雷帕霉素能显著提高肾移植动物的存活率。雷帕霉素分子量大,亲脂性强,水中溶解度仅有2.6mg·L-1,口服生物利用度较低(如口服液的生物利用度仅为14%)。目前上市的剂型有口服液和纳米结晶片,口服液须低温储藏,且患者服用定量非常不便;与口服液相比采用球磨法制备的纳米结晶片生物利用度无明显改善,且制备工艺复杂,生产周期长。
     本研究分别采用自微乳化技术和固体分散技术制备了雷帕霉素自微乳化半固体骨架胶囊和雷帕霉素固体分散体,以改善雷帕霉素的溶解性能,增加其溶出速率和胃肠吸收,进而提高口服生物利用度。
     本文将自微乳化制剂固体化技术与半固体骨架胶囊技术相结合采用熔融法制备了雷帕霉素自微乳化半固体骨架胶囊,并考察了灌装温度、冷却速率、赋形剂的种类、含量、助表面活性剂的种类、含量等因素对胶囊囊壳、药物含量、溶出行为及微乳粒径等的影响,确定半固体骨架胶囊处方工艺的优选范围。通过单因素考察和正交试验设计优化处方工艺,确定了雷帕霉素自微乳化半固体骨架胶囊的制备工艺。雷帕霉素自微乳化半固体骨架胶囊(1mg/粒)的最终处方为:Rapa (1mg),Transcutol P (TP, 10%, W/W),Cremophor RH40 (35%, W/W),MCT (15%, W/W),Poloxamer 188 (F68, 40%, W/W),灌装温度为45℃,冷却温度为-20℃。优化后的胶囊水化形成微乳的粒径小且分布均匀,含量均匀度、体外释放度等均符合制剂学要求,处方工艺重现性高。傅里叶红外扫描图谱、X-射线衍射分析和示差扫描热量分析提示雷帕霉素以无定形态分散于半固体基质中,有利于药物的快速溶出。影响因素试验结果表明雷帕霉素自微乳化半固体骨架胶囊对强光、高温、高湿等因素均较敏感,制剂需密闭干燥处储存。经三个月加初步速试验后,自微乳化半固体骨架胶囊质量稳定,药物含量,微乳粒径,体外溶出度均无显著性变化,而自微乳化浓缩液中药物含量及体外溶出度显著降低。
     采用溶剂熔融法制备的Rapa-F68(1:60)固体分散体能显著加快雷帕霉素的溶出,45min溶出度达85%以上,体外释药性能良好。傅里叶红外扫描图谱、X-射线衍射分析和示差扫描热量分析证明雷帕霉素以无定形态分散于固体分散体中,其增溶原理可能跟晶格取向的改变、晶粒大小、晶格点阵面间距等的变化密切相关。
     本文还以自制的雷帕霉素自微乳化浓缩液为参比制剂,进行了雷帕霉素自微乳化半固体骨架胶囊,雷帕霉素固体分散体两种制剂在大鼠体内初步药代动力学和相对生物利用度的研究。建立了高效液相色谱-质谱联用测定大鼠全血雷帕霉素浓度的方法,方法学的考察证实此法能够满足雷帕霉素大鼠体内药代动力学研究的要求。试验结果表明,单剂量口服上述制剂后,雷帕霉素自微乳化浓缩液,雷帕霉素自微乳化半固体骨架胶囊和雷帕霉素固体分散体的AUC0-∞分别为(197.07±39.78)μg·L-1?h、(213.80±42.27)μg·L-1?h、(169.73±50.25)μg·L-1?h;达峰时间Tmax分别为(0.95±0.52)h、(2.14±0.21)h、(1.5±0.46)h;峰浓度Cmax分别为(16.89±5.08)μg·L-1、(13.77±4.36)μg·L-1、(10.37±3.96)μg·L-1;Rapa自微乳化半固体骨架胶囊和Rapa固体分散体的相对生物利用度分别为108.48%和86.12%。
     本试验制得的雷帕霉素自微乳化半固体骨架胶囊和雷帕霉素固体分散体能明显改善Rapa的体外溶出速率从而改善药物吸收;与自微乳化浓缩液相比显著提高了药物在制剂中的稳定性;药动学试验结果表明,雷帕霉素自微乳化半固体骨架胶囊具有与自微乳化浓缩液相似的大鼠体内生物利用度(108.48%),显著高于固体分散体(86.12%)。本项研究为进一步开发新型雷帕霉素固体制剂奠定了基础。
Rapamycin,a carbocyclic lactone-lactam macrolide antibiotic derived from the Streptomyces hygroscopin , has been shown to have a novel mechanism of immunosuppressive action. A variety of In vitro studies have shown Rapa to be 100 times more potent than Cyclosporine A. Data of preclinical studies in a variety of animal transplant models have also suggested that Rapa could significantly add to graft survival time. Due to Rapa’s great molecular weight and strong lipophilicity, it has practically low solubility in water (2.6 mg·L-1) which has made it particularly difficult to make clinically acceptable injectable dosage forms. The dosage form of Rapa appeared in foreign countries were oral self-emulsifying suspension and nanocrystal tablet. The oral self-emulsifying suspension must be stored under low temperature (4-8℃), and it was difficult to quantification. Compared with oral self-emulsifying suspension, the bioavailability of nanocrystal tablet remained together with a long production cycle.
     In this study, solid self-microemulsify technology and solid dispersion technology were used to improve the dissolution and absorption rate of Rapa in the gastrointestinal tract, and thus to increase its oral bioavailability.
     The self-microemulsify technology was combined with the Semi-solid matrix technology, and the self-microemulsifying semi-solid capsules were prepared by melting method. At the beginning, single factor examine was applied to optimize formulation and technique parameters. The stability of capsules, dissolution in vitro, sizes of micro-emulsion were selected as the main objectives of the study. The influence of different carriers, co-surfactants, contents of carriers, contents of co-surfactants, temperature of Semi-solid matrix, cooling temperature was analyzed. The results showed that the quality of capsules was significantly influenced by the factors of co-surfactants, contents of carriers, contents of co-surfactants. Based on the four factors and three levels orthogonal experimental design, the optimized formulation and technique parameters were ascertained: Rapa (1mg), Transcutol P (TP, 10%, W/W), Cremophor RH40 (35%, W/W), MCT (15%, W/W), Poloxamer 188 (F68, 40%, W/W); Filling temperature: 45℃; Cooling temperature: -20℃. Fourier Transform Infrared, X-ray diffraction and Differential Scanning Calorimeter suggested that Rapa semi-solid matrix capsule existed of the amorphous. The results of stability determination tests proved that the illumination, the humidity and high temperature showed impact to the quality of semi-solid matrix capsule. Which also suggest that the capsule should be packed sealed in dark containers. After three months’accelerated tests the preparation was stable, and drug content in capsule had little change during the accelerated experiment, while the content of Rapa reduced significantly in liquid Rapa self-microemulsifying drug delivery system (SMEDDS).
     The Rapa solid dispersion (Rapa: F68 1:60) prepared by solvent-melting method can significantly increased the dissolution of Rapa. The dissolution percentage of Rapa SD can be up to 85% (45min). Fourier Transform Infrared, X-ray diffraction and Differential Scanning Calorimeter suggested that Rapa SD existed of the amorphous, which had closely connection with the change of crystal parameters.
     The pharmacokinetics and bioavailability of self-microemulsifying semi-solid capsules and solid dispersion in rats were studied comparing with liquid Rapa SMEDDS. The HPLC-MS/MS method was established to determine Rapa concentration in rat blood, and the method was proved to be suitable for the pharmacokinetics study of Rapa. The AUC0-∞of liquid Rapa SMEDDS, Rapa self-microemulsifying semi-solid capsules and Rapa solid dispersion were (197.07±39.78)μg·L-1?h, (213.80±42.27)μg·L-1?h, (169.73±50.25)μg·L-1?h, respectively. The peak concentration Cmax were (16.89±5.08)μg·L-1, (13.77±4.36)μg·L-1, (10.37±3.96)μg·L-1, respectively; Tmax were (0.95±0.52)h, (2.14±0.21)h, (1.5±0.46)h, respectively. The relative bioavailability of Rapa self-microemulsifying semi-solid capsules and Rapa solid dispersion were 108.48% and 86.12%.
     This study proved that Rapa self-microemulsifying semi-solid matrix capsule and Rapa solid dispersion have good therapy effect as well as favorable preparation and preservation stability. Besides, the technology can improve patients′compliance and reduce the costs of manufacturing. They have special prospect in becoming new preparations for clinical in the future.
引文
[1] S.N. Sehgal, H. Baker, C. Vezina. Rapamycin, a new antifungal antibiotic, Fermentation, isolation and characterization. Antibiot, 1975, 28: 726-727.
    [2] S. Singh, S. Sun, C. Vezina. Rapamycin (AY-22,989), a new antifungal antibiotic: IV.Mechanism of Action. Antibiot, 1979, 32:630-645.
    [3] C. Brattstrom, H.T. Wilczek, G. Yden, et al. Hyperlipidemia in renal transplant recipients treated with sirolimus. Transplanation, 1998, 65:1271-1274.
    [4] W.C. Goggins, R.A. Fisher, J.B. Dattilo, et al. Analysis of functional renal allograf Tolerance with single dose Rapamycin based induction immune suppression. Transplantation, 1997, 63:310-314.
    [5] R.P. Waranis, T.W. Leonard. Rapamycin formulation for IV injection. US Patent, 1997, No. 5,616,558.
    [6] M. Merion, D.J. White. Cyclosporine: five years experience in cadaveric renal transplantation. The New England Journal of Medicine, 1984, 310(2):148-154.
    [7] S.N. Sehgal. Rapamun (Sirolimus, rapamycin): an overview and mechanism of action. Ther Drug Monit, 1995, 17(6):660-665.
    [8] P. Simamora, S.H. Yalkowsky, J.M. Alvarez. Solubilization of rapamycin. Int J Pharm, 2001, 213(1):25-29.
    [9] P.M. Kimball, B.D. Kahan, R.H. Kerman. Production of synergistic but non-identical mechanisms of immunosuppression by rapamycin and cyclosporine. Transplantation, 1991, 51(4):86-90.
    [10] S. Vignot, D. Aguirre, S. Faivre, et al. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol, 2005, 16(4):525-537.
    [11] E.N. Marieb, J. Mallatt. Human anatomy. Menlo Park: Benjamin and Cummings, 1997, 561-99.
    [12] C.W. Pouton. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci, 2006, 29(3-4):278-287.
    [13] M. Newton, F. Rxlcmck, J. Petersson. The influence of formulation variables on the properties of pellets containing a self-emulsifying mixture. J Pharm Sci, 2001, 90:987-995.
    [14] P. Patil, A. Paradlcar. Porous polystyrene beads as carriers for self-emulsifying system containing loratadinm. AAPS Pharm Sci Tech, 2006, 7(1):El-E7.
    [15] S. Nazzal, M. Nutan, A. Palarnakula, et al. Optimization of a Self-nanoemulsified tablet dosage form of Ubiquinone using response surface methodology: effect of formulation ingredients. Int J Pharm, 2002, 24(1-2):103-114.
    [16] S. Nazzal, M.A. Khan. Controlled release of a self-emulsifying Formulation from a tablet dosage form: Stability assessment and optimization of some processing parameters. Int J Pharm, 2006, 315(1-2):110-121.
    [17] S. Booth, M. Newton, M. Serratoni, et al. Controlled drug release form pellets containing water-insoluble drugs dissolved in self emulsifying system. Eur J Pharm Biopharm, 2007, 65(1):94-98.
    [18]陆彬.药物新剂型与新技术.第二版.北京:人民军医出版社, 1998,10.
    [19] H. Seager, P. Fuchs, L. Pepter, et al. Soft Gelatin Capsules: a Solution to Many Tableting Problems. Pharm Tech, 1985, 9(2):84-104.
    [20] S.E. Walker, K. Bedford, J. Ganley. The filling of molten and thixotropic formulations into hard gelatin capsules. J Pharm Pharmacol, 1980, 32(6):389-393.
    [21] R.N. Gursoy, S. Benita. Self-emulsifying drug delivery systems for improved oral delivery of lipophilic drugs. Biomed Pharmacother, 2004, 58(4):173-182.
    [22] K.L. Napoli. A practical guide to the analysis of sirolimus using high- performance liquid chromatography with ultraviolet detection. Clin Ther, 2000, 22 (B):B14-24.
    [23] T. Seed, P.A. Walters, G. Rowley. Proceedings Pharmaceutical Technology Conference(Athens), Rheological Characteristics of Poloxamers and Poloxamer Silicon Dioxide Gels in Relation to Liquid Filling of Hard Gelatin Capsules. Vol, 1997, 217-224.
    [24] A.R. Hawley, S.M. Chatham, G. Rowley, et al. Physical and chemical characterisation of thermosoftened bases for molten-filled hard gelatin capsule formulation. Drug Dev Ind Pharm, 1992, 18 (4):1719-1739.
    [25] D. Cade, J.P. Mayer, E.T. Cole, et al. Liquid filled and sealed hard gelatin capsules. Acta Pharm Technol, 1986, 33(9):97-100.
    [26] A.T. Serajuddin. Solid dispersion of poorly water-soluble drugs:early Promises, subsequent problems and recent breakthroughs. J Pharm Sci, 1999, 88(10):1058-1066.
    [27] R.G. Strickley. Solubilizing excipients in oral and injectable formulations. Pharm Res, 2004, 21(4):210-230.
    [28] D. Cade, N. Madit. Liquid filling in hard gelatin capsules-preliminary steps. Bulletin Technique Gattefosse, 1996, 15-19.
    [29] S.C. Shine, J. Kim. Physico chemical characterization of solid dispersion of furosemide. Int J Pharm, 2003, 251(1-2):79-84.
    [30]斯陆勤,孙明辉,李高.环抱素A固体分散体的制备及体外研究.中国医院药学杂志, 2005, 5(40):760-762.
    [31]蒋曙光.液体药物的固体新剂型.中国药业, 2003, 12(10):18.
    [32] C.M. Bond, J.L. Packington, K.A. Lees. Cephalexin: a new oral broadspectrum antibiotic. Pharm J, 1970, 205(6):211-214.
    [33] M.J. Kontny, C. Mulski. Gelatin capsule brittleness as a function of relative humidity at room temperature. Int J Pharm, 1989, 54(8):78-85.
    [34] N.A. Peppas. Analysis of fickian and nonfickian drug release from polymers. Pharm Acta Helv, 1985, 60(4):110-111.
    [35] C.P. Pouton. Physiology Based Pharmaceutics: Lipid Formulations for Poorly Water-soluble Drugs. American Association of Pharm Sci, September, 2005.
    [36] C.G. Eddy, I.C. Antonjo, B. Bemard, et al. Development and Optimization of a novel sustained-release dextran tablet formulation for propranolol hydrochloride. Int J Pharm, 2006, 212:233-246.
    [37] S.N. Sehgal. Sirolimus: an overview and mechanism of action. Ther Drug Monit, 1995, 17(6):660-665.
    [38] L.S. Porubcan, S.L. Hem, C.J. White, et al. Mechanism of adsorption of clindamycin and tetracycline by montmorillonite. J Pharm Sci, 1978, 67(3):1081-1087.
    [39]陈芳晓,尚飞,钱春梅.固体分散体水溶性载体材料研究进展.中国医药导报, 2004, 09:25.
    [40] C. Campana, M.B. Regazzi, I. Buggia. Clinically siginificant drug interactions with cyclosporine. Clin Pharmacokinet, 1996, 30:141.
    [41]文霞.溶出度试验及其应用.中国新药杂志, 1999, 8(3):168-170.
    [42]游本刚,梁娜,王亮等.尼群地平固体分散体体外溶出度研究.抗感染药学, 2005, 2(4):151.
    [43]李凤前,胡晋红,王惠等. PEG6000固体分散体系对难溶性药物水飞蓟素的增溶作用与晶格变化的关系.药学学报, 2002, 37(4):294-298.
    [44]张莉,夏运岳.用电子表格Excel计算药物溶出度Weibull分布参数.药学进展, 2002,26(1):48-50.
    [45]彭永富,董慧.药物溶出度Weibull分布的计算机求解.中国药学杂志, 1996, 31(10):606-608.
    [46] S.C. Shin, J. Kim. Physical chemical characterization of solid dispersion of furosemide with TPGS. Int J Pharm, 2003, 251(2):79-84.
    [47]郭丽,郭圣荣,赵凤生. PVP K30对葛根黄豆苷元增溶作用的研究.中国医药工业杂志, 2003, 34(6):273-275.
    [48] C. Campana, M.B. Regazzi, I. Buggia. Clinically siginificant drug interactions with cyclosporine. Clin Pharmacokinet, 1996, 30:141.
    [49]王淑民,崔艳丽,武峰等.加替沙星片在人体药动学及生物等效性研究.中国药物应用与检测. 2000, 4:17-22.
    [50] Y. Shono, Y. Matsuda, H. Nishihara. Modulation of intestinal P-glycoprotein function by Cremophor EL and other surfactants in vitro diffusion chamber method using isolated rat intestinal membranes. J Pharma Sci, 2004, 93(5):874-885.
    [51] M. Shakweh, V. Nicolas, M. Besnard, et al. Poly (Lactide-coglycolide) particles of different physical and chemical properties and their uptake by peyers-patches in rats. Eur J Pharm Biopharm, 2005, 61(1):1-15.
    [52] J. Daniel, H. Gallant, T. Repanier. Rapamycin: Distribution, Pharmacokinetics and therapeutic range investigations. Clinical Biochemistry, 1998, 31(6):355-358.
    [53] L. Kimberly. A practical guide to the analysis of Rapamycin using High-Performance Liquid Chromatography with ultraviolet detection. Clinical Therapeutics, 2000, 22:B14-B24.
    [54] J. Paul, T. Taylor, G. Anthony. Quantitative analysis of Sirolimus in blood by High-Performance Liquid Chromatography tandem mass spectrometry. Journal of Chromatography B, 1998(18):251-257.
    [55] I. Bartlomie, D. Zochowska, A. Kaminska. High-performance Liquid Chromatography versus immunoassay for the measurement of Sirolimus: comparison of two methods. Transplantation Proceedings, 2006(8):78-80.
    [56]祝仕清,耿亚鹏,朱长群. UPLC/MS/MS联用法测定全血中的西罗莫司浓度.中国抗生素杂志. 2007, 33(6):347-349.
    [57] Y. Louis, H.K. Leung, W. Madelyn. Pharmacokinetics and metabolic disposition of Sirolimus in healthy volunteers after a Single Oral Dose. Ther Drug Monit, 2006, 28(2):51-61.
    [58]郁继诚,张菁,曹国英.国产阿奇霉素颗粒在健康受试者中的生物等效性研究.中国新药杂志, 2007, 15(22):1908.
    [59]刘昌孝,孙瑞元.药物评价试验设计与统计学基础.北京军事医学出版社, 1999.
    [60] C.W. Pouton. Lipid formulation for oral administration of drugs: non-emulsifying and self-micro emulsifying drug delivery systems. Eur J Pharm Sci, 2000, 11:93-98.
    [61] C.J. Porter, W.N. Charman, N.L. Trevaskis. Lipids and lipid based formulations: optimizing the oral delivery of lipohilic drugs. Nat Rev Drug Discov, 6:132-246.
    [62] C.J. Porter, W.N. Charman, N.L. Trevaskis. Evaluation of the digestion profiles of long and medium-chain glycerides and phase behaviour of their lipolytic products. J Pharm Pharmacol, 2002, 54(3):29-40.
    [63] R. Tian, H. Takanaga, N. Koyabu. Effect of grapefruit juice on the efflux effect of P-glycoprotein substrates. Pharm Res, 2002, 19(7):801-809.
    [1] G.L. Amidon, V.P. Seth, H. Lennernas, et al. A theoretical basis for a biopharmaceutics drug classification: the correlation of in vitro dissolution and in vivo bioavailability. Pharm Res, 1995, 12(2):413-420.
    [2] L.Z. Benet, C.Y. Wu. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of biopharmaceutics drug disposition classification system. Pharm Res, 2005, 22(4):11-23.
    [3] C.A. Lipinski, P.J. Feeney, B.W. Dominy. Experimental and computational approaches to estimate permeability and solubility in drug discovery and development settings. Adv Drug Deliv Rev, 2001, 46(7):3-26.
    [4] T.D. Wilson, S.A. Charman, F.J. Dutko, et al. Self emulsifying drug delivery system: the formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm Res, 1992, 9(4):87-93.
    [5] B.E. Jones. Manufacture and properties of two-piece capsules, Pharmaceutical Capsules. Pharmaceutical Press, London, 2004, 79-100.
    [6] E.T. Cole, H. Sucker. Pharmazeutische Technologie. Georg Thieme Verlag, Stuttgart, 1991, 319-320.
    [7] F. Podczek. Technology to manufacture soft capsules. Pharmaceutical Capsules, Pharmaceutical Press, London, 2004, 195-199.
    [8] H. Seager, P. Fuchs, L. Pepter, et al. Soft Gelatin Capsules: a Solution to Many Tableting Problems. Pharm Tech, 1985, 9(2):84-104.
    [9]蒋曙光.液体药物的固体新剂型.中国药业, 2003, 12(10):18.
    [10] G. Reich. Formulation and physical properties of soft capsules. Pharmaceutical Capsules, Pharmaceutical Press, London, 2004, 201-212.
    [11] C. Fischer, P. Fuchs. Pharmaceutical Technology. Georg Thieme Verlag, Stuttgart, 1991, 337-347.
    [12] P. Ghirardi, O. Mantero, A. Marzo, et al. Bioavailability of digoxin in a new soluble pharmaceutical formulation in capsules. J Pharm Sci, 1977, 66(4):267-269.
    [13] W. Lahr. Flussig befullte hard gelatin capsule. Pharm Ztg, 1986, 131(2):871-874.
    [14] L. Erlic, D. Yu. Relative bioavailability of danazol in dogs from liquid-filled hard gelatin capsules. Int J Pharm, 1999, 179(1-2):49-53.
    [15] N. Yessksel, A. Savayer, Y. Ozkan, et al. Enhanced bioavailability of piroxicam using Gelucire 44/14 and Labrasol: in vitro and in vivo evaluation. Eur J Pharm Biopharm, 2003, 56(3):453-459.
    [16] K. Schamp, J. Dressman, S.A. Schreder. Development of an in vitro and in vivo correlation for lipid formulations of EMD 50733, a poorly soluble lipophilic drug substance. Eur J Pharm Biopharm, 2006, 62(2):227-234.
    [17] M.S. Soliman, M. Khan. Preparation and characterization of a semi-solid dispersion of flurbiprofen with Gelucire 44/14 and Labrasol. Pharmazie, 2005, 6 (5):288-293.
    [18] D. Cade, J.P. Mayer, E.T. Cole, et al. Liquid filled and sealed hard gelatin capsules. Acta Pharm Technol, 1986, 33(9):97-100.
    [19] S.E. Walker, K. Bedford, J. Ganley, et al. The filling of molten and thixotropic formulations into hard gelatin capsules. J Pharm Pharmacol, 1980, 32(6): 389-393.
    [20] M. Durr, K.D. Gneuss, H.U. Fridolin, et al. Entwicklung von Rezepturen und Verfahren zur Abfullung von flussigen Massen in Hartgelatinekapseln unter Produktionsbedingungen. Acta Pharm Technol, 1983, 29(3):245-251.
    [21] W.J. Bowtle, B. Jones, E.D. Holmes, et al. S.S.M. formulations and capsules: animproved way to handle toxic compounds, AAPS annual meeting and exposition. Pharm Res, 1989, 7:612-613.
    [22] W.J. Bowtle. Liquid filling of hard gelatin capsules: A new technology for alternative formulation. Pharm technol, 1998, 10:84.
    [23]沈航孝,顾林金.液体灌装硬胶囊技术的研究概况.中国医药工业杂志, 2005, 36(6):377.
    [24] C. Doelker, P. Buri, E. Doelker. The incorporation and in vitro release profile of liquid, deliquescent or unstable drugs with fusible excipients in hard gelatin capsules. Drug Dev Ind Pharm, 1986, 12 (6):1553-1565.
    [25] W.J. Bowtle, J. Woodhams, N.J. Barker. A new approach to vancomycin formulation using filling technology for semi-solid matrix capsules. Pharm Technol, 1988, 12(4):86-97.
    [26] R.A. Lucas, R. Ryden, W.J. Bowtle. Disposition of vancomycin in healthy volunteers from oral solution and semi-solid matrix capsules. J Clin Pharm Ther, 1987, 12(7): 27-31.
    [27] J.R. Howard, P.L. Gould. Drug release from thermosetting fatty vehicles filled into hard gelatin capsules. Drug Dev Ind Pharm, 1987, 13(3):1031-1045.
    [28] Y. Seta, F. Y. Kawahara, R. Okada, et al. Design and preparation of captopril sustained-release dosage forms and their biopharmaceutical properties. Int J Pharm, 1998, 41:245-254.
    [29] Y. Seta, K. Nishimura, R. Okada, et al. Preparation and pharmacological evaluation of captopril sustained release dosage forms using oily semi-solid matrix. Int J Pharm, 1988, 41(5):255-262.
    [30] Y. Seta, H. Tokiwa, Y. Kawahara, et al. Design of captopril sustained-release preparation with oily semisolid matrix. Int J Pharm, 1988, 41(6):263-269.
    [31] A.B. Dennis, G. Taylor, S.J. Farr, et al. In vivo evaluation of rapid release and sustained release Gelucire capsule formulations. Int J Pharm, 1990, 65(3):85-100.
    [32] A.C. Vial-Bernasconi, E. Doelker, G. Duchaix, et al. In vivo evaluation of anindomethacin monolithic, extended zeroorder release hard gelatin capsule formulation based on saturated polyglycolysed glycerides. Pharm Acta Helv, 1995, 70(5):307-313.
    [33] F.S. Hom, W.R. Ebert, S. Veresh. Soft gelatin capsules II: oxygen permeability study of capsule shells. J pharm Sci, 1975, 64:851-857.
    [34] K.H. Bauer. Die Herstellung von Hartund Weichgelatinekapseln, in: W. Fahrig, U.H. Hofer, Wissenschaftliche Verlags GmbH Stuttgart, 1983, 58-82.
    [35] J.M. Kovarik, J.B. Bree, K. Kutz, et al. Reduced inter and intraindividual variability in cyclosporin pharmacokinetics from amicroemulsion formulation. J Pharm Sci, 1994, 83(4):444-447.
    [36] R.G. Strickley. Solubilizing excipients in oral and injectable formulations. Pharm Res, 2004, 21(4):210-230.
    [37] C.M. Bond, J.L. Packington, K.A. Lees. Cephalexin: a new oral broadspectrum antibiotic. Pharm J, 1970, 205(6):211-214.
    [38] M.J. Kontny, C. Mulski. Gelatin capsule brittleness as a function of relative humidity at room temperature. Int J Pharm, 1989, 54(8):78-85.
    [39] R.K. Chang, M.A. Hussain, K.S. Raghavan. A study on gelatin capsule brittleness: moisture transfer between the capsule shell and its content. J Pharm Sci, 1998, 556-558.
    [40] P.A. Walters, G. Rowley. Proceedings Pharmaceutical Technology Conference, Moisture uptake of excipients for liquid filling into hard gelatin capsules. Vol, 1999, 97-101.
    [41] G. Rowley. Filling of liquids and semi-solids into hard two-piece capsules, in: F. Podczek. Pharmaceutical Press, London, 2004, 169-194.
    [42] D. Cade, N. Madit. Liquid filling in hard gelatin capsules-preliminary steps. Bulletin Technique Gattefosse, 1996, 15-19.
    [43] G.A. Digenis, V. Shah, T.B. Gold. Cross-linking of gelatin capsules and its relevance to their in vivo performance. J Pharm Sci, 1994, 83(4):915-921.
    [44] M. Dey, D. Smith, M. Kraml, et al. The dissolution and bioavailability of etodolacfrom capsules exposed to conditions of high relative humidity and temperature. Pharm Res, 1993, 10(3):1295-1300.
    [45] T. Seed, P.A. Walters, G. Rowley. Proceedings Pharmaceutical Technology Conference(Athens), Rheological Characteristics of Poloxamers and Poloxamer Silicon Dioxide Gels in Relation to Liquid Filling of Hard Gelatin Capsules. Vol, 1997, 217-224.
    [46] A.R. Hawley, S.M. Chatham, G. Rowley, et al. Physical and chemical characterisation of thermosoftened bases for molten-filled hard gelatin capsule formulation. Drug Dev Ind Pharm, 1992, 18 (4):1719-1739.
    [47] A. Cuine, D. Erancois. Thixotropic filling medium for hard gelatin capsules. GB: 1590864, 1981-06-10.
    [48] J.W. Matthews. Thixotropic gelatin carrier composition. US: 6365181, 2002-04-02.
    [49] T. Baykara, N. Yuksel. The preparation of prolonged action formulation in the form of semi solid matrix into hard gelatin capsules of oxprenolol. Drug Dev Ind Pharm, 1991, 17 (6):1215-1227.
    [50] G.J. Wiley, I. Ullah, S.N. Agharkar. Development of a semi-automatic system for RD and clinical use for liquid filled hard gelatin encapsulation. Pharm Technol, 1995, 25(4):72-76.
    [51] C.M. Taggart, R. Wood, K. Bedford, et al. The evaluation of an automatic system for filling liquids into hard gelatin capsules. J Pharm Pharmacol, 1984, 36(5):119-121.
    [52] F.Wittwer. New development in hermetic sealing of hard gelatin capsules. Pharm. Manuf, 1985, 2:24-27.
    [53] b1151 N Pharmaceutical Dosage Forms. USP 30-NF 25, 2007, 620-631.
    [54] E.T. Cole. Liquid filled and sealed hard gelatin capsule technologies, in: M.J. Rathbone, J. Hadgraft. Modified-Release Drug Delivery Technology, Marcel Dekker, New York, 2003, 177-188.
    [55] Y. Seta, F. Higuchi, T. Otsuka. Preparation and pharmacological evalution of sustained release dosage forms using oily semi solid matrix. Int J Pharm, 1988,42(3):255-262.
    [56] L. Erlich, D. Yu, D.A. Pallister. Relative bioavailability of danazol in dogs from liquid filled hard gelatin capsules. Int J Pharm, 1999, 179(1):49-53.
    [57] S.J. Burn, S. Higginbotton, I. Whelan. Formulation strategies designed to maintain biphasic release characteristics of liquid filled capsules. Int J Pharm, 1996, 141:9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700