纳米添加剂对Ba(Mg_(1/3)Ta_(2/3))O_3微波陶瓷介电性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ba(Mg_(1/3)Ta_(2/3))O_3 (BMT)陶瓷是中低εr类微波介质陶瓷材料中最优秀的典型代表,也是目前卫星通讯等高频领域所用的主要介质材料,因而成为当前国际上微波介质陶瓷研究与应用领域的热点之一。本论文工作从材料的微观结构出发,分析探讨BMT陶瓷介电损耗与谐振频率温度系数(τ_f)的内在机制与影响因素,以此为基础通过掺杂纳米添加剂对BMT系统介质陶瓷进行改性研究,主要研究目的是希望获得同时具有良好烧结性能与优异微波介电性能的BMT系统微波介质材料。
    1.对BMT陶瓷介电性能的理论研究进行了总结分析:材料在微波频率下的介电损耗分为内部损耗与外部损耗,内部损耗取决于材料的化学结构组成与晶体结构,外部损耗主要取决于材料的显微结构;材料的介电常数温度系数(τ_ε)不仅与材料的化学组成有关,还会受到材料晶体结构的影响,其原因在于晶体结构的改变直接影响到材料微观极化率的温度依赖性。
    2.使用多种金属离子以传统电子陶瓷工艺对BMT陶瓷进行掺杂改性,通过经典谐振子模型建立材料的离子物性参数与极性晶格振动模的联系,探讨分析了不同位置取代离子对材料性能的作用影响及规律:BMT系统的ε_r与τ_f主要取决于材料的低频区极性晶格振动模的特性变化,系统的内部损耗则取决于所有极性晶格声子的非谐效应,通过掺杂取代可调整原BMT体系极性晶格振动模的特性,进而改善材料的微波介电性能。
    3.将Sn~(4+)与Mn~(2+)分别以纳米粉体和溶液的形式对BMT系统陶瓷进行掺杂改性,获得了具有良好烧结性能与优异微波介电性能的BMT-BS系微波介质陶瓷材料:掺杂1.5 mol%Mn的0.85BMT-0.15BS系统在1450℃保温4h后的τf近似为0ppm℃~(-1),体密度达到7.33g/cm~3,εr为24.9, Q×f值为1.85×10~5GHz。4.采用液相包覆—界面反应的方法在800℃下经济高效地合成出成份均匀、纯度较高、具有良好烧结活性的BMT纳米粉体,通过均匀设计与多重线性回归对以纳米BMT粉体作为添加剂改善BMT体系烧结性能的研究进行了优化分析,在1550℃下保温4h的含8.5wt%添加剂的BMT样品的相对密度达到93.80%,微波介电性能为:ε_r=24.8;τ_f=6ppm℃~(-1);Q×f= 1 .24×10~5GHz。
As the most outstanding representative of moderate ε_r microwave dielectricceramics and main materials used currently at high-frequency regions such as satellitecommunication systems etc, Ba(Mg_(1/3)Ta_(2/3))O_3 (BMT) compounds have gotten closeattention in the field of microwave ceramics. In this dissertation, the mechanisms ofdielectric loss and temperature coefficient of resonant frequency ( τ_f) wereinvestigated from microscopic material parameters and, based on such mechanismsanalysis, the studies on modified BMT systems were conducted by using nanoscaledpowders additives. The goal of this work is to obtain novel modified BMT materialswith both good sinterability and excellent microwave dielectric properties.
    1. The theoretical studies on dielectric properties of BMT ceramics were analyzedand summarized: the dielectric loss can be classified as intrinsic loss and extrinsicloss, the former is determined by chemical composition and crystal structure, thelatter is closely related to material microstructure;temperature coefficient ofdielectric constant ( τ_ε) is found to be not only related with material composition,but also with crystal structure, which directly influences the temperaturedependence of material microscopic polarizabilities.
    2. A systematically study on modified BMT systems were conduced by dopingvarious metallic ions through conventional electronic ceramics technology. Theions parameters were correlated with material polar lattice vibrations throughclassical oscillator model, and the relation between materials properties and ionscharacteristics at different substituting sites were also investigated: dielectricconstant ( ε_r) and τ_f are mainly determined by polar phonons characteristics atlow frequency regions;the intrinsic loss is determined by anharmonic effects ofall polar phonons;doping different ions at different sites can lead to the changesof lattice phonons characteristics, thus improving dielectric properties.
    3. A new modified BMT system ceramics with both good sinterability and excellentmicrowave properties were prepared by doping Sn4+and Mn~(2+) in the form ofBaSO_3 (BS) nanoscaled powders and Mn~(2+) solutions, respectively. After dopedwith 1.5mol% Mn, the 0.85BMT-0.15BS system can be sintered at 1450℃ for 4h.The as-prepared sample shows a density of 7.33g/cm~3;τ f≈0ppm℃~(-1);ε_r=24.9;Q× f= 1.85×10~5GHz.
    4. BMT nanoscaled powders with high purity and good sintering activity wereeconomically synthesized at 800℃ through liquid-phase coating interfacialreaction and then were used as additives to improve the sinterability of BMTsystem. Uniform experimental design and multiple linear regressions were appliedto optimize the formula and preparation technology. When additive content is8.5wt%, the BMT materials sintered at 1550℃ for 4h show about 93.8% of thetheoretical density and good microwave dielectric properties: ε r=24.8;τ f=6ppm℃-1;Q× f= 1 .24× 105GHz.
引文
[1] Agilent Technologies, Agilent RF and Microwave Test Accessories Catalog, USA: Agilent Technologies, 2000: 200
    [2] 干福熹,信息材料,天津大学出版社,2001
    [3] 李标荣,王筱珍,张绪礼,无机电介质,武汉:华中理工大学出版社,1985
    [4] 高春华,黄新友,微波介质陶瓷及其展望,陶瓷,2002,(1): 42~45
    [5] 何进,杨传仁,微波介质陶瓷材料综述,电子元件与材料,1995,(4): 7~13
    [6] Wolfram Wersing, Microwave ceramics for resonators and filters, Current Opinion in Solid State & Materials Science, 1996, 1(5): 715~731
    [7] 徐国瑛,微波陶瓷介质谐振器的研制,上海航天,1990,4: 8~13
    [8] 周水杉,微波介质陶瓷材料的发展,电子元件与材料,1988,7(2): 8~12
    [9] 吴红忠,纪士东,范福康,微波介质材料的进展,火花塞与特种陶瓷,1997,(2): 13~17
    [10] 王国康,宛季华,新型电介质在电力电容器中的应用,水利电力出版社,1993
    [11] 张绪礼,电介质物理与微波介质陶瓷,压电与声光,1997,19(5): 315~320
    [12] 李标荣,莫以豪,王筱珍,无机介电材料,上海:上海科学技术出版社,1986
    [13] Harlan Anderson, Jyoti Guha, Wayne Huebner, Dielectric Ceramics, the Proceeding of 91st Annual Meeting the American Ceramic Society, 1989
    [14] Richard E, Mistler, Tape Casting: Past, Today, Future, Am Ceram Soc Bull, 1998, 77(10): 82~86
    [15] 顾其诤,介质谐振器微波电路,北京:人民邮电出版社,1986
    [16] 李言荣,恽正中,电子材料导论,北京:清华大学出版社,2001
    [17] Hakki B W, Coleman P D, A dielectric resonator method of measuring inductive capacities in the millimeter range, IRE Transactions on Microwave Theory and Techniques, 1960, MTT-8(7): 402~409
    [18] Wakino K, Recent development of dielectric resonator materials and filters in Japan, Ferroelectrics, 1989, 91: 69
    [19] 徐廷献,沈继跃,薄占满等,电子陶瓷材料,天津:天津大学出版社,1993
    [20] 沙济彰,Wu Z,介质谐振器天线谐振频率的测量及其应用,西安电子科技大学学报,1997,24(3): 432~437
    [21] 张鸿祥,应用介质谐振器的宽带微带倍频器,贵州航天,1993,(1): 12~16
    [22] 通信用高频无源元件技术浪潮,世界电子元器件,1998,(1): 32~33
    [23] 移动通信高频元器件技术动向,世界电子元器件,1997,(11): 32~36
    [24] Makoto Kawashima, Technology Streamlines Mass Production of Dielectric Filters, JEE, 1995, (11): 14~16.
    [25] Takashi Okawa, et al, The Application of Microwave Ceramics, The Proceeding of ISAF'95: 367~371
    [26] Takashi Okawa, et al, The Development of a Multilayer Dielectric Filter Using Low Temperature Fired Microwave Ceramics, The Sumitomo Search, (47), 1991
    [27] Kazuo Washida, Koji Sakai, Chip Monolithic LC Filters Move into High-Frequency Use, JEE, 1991, (10): 48~52
    [28] Shinya Nakai, Band-Pass, Low-Pass Filters Adopt Shield Plate Near Surface, JEE, 1995, (11): 17~20
    [29] 河野敏彥,1608 型移動通信用セラミツク積層ローパスフイルタおよび方向性結合器,電子材料[日文],1999,(4): 91~95
    [30] 移动通信用 LC 滤波器新动向,世界电子元器件,1998,(6): 32~34
    [31] Toshikazu Endoh, Bluetooth Conformity Paints Bright Outlook for TDKs Chip Antennas, AEI, 2000, (9): 30
    [32] 周其焕,新兴 GPS 产业的发展方向,电子科技导报,1997,(1):18~22
    [33] Yuuichi Knshihi, et al, GPS Ceramics Antenna Guides Drivers, Uses Low-Noise Amp, JEE, 1991, (1): 92~95
    [34] 张钧 等编著,《微带天线理论与工程》,国防工业出版社,1988
    [35] 全球定位导航系统平面天线种类及性能,世界电子元器件,1998,(7): 37~42
    [36] 罗批,集中差分 GPS 车辆监控系统的研究与实现,中国人民解放军运输工程学院研究生学位论文,1998. 12. 5
    [37] 杨东凯等,GPS 车辆监控系统研究,导航,1999,35(1): 59~68
    [38] 王涛,影响 GPS 应用发展的几个重要因素,3S 世界,2000,(7):第四、十二版
    [39] Rase D E, Roy R, Phase equilibrium in the system BaO-TiO_2, J Am Ceram Soc, 1955, 38(3): 102~113
    [40] Templeton D H, Dauben C H, Polarized Octahedra in Barium Tetratitanate, Journal of Chemical Physics, 1960, 32(5): 1515~1518
    [41] Masse D J, Pucel R A, Readey D W, et al, A new Low-Loss, High-K, Temperature-Compensating dielectric for microwave applications, Proc IEEE, 1971, 59(11): 1628~1629
    [42] Jonker G H, Kwestroo W, The ternary system BaO-TiO_2-SnO_2 and BaO-TiO_2-ZrO_2, J Am Ceram Soc, 1958, 41(10): 390~394
    [43] Plourde J K, Linn D F, O'Bryan H M, et al, Ba_2Ti_9O_(20) as a microwave dielectric resonator, J Am Ceram Soc, 1975, 58 (10): 418~420
    [44] 韩家平,张绪礼,王筱珍等,BaO-TiO_2系中Ba_2Ti_9O_(20)相形成的研究,硅酸盐学报,1996,24(2):173~178
    [45] 宋英,王福平,张明福,BaO-TiO_2系陶瓷微波介电性的近期研究进展,硅酸盐通报,1998,17(3): 50~52
    [46] Maher G H, Improved Dielectrics for Multi-layer Ceramic Capacitors, Proceeding of the 27th electronic component conference, 1978: 391~399
    [47] 张传忠,微波陶瓷及其应用,压电与声光,1987,9(5): 9~16
    [48] Hirano S, Takashi H, Chemical processing and microwave characteristics of (Zn,Sn)O4 microwave dielectrics, J Am Ceram Soc, 1991, 74(6): 89~93
    [49] Chai L, Akbas M A, Davies P K et al, Cation ordering transformations in Ba(Mg_(1/3)Ta_(2/3))O_3-BaZrO3 perovskite solid solutions, Mater Res Bull, 1997, 32(9): 1261~1269
    [50] 卞建江,王鸿, Ba(Mg_(1/3)Ta_(2/3))O_3微波陶瓷的损耗研究,功能材料与器件学报,1995,1(1): 27~31
    [51] Tamura H, Konoike T, Sakabe Y, et al, Improved high-Q dielectric resonator with complex perovskite structure, Commu Am Ceram Soc, 1984, C 67(4):59~61
    [52] Endo K, Fujimoto K, Murakawa K, Dielectric properties of ceramics in Ba(Co_(1/3)Nb_(2/3))O_3-Ba(Zn_(1/3)Nb_(2/3))O_3 solid solutions, Commu Am Ceram Soc, 1987, C 70(9):215~218
    [53] Liang M H, Wu S Y, Hu C T, et al, Enhancing the sinterability of Ba(Mg_(1/3)Ta_(2/3))O_3 dielectrics by using chemically-derived powders, Mater Chem Phys, 2003, 79(2-3):276~281
    [54] Gu F, Shen Y, Liang X F, Preparation and characteristics of Ba(Mg_(1/3)Ta_(2/3))O_3 from nanostructured powder, Mater Sci Eng B Solid State Adv Technol, 2003, 99(1-3):453~456
    [55] 杨传仁,秦广宇,周大雨,等,B 位离子共沉淀-煅烧法制备 Ba(Mg_(1/3)Ta_(2/3))O_3 微波陶瓷材料,硅酸盐学报,1999,27(4): 437~444
    [56] Katayama S, Yoshinaga I, Yamada N, et al, Low-temperature synthesis of Ba(Mg_(1/3)Ta_(2/3))O_3 ceramics from Ba-Mg-Ta alkoxide precursor, J Am Ceram Soc, 1996, 79(8):2059~2064
    [57] Katayama S, Yoshinaga I, Nagai T, et al, Preparation of high sinterable Ba(Mg_(1/3)Ta_(2/3))O_3 powders by hydrolysis of metal alkoxides, Key Eng Mat, 1998, 150(1):89~96
    [58] Renoult O, Boilot J-P, Chaput F, Sol-Gel processing and microwave haracteristics of Ba(Mg_(1/3)Ta_(2/3))O_3 dielectrics, J Am Ceramic Soc, 1992, 75(12):3337~3340
    [59] Ravichandran D, Jr Meyer R, Roy R, et al, Sol-Gel synthesis of Ba(Mg_(1/3)Ta_(2/3))O_3 : phase pure powder and thin films, Mater Res Bull, 1996, 31(7):817~825
    [60] Ravichandran D, Jin B, Roy R, et al, Raman spectroscopy of sol-gel derived Ba(Mg_(1/3)Ta_(2/3))O_3 perovskites, Mater Lett, 1995, 25(5-6):257~259
    [61] Abothu I R, Komarrneni S, Paik D S, et al, Nanocomposite versus sol-gel processing of Barium Magnesium Tantalate, J Electroceram, 1999, 3(1):65~71
    [62] Lu C-H, Tsai C-C, A new sol-gel route using inorganic salts for synthesizing barium magnesium tantalate ceramics, Mater Lett, 1997, 31(6):271~274
    [63] Lin Z, Cai J J, Scriven L E, et al, Spherical-to-Wormlike micelle transition in CTAB solutions, J Phys Chem, 1994, 98(23):5984~5993
    [64] Mani A, Selvan S T, Phani K L N, et al, Studies on the generation of polyaniline microstructures using microemulsion polymerization, J Mater Sci Lett., 1998, 17(5):385~ 387
    [65] Lee Y C, Liang M H, Hu C T, et al, Microwave dielectric properties of Ba(Mg_(1/3)Ta_(2/3))O_3 materials synthesized by inverse microemulsion process, J Eur Ceram Soc, 2001, 21(15):2755~2758
    [66] Fang Y H, Hu A, Ouyang S, et al, The effect of calcination on the microwave dielectric properties of Ba(Mg_(1/3)Ta_(2/3))O_3, J Eur Ceram Soc, 2001, 21(15):2745~2750
    [67] Ratheesh R, Sebastian M T, Tobar M E, et al, Whispering Gallery mode microwave characterization of Ba(Mg_(1/3)Ta_(2/3))O_3 dielectric resonators, J Phys D, 1999, 32(21):2821~2826
    [68] Wersing W: High frequency ceramic dielectrics and their application for microwave components, In Electronic Ceramics. Edited by Stssle BCH, London and New York: Elsevier Applied Sciencs, 1991:67~119
    [69] Kudesia R, Mchale A E, Condrate R A, et al, Microwave characteristics and far-infrared reflection spectra of zirconium tin titanate dielectrics, J Mater Sci, 1993, 28(20):5569~5575
    [70] Gurevich V L, Tagantsev A K, Intrinsic loss in crystals, Adv Phys 1991, 40(3):719~767
    [71] Petzelt J, Setter N, Fir-infrared spectroscopy and origin of microwave lossess in low-loss ceramics, Ferroelectrics, 1993, 150(1-2):89~102
    [72] Fukuda K, Kitoh R, Fir-infrared spectra of dielectric ceramics for microwave applications, J Am Ceram Soc, 1994, 77(1):149~154
    [73] Tsai T-R, Chi C-C, Liang M-H, et al, Dielecric properties of (x) Ba(Mg_(1/3)Ta_(2/3))O_3 -(1-x) Ba(Mg1/3Nb2/3)O3 (x=1, 0.75, 0.50, 0.25 and 0) complex perovskite ceramics, Mater Chem Phys, 2003, 79(2-3):169~174
    [74] Lin I-N, Chia C-T, Liu H-L, et al, High frequency dielectric properties of Ba(Mg_(1/3)Ta_(2/3))O_3 complex perovskite ceramics, J Eur Ceram Soc, 2003, 23(15):2633~2637
    [75] Bunget I, Popescu M , Physics of Solid Dielectrics, Elsevier Science, New York, 1984: 217
    [76] G.burns, Solid State Physics, IBM, Yorktown Heights, New York, 1985: 461
    [77] Plendl J N, Hadni A, Hennenger Y, et al, Far infrared study of the copper Hadides at low temperatures, Appl Opt, 1966, 5(3):397~401
    [78] Silverman B D, Microwave absorption in cubic strontium titanate, Phys Rev, 1962, 125:1921
    [79] Tochi K, Takeuchi N, Two-Mode behavior in complex perovskite materials, J Am Ceram Soc, 1989, 72(1):158~160
    [80] Tochi K, Ohgaku T, Takeuchi N, Long-wavelength phonons and effective charges in complex perovskite Ba(Mn1/3Ta2/3)O3 and Ba(Ni1/3Ta2/3)O3, J Mater Sci Lett, 1989, 8(11):1331~1333
    [81] Janaswamy S, Murkey G S, Dias E D, et al, Structural analysis of Ba(Mg_(1/3)Ta_(2/3))O_3 ceramics, Mater Lett, 2002, 55(3):414~419
    [82] Takahash T, Wu E J, Der A V, et al, First-principles investigation of B-site ordering in Ba(Mg_(1/3)Ta_(2/3))O_3 microwave dielectric with the complex perovskite structure, Jpn J Appl Phys, 2000, 39(12):5637~5641
    [83] Tamura H, Sagala D A, Wakino K, Lattice vibrations of Ba (Zn_(1/3) Ta_(2/3))O_3 crystal with ordered perovskite structure, Jpn J Appl Phys, 1986, 25(6):787~791
    [84] Sagala D A, Namba S, Microscopic calculation of dielectric loss at microwave frequencies for complex perovskite Ba (Zn_(1/3)Ta_(2/3))O_3, J Am Ceram Soc, 1992, 75(9):2573~2575
    [85] Kim E S, Yoon K H, Microwave dielectric properties of complex perovskite Ba(Mg_(1/3)Ta_(2/3))O_3, Ferroelectrics, 1992, 133(1-4):187~192
    [86] Kawashima S, Nishida M, Ueda I, et al, Ba(Zn_(1/3)Ta_(2/3))O_3 ceramics with low dielectric loss at microwave frequencies, J Am Ceram Soc, 1983, 66(6):421~423
    [87] Desu S B, O'Bryan H M, Microwave loss quality of Ba(Zn_(1/3)Ta_(2/3))O_3 ceramics, J Am Ceram Soc, 1985, 68(10):546~551
    [88] Onoda M, Jun K, Kumiko K, et al, Ba(Zn_(1/3)Nb_(2/3))O_3-Sr(Zn1/3Nb2/3)O3 solid solution ceramics with temperature-stable high dielectric constant and low microwave loss, Jpn J Appl Phys, 1982, 21(12):1707~1710
    [89] Bosman A J, Havinga E E, Temperature dependence of dielectric constants of cubic ionic compounds, Phys Rev, 1963, 129(4):1593
    [90] Colla E L, Reany I M, Setter N, Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity, J Appl Phys, 1993, 74(5):3414~3425
    [91] 刘梅冬,许毓春,压电铁电材料与器件,武汉:华中理工大学出版社,1990
    [92] Glazer A M, The classification of tilted octahedral in perovskites, Act Crystal, 1972, B 28(12):3384~3392
    [93] Nagai T, Sugiyama M, Sando M, et al, Structural changes in Ba (Sr_(1/3)Ta_(2/3))O_3-Type perovskite compounds upon tilting of oxygen octahedra, Jpn J Appl Phys, 1997, 36(3A): 1146~1153
    [94] Reaney I M, Colla E L, Setter N, Dielectric and structural characteristics of Ba-and Sr-based complex perovskite as a function of tolerance factor, Jpn J Appl Phys, 1994, 33(7A):3984~3990
    [95] 宋英,王福平,周玉,微波介质陶瓷材料的研究进展,材料科学与工艺,1998, 6(2): 59~64
    [96] Nomura S, Toyama K, Kaneta K, Dielectric properties of ceramics in the Ba(Zn1/3Nb2/3)O3-Sr(Zn1/3Nb2/3)O3 solid solutions, Jpn J Appl Phys, 1983, suppl, 22(2):83~86
    [97] Banno H, Mizuno F, Takeuchi T, et al, Dielectric properties of Sr(Ni_(1/3)Nb_(2/3))O_3-Ba(Ni_(1/3)Nb_(2/3))O_3 ceramics at microwave frequencies, Jpn J Appl Phys, 1985, suppl, 24(3): 87~92
    [98] Onoda M, Jun K, Kumiko K, et al, Ba(Zn_(1/3)Nb_(2/3))O_3-Sr(Zn_(1/3)Nb_(2/3))O_3 solid solution ceramics with temperature stable high dielectric constant and low microwave loss, Jpn J Appl Phys, 1982, 21(12): 1707~1710
    [99] Chai L, Davies P K, Formation and structural characterization of 1:1 ordered perovskites in the Ba(Zn_(1/3)Ta_(2/3))O_3-BaZrO_3 system, J Am Ceram Soc, 1997, 80 (12):3193~3197
    [100] Sun J-S, Yu J-J, You J-C, et al, Microwave dielectric properties of Ba(SnxZn(1-x)/3Nb(1-x)2/3)O_3 (0=x=0.32) Ceramics, J Mater Sci, 1993, 28(8): 2163~2168
    [101] Barber DJ, Moulding K M, Zhou J, et al, Structural order in Ba (Zn_(1/3) Ta_(2/3))O_3、Ba(Zn_(1/3)Nb_(2/3))O_3 and Ba(Mg_(1/3)Ta_(2/3))O_3 microwave dielectric ceramics, J Mater Sci, 1997, 32(9):1531~1544
    [102] Sugiyama M, Nagai T, Anomaly of dielectric constant of (Ba_(1-x)Sr_x)(Mg_(1/3)Ta_(2/3))O_3 solid solution and its relation to structural change, Jpn J Appl Phys, 1993, 32(9B): 4360~4363
    [103] Lan W-A, Liang, M-H, Hu C-T, et al, Influence of Zr-doping on the microstructure and microwave dielectric properties of Ba(Mg_(1/3)Ta_(2/3))O_3 materials, Mater Chem Phys, 2003, 79(2-3):266~269
    [104] Ra S-H, Phule P P, Processing and microwave dielectric properties of barium magnesium tantalate ceramics for high-quity-factor personal communication service filters, J Mater Res, 1999, 14(11):4259~4265
    [105] Matsumoto K, Hiuga T, Takada K, et al, Ba(Mg_(1/3)Ta_(2/3))O_3 ceramics with ultra-low loss at microwave frequencies, Proc IEEE Int Symp Appl Ferroelectr , 1986, 6:118-121.
    [106] Megaw H A, Proc Phys Soc, 1946, 58:133
    [107] Shannon R D, Revised effective ionic radii and systematic studies of interatomic distance in halides and chalcogenides, Acta Crystal, 1976, A32 (5) :751~767
    [108] Brese N B, O'Keefe M, Bond-Valence parameters for solids, Acta Crystal, 1991, B47(2):192~197
    [109] Ziolkowski J, Dziembaj L, Empirical relationship between individual cation-oxygen bond length and bond energy in crystal in molecules, J Solid State Chem, 1985, 57(3):291~299
    [110] Shannon R D, Dielectric polarizabilities of ions in oxides and fluorides, J Appl Phys, 1993, 73(1):348~366
    [111] Tien L-C, Chou C-C, Tsai D-S, Ordered structure and dielectric properties of Lanthanum-substituted Ba(Mg_(1/3)Ta_(2/3))O_3, J Am Ceram Soc, 2000, 83(8): 2704~2708
    [112] Setter N, Cross L E, The contribution of structural disorder to diffuse phase transition behavior of perovskite ferroelectrics, J Mater Sci, 1980, 15(10):2478~2482
    [113] 李翰如,电介质物理导论,成都:成都科技大学出版社,1990
    [114] Sugiyama M, Nagai T, Anomaly of dielectric constant of (Ba_(1-x)Sr_x)(Mg_(1/3)Ta_(2/3))O_3 solid solution and its relation to structural change, Jpn J Appl Phys, 1993, 32(9B):4360~4363
    [115] Nagai T, Sugiyama M, Sando M, et al, Anomaly in the infrared active phonon modes and its relationship to the constant of (Ba1-xSrx)(Mg1/3Ta2/3)O3 compound, Jpn J Appl Phys, 1996, 35(9B):5163~5167
    [116] 黄昆,韩汝琦,固体物理学,北京:高等教育出版社,1999
    [117] Lander J J, in “Phase diagrams for Ceramists”, edit by Levin E M, Robbins F H, Reser M K, et al, OH: The American Ceramic Society, 1964
    [118] Galasso F, Pyle J, Ordering in compounds of the A( B0′ . 33B0′′.67)O_3 type, Inorg Chem, 1963, 2(3):482~484
    [119] 上官文峰,吴立华,林云飞,高纯、超细 BaSnO3 球形粉料的研制,工业陶瓷,1992,(3): 2~3
    [120] Matsumoto H, Tamura H, Wakino K, et al, Ba(Mg_(1/3)Ta_(2/3))O_3-BaSnO3 high-Q dielectric resonator, Jpn J Appl Phys, 1991, 30(9B):2347~2349
    [121] 卞建江,赵梅瑜,殷之文, 添加 V2O5对 Ba(Mg_(1/3)Ta_(2/3))O_3烧结及微波介电性能的影响,无机材料学报,1998,13(4): 496~500
    [122] Cheng C M, Hsieh Y T, Yang C F, Effect of glass doping for the sinterability of Ba(Mg_(1/3)Ta_(2/3))O_3 ceramics, Ceram Int, 2002, 28(3): 255-260
    [123] Wu Y J, Chen X M, Microwave dielectric characteristics of Ba(Mg_(1/3)Ta_(2/3))O_3 ceramics sintered at low-temperatures, Mater Sci Eng B Solid State Adv Technol, 2003, 100(3):244~237
    [124] Lin I-N, Liang M-H, Hu C-T, et al, Effect of Ba5Ta4O14 on microstructural characteristics of Ba(Mg_(1/3)Ta_(2/3))O_3 ceramics and their microwave dielectric properties, J Eur Ceram Soc, 2001, 21(10-11):1705~1709
    [125] Fang Y H, Hu A, Gu Y, et al, Synthesis of Ba(Mg_(1/3)Ta_(2/3))O_3 microwave dielectrics by solid state processing, J Eur Ceram Soc, 2003, 23(14):2497~2502
    [126] Xu L H, Lian F, Yang J, et al, A novel wet-chemical process to synthesize Ba(Mg_(1/3)Ta_(2/3))O_3 nanopowders, Ceram Int, 2002, 28(5):549~552
    [127] 高瑞平,李晓光,施剑林,等,先进陶瓷物理与化学原理及技术,北京,科学出版社,2001
    [128] 洪广言,无机固体化学,北京,科学出版社,2004
    [129] 夏之宁,穆小静,李志良,等,正交设计与均匀设计的初步比较,重庆大学学报(自然科学版),1999,22(5):112~117
    [130] Ma C X, Fang K T, et al, A note on generalized aberration in factorial designs, Metrika, 2001, 53: 85~93
    [131] Tien L-C, Chou C-C, Tsai D-S, et al, Microstructure of Microwave Dielectrics, Ceram Int, 2000, 26(1):57~62
    [132] 方开泰,马长兴,正交与均匀实验设计,北京:科学出版社,2001
    [133] 王松桂,史建红,尹素菊,等,线性模型引论,北京:科学出版社,2004
    [134] 刘达民,程岩,应用统计,北京:化学工业出版社,2004
    [135] 张文彤,SPSS11 统计分析教程,北京:北京希望电子工业出版社,2002
    [136] 米红,张文璋,实用现代统计方法及 SPSS 应用,北京:当代中国出版社,2004
    [137] 南京华工学院,华南工学院,清华大学,陶瓷物理化学,北京:中国建筑工业出版社,1981
    [138] 张立德,牟季美,纳米结构与纳米材料,北京:科学出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700