B96铝合金热处理工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过光学显微镜、扫描电镜、差热分析、透射电镜、X射线衍射分析、硬度、拉伸试验、电导率测试等分析测试方法,系统研究了均匀化、固溶、时效工艺对Al-Zn-Mg-Cu系合金B96显微组织和力学性能的影响,得出了B96铝合金最佳的热处理工艺,为B96铝合金的工业化生产提供了实验依据。
     合金的铸态组织分析表明:半连续铸造生产的铝合金中存在严重的枝晶偏析,合金中的非平衡相呈网状分布在晶界上,这些非平衡相主要是MgZn_2(η)相和Al_2Mg_3Zn_3(T)相,其中MgZn_2(η)相呈片层状分布,Al_2Mg_3Zn_3(T)相呈块状分布。
     在单级均匀化情况下,随着均匀化温度的升高和时间的延长,铸态合金中的网状组织逐渐消失,粗大的第二相逐渐减少;经过470℃/24h均匀化后,合金中的MgZn_2(η)相基本消除,但仍有块状的Al_2Mg_3Zn_3(T)相剩余。当合金均匀化温度超过480℃时,合金发生轻微的过烧现象。
     双级均匀化采用470℃保温24h后升温到480℃均匀化不同的时间,随着第二级均匀化时间的延长,合金中剩余的第二相继续溶解,时间超过12h后合金中的晶粒发生长大现象,影响合金时效后的性能。合金的最佳双级均匀化工艺为470℃/24h+480℃/12h,此时的合金经过固溶时效后的抗拉强度和屈服强度比单级均匀化提高20MPa左右,延伸率提高6%左右。
     固溶和时效处理研究表明:随着固溶温度的升高,合金中剩余的第二相逐渐减少,过饱和度增加,时效后合金的抗拉强度、屈服强度和延伸率都有所提高,但温度过高会发生过烧和晶粒长大现象,影响合金时效后的性能;时效温度和时效时间均会影响合金的组织及力学性能。在欠时效状态,合金的析出相细小弥散,体积分数较小,晶界上的析出相呈连续分布;在峰值时效状态,合金中第二相仍呈细小弥散分布,体积分数增加;在过时效状态,合金中的晶内析出相呈短棒状或者长条状分布,析出相的密度下降,析出相间的距离增大,晶界上的析出相呈断续的条状分布。
The influence of homogenization, solution and aging treatment on the microstructure and mechanical properties of an Al-Zn-Mg-Cu alloy was investigated systematically using optical microscope,scanning electron microscope, differential scanning calorimetry, transmission electron microscope, X-ray diffraction analysis,hardness, tensile test,conductivity tests etc. The optimum processing of the heat treatment was obtained, which provided an experimental basis for the industrial production.
     The research showed that the as-cast microstructure of the alloy exhibited apparently dendrite segregation phenomena,non equilibrium eutectic structure was on the grain boundary, with the occurrence of network. Most of these non equilibrium phase was MgZn_2(η)and Al_2Mg_3Zn_3(T)phase, MgZn_2(η)phase was schistose, and Al_2Mg_3Zn_3(T) was massive phase.
     During the course of one-step homogenization treatment, the dendrite structure and coarse equilibrium phase disappeared gradually as the homogenization temperature increased and the homogenization time prolonged. MgZn_2(η) phase was almost disappeared by the homogenization treatment of 470℃/24h, but the massive phase Al_2Mg_3Zn_3(T) still keep remanent, the alloy was overburnt slightly when the homogenization temperature was over 480℃.
     Two-step homogenization treatment was 470℃/24h+480℃for different holding time. The remanent second phase dissolve gradually, the grains growed up when the second stage homogenization time exceed 12h, which can effect properties of the alloy. The optimum processing of the two-step homogenization treatment was 470℃/24h+480℃/12h. The tensile strength and yield strength was increased about 20 Mpa, and the elongation was increased 6%.
     Studies on the solution treatment and aging showed that the remanent second phase decreased and the supersaturation increased as the homogenization temperature increase, the tensile strength, yield strength and elongation after aging was increased, but the over-high temperature resulted in overburnt and the grains grew up, which would affect the property of the alloy.
     Both aging temperature and aging time affeted the microstructure and mechanical property of the alloy, at under-aged state, ageing precipitates were finer and more dispersive, the volume fraction was lower and precipitates on the grain boundary were continuous. The microstructure of the peak-aged alloy still consists of fine dispersed precipitates and precipitates on the grain boundary are continuous, and the volume fraction was increased. At over-aged state, precipitates was rod-like, and the density decreased, the distance between precipitated phases became larger, precipitates phases was rod-like,which intermittent scattered on the grain boundary.
引文
1田福泉,李念奎,崔建忠.超高强铝合金强韧化的发展方向.轻合金加工技术. 2005, 33(2): 1-9
    2蹇海根,姜峰.航空用高强韧Al-Zn-Mg-Cu系铝合金的研究发展.材料热处理. 2006, 35(12): 61-66
    3 J. T. Staley. Aluminum Alloys for Aerostructures. Advanced Materials & Processes, 1997, 10: 1
    4 B. Xiong, Y. Zhang, L. Shi. Research on Altra-high Strength Al-11Zn-2.9Mg-1.7Cu Alloy Prepared by Spray Forming Process. Materials Science Forum. 2005, 475-479: 2785
    5 Q. Wei, B. Xiong, Y. Zhang. Production of High Strength Al-Zn-Mg-Cu Alloys by Spray Forming Process. Transaction of Nonferrous Metals Society of China. 2001, 11(2): 279
    6王涛,尹志民.高强变形铝合金的研究现状和发展趋势.稀有金属. 2006,30(2): 97-202
    7陈昌麒.超高强铝合金的发展.中国有色金属学报. 2002, 12(3): 22-27
    8 Gruhl, Wolfqang. Stress Cossosion Bihaviour of High Strength AlZnMg alloys. Aluminum. 1978, 54(5): 323-324.
    9王祝堂,田荣璋.铝合金及其加工手册.中南大学出社. 2000, 64-89
    10 J. A. Wagner, R. N. Shenoy. The Effect of Copper, Chromium and Zirconium on the Microstructure and Mechanical Properties of Al-Zn-Mg-Cu alloys. Metallurgical Transactions. 1991, 22(10): 2809-2811
    11刘晓涛.高强铝合金电磁场热处理工艺及理论研究.东北大学博士论文. 2003, 14-15
    12 H. Westengen, L. Auran, O. Reiso. Effect of Minor Addition of Transition Elements on the Recrystallization of Some Commercial Aluminum Alloys. Aluminum, 1981, 57(12): 797-780.
    13 C. Chen, J. F. Knott. Effects of Dispersoid Particles on Toughness of High-strength Aluminum Alloy. Metal.Sci, 1981, 15(8): 357-358
    14蒋晓军,李依依,桂全红. Sc对Al-Li-Cu-Mg-Zr合金组织与性能的影响.金属学报. 1994, 8: 355-361
    15杨守杰,谢优华,陆政,苏彬,戴胜龙. Zr对超高强铝合金时效过程的影响.中国有色金属学报. 2002, 12(2): 226-229
    16戴晓元,夏长清,刘昌斌.微量Sc对Al-Zn-Mg-Cu-Zr铝合金组织与性能的影响.矿业工程. 2004, 3(24): 1-4
    17钟掘.提高铝材质量基础研究三年来的进展.铝-21世纪基础研究与技术发展研讨会论文集(第一分册). 2002. 15
    18 O. N. Senkov, D. B. Miracle. Low Temperature Mechanical Properties of Scandium Modified Al-Zn-Mg-Cu Alloys. Materials Science Forum. 2002, 396-402: 1127-1129
    19 F. Ostermann. Improved Fatigue Resistance of Al-Zn-Mg-Cu (7075) Alloys through themomechannical Prodessing. Metallurgical Transactions. 1971, 2(10): 2897-2899
    20甘卫平,范洪涛,许可勤. Al-Zn-Mg-Cu系高强铝合金研究进展.铝加工. 2003, 3: 6-12
    21王洪,付高锋,孙继红,李兴杰,姜澜.超高强铝合金研究进展.材料导报. 2006, 20(2): 58-60
    22 A .Guinier. On the Birth of GP Zones. Materials Science Forum. 1996, 217-222:3
    23 G. W. Lorimer, R. B. Nicholson. The Mechanism of Phase Transformation in Crystalline Solids. Journal of the Institute of Metals, London, 1968, 36
    24 T. D. Burleigh. Postulated Mechanisms for Stress Corrosion Cracking of Aluminum Alloys. A review of the literature Corrosion. 1991, 47(2): 89-98
    25 K. Rajan, W. Wallace. Microstructural Study of a High-strength Stress Corrosion Resistant 7075 Aluminum Alloy. Journal of Materials Science, 1982, 17 (3) : 281-22824
    26宋仁国.高强度铝合金的研究现状及发展趋势.材料导报. 2000, 14(1): 0-21
    27黄继武,尹志民,李杰,王涛.均匀化处理对7055合金硬度和电导率的影响.稀有金属. 2004, 28(1): 75-78
    28贺永东,张新明,游江海. 7A55合金均匀化处理.中国有色金属学报. 2006, 16(4): 638?644
    29李国锋,张新民,朱航飞,李鹏辉. 7B50高强铝合金的均匀化.中国有色金属学报, 2008, 18(5): 764-770
    30高凤华,李念奎,丛福官,田妮,赵刚. 7050合金半连续铸锭中结均匀化晶相及均匀化处理.稀有金属. 2008, 32(3): 274-278
    31刘晓涛,董杰,崔建忠,赵刚.高强铝合金均匀化热处理.中国有色金属学报. 2003, 13(4): 909-913
    32华成,张永安,朱宝宏,王锋,刘红伟,李锡武. Al-7.5Zn-1.6Mg-1.4Cu合金的单级均匀化处理.第十二届中国有色金属学会材料科学与合金加工学术研讨会文集. 2007, 249-252
    33孙凤仙,高凤华,李念奎,田妮,赵刚. Al-6.1Zn-2.6Mg-1.6Cu超高强铝合金铸锭均匀化处理研究.轻合金加工技术. 2007, 35(1):16
    34苏北华. LC4铝合金铸锭的高温均匀化.轻合金加工技术. 1995, 23(4):13-17
    35李国锋,张新民,朱航飞,李鹏辉.均匀化处理对7B50铝合金的组织与性能研究.特种铸造及有色合金. 2008, 28(5): 344-347
    36段玉波,唐剑,曾苏民.阶段均匀化处理对7A04合金均匀化程度和过烧温度的影响.合金与热处理. 2003, 3(150): 23-26
    37宁爱林,曾苏民.强化均匀化对7B04铝合金铸态组织与性能的影响.热加工工艺. 2003, 6: 5-7
    38任建平,宋仁国,陈晓明. 7xxx系铝合金热处理工艺的研究现状及发展[J].材料热处理技术. 2009, 38, 119-123
    39蒋春丽,姜峰,许栩达,文康. Al-Cu-Mg-Sc-Zr合金均匀化制度的研究.材料热处理技术. 2008, 37(4): 10-12
    40陆政,杨守杰,姜海峰,卢健,戴圣龙.一种新型超高强铝合金的均匀化工艺研究.航空材料报. 2001, 21(2): 14-17
    41李海,王芝秀,郑子樵.固溶处理对Al-9.8Zn-2.37Mg-2.22Cu-0.12Zr铝合金拉伸性能、微观组织及断口形貌的影响.稀有金属材料与工程. 2006, 35(2): 386-390
    42彭速中.高强铝合金7B04强韧化固溶时效热处理工艺的研究.铝加工. 2004, 3(156): 49-54
    43王志云.热处理工艺对7A04超高强铝合金力学性能的影响.新技术新工艺. 2008, 12: 105-108
    44张新明,黄振宝,刘胜胆,刘文辉.双级固溶处理对7A55铝合金组织与力学性能的影响.中国有色金属学报. 2006, 16(9): 1527-1533
    45刘红卫,陈康华,刘允中.强化固溶对7075铝合金组织与性能的影响.金属热处理. 2000, 9: 16-18
    46陈康华,刘允中,刘红卫. 7075和2024铝合金的固溶组织与力学性能.中国有色金属学报, 2000(6): 819-822
    47郑强,陈康华,张茁.高温预析出对7xxx系列铝合金力学性能和应力腐蚀性能的影响.金属热处理, 2004(11): 23-27
    48 D. Najjar, T. Magnin, T. J. Warner. Influence of Critical Surface Defects and Localized Competition between Dissolution and Hydrogen Effects during Stress Corrosion Cracking of a 7050 Aluminum Alloy. Materials Science and Engineering. 1997, 238(2): 293-302
    49 L. H. Wang, Z. Q. Zheng. High Temperature Pre-precipitation Treatment of 7050 Aluminum Aalloy. Materials Science and Engineering. 2008, (4): 674-677
    50张新明,游江海,黄振宝,刘胜胆,张小艳.固溶降温处理对7A55铝合金组织和性能的影响.稀有金属. 2007, 31(1): 5-9
    51张新明,张小艳,刘胜胆,刘瑛.固溶后降温预析出对7A55铝合金力学及腐蚀性能的影响.中南大学学报. 2007, 38(5): 789-794
    52张新明,游江海,张小艳,刘胜胆,刘瑛.固溶后预析出对7A55铝合金力学及腐蚀性能的影响.中国有色金属学报. 2007, 17(12): 1922-1927
    53陈康华,黄兰萍,郑强.高温预析出对7A52合金应力腐蚀性能的影响.中国有色金属学报. 2005(3): 441-445
    54李春梅,陈志谦,程南璞,曾苏民,何洪. 7055超高强、超高韧铝合金力学性能分析.金属热处理. 2008, 33(1): 100-104
    55宋仁国.材料热处理学报. 1996, 17(2): 51
    56宁爱林,刘志义,冯春,曾苏民.回归时间对RRA处理超高强铝合金力学性能的影响.材料研究学报. 2008, 22(4): 357-361
    57张新明,李鹏辉,刘胜胆,李国锋,朱航飞,周新伟.回归时间对7050铝合金晶间腐蚀性能的影响.中国有色金属学报. 2008, 18(10): 1795-1800
    58张新明,刘胜胆,游江海,张小艳.时效对7055铝合金淬火敏感效应的影响.中国有色金属学报. 2007, 17(2): 260-264
    59游江海,李鹏辉,李国锋,刘胜胆,朱航飞.回归处理工艺对7050铝合金力学和晶间腐蚀性能的影响.中南大学学报. 2008, 39(5): 968-974
    60李春梅.轻合金加工技术. 2007, 35(12): 36
    61阎大京.材料工程. 1991(2): 15
    62宋仁国.材料热处理学报, 1996, 17(2): 51
    63 J. A. Wert, N. E. Paton . Grain Refinement in 7A04 Aluminum by Thermo-mechanical Processing. Metallurgical Transactions. 1981, (12): 1267-1276
    64 R. Sanders. The Effect of Intermediate Thermomechanical Treatments on theFatigue Properties of a 7050 Aluminum alloy. Metal Thermo Mechanical Trans. 1978, (9):1087-1100
    65吉田英雄,高萍.微量元素对高韧性铝合金机械性能的影响.轻合金加工技术. 1986, (1): 22-37
    66尚勇,张立武.高强铝合金的热处理技术.上海有色金属. 2005, (2): 97-102
    67 G. Lin, H. Zhang. Influences of Processing Routine on Mechanical Properties and Structures of 7A04 Aluminum Alloy Thick-plates. Transactions of Nonferrous Metals Society of China. 2003(13): 809-813
    68陈晓明,宋仁国,李杰. 7xxx系铝合金的研究现状及发展趋势.材料导报. 2009, 23(2): 67-70
    69陈鼎,黎文献.深冷处理下铝和铝合金的晶粒转动.中南工业大学报. 2000, (6): 544-547
    70 Q. Wang, L. Wang, W. Peng. Thermal Stress Relief in 7050 Aluminum Forgings by Uphill Quenching. Materials Science Forum. 2005, 490-491: 91-96
    71赵祖德,王秋成,谢伟东等. 7A04铝合金构件深冷处理过程瞬态温度场的数值模拟.低温工程. 2007, (2): 21-23
    72汤光平,黄文荣.循环热处理对铝合金性能和组织结构的影响.金属热处理. 1998, (5): 36-38
    73王秋成,柯映林.深冷处理消除7050铝合金残余应力的研究.浙江大学学报工科版. 2003, (6): 748-751
    74钟皓,韩逸. 7150铝合金铸态及均匀化退火组织研究.金属热处理. 2008, 33(4): 36-38
    75 Chandan Mondal, A.K.Mukhopadhyay. On the Nature of T(Al2Mg3Zn3) and S(Al2CuMg) Phases Present in As-cast and Annealed 7055 Aluminum alloy. Materials Science and Engineering. 2005, 367-376
    76王国军,吕新宁. 7055铝合金的化学成分、物相组成及其性能特点.上海有色金属. 2008, 29(3): 118-122
    77周鸿章,李念奎.超高强铝合金强韧化的发展过程及方向.铝-21世纪基础与技术发展研讨会论文集(第一分册).中南大学. 2001, 56-67
    78陈康华. 7xxx系高强铝合金强化相形成及其强韧化作用研究.铝-21世纪基础研究与技术发展研讨会论文集. 2002, 10
    79戴晓元,夏长清,刘昌斌,古一.固溶处理及时效对7xxx铝合金组织与性能的影响.材料热处理学报. 2007, 28(4): 59-63
    80侯显志,刘显东. 7055铝合金的热处理与显微组织研究.轻合金加工技术.2007, 35(7): 47-49
    81田福泉,崔建忠.超高强铝合金的显微组织.轻合金加工技术. 2006, 34(2): 48-52
    82 Y. H. Zhao, X. Z. Liao, Z. Jin, R. Z. Valiev, Y. T. Zhu. Microstructures and Mechanical Properties of Ultrafine Grained 7075 Alloy Processed by ECAP and Ttheir Evolutions during Annealing. Acta Materialia, 2004, 52: 4589-4599
    83 R. Deiasi, P. N. Adler. Calorimetric Strudies of 7000 Series Aluminum Alloys: I Matrix precipitate characterization of 7075. Metallurgical Transactions. 1977, 8A: 1177-1183
    84 C. Garcia-Cordovilla, E. Louis. A Differential Scanning Calorimetry Investigation of the Effects of Zinc and Copper on Solid State Reactions Al-Zn-Mg-Cu Alloys. Materials Science and Engineering. 1991, 132: 135-141
    85 F.Viana, A. M. P. Pinto, H. M. C. Santos, A. B. Lopes. Retrogression and re-ageing of 7075 aluminium alloy microstr uctural characterization. Journal of Materials Processing Technology, 1999, 92-93, 54-59
    86 Deschamps, F. Bley, F. Livet, D. Fabregue, L. David. In situ measuremen of dynamic precipitation in an Al-Zn-Mg-Cu aluminium alloy. Philosophical Magazine. 2003, A83(6): 677-692
    87 M. Nicolas, A. Descha mps. Characterization and modeling of precipitate evolution in an Al-Zn-Mg alloy during non-isothermal heat treatments. Acta Materialia. 2003, 51: 6077-6094
    88 Deschamps, Y. Brechet. Influence of Predeformation and Ageing of Al-Zn-Mg alloy–II. Modeling of precipitation kinetics and yield stress. Acta Materialia. 1999, 47: 293-305
    89段玉波,唐剑,刁文武.化学成分对7050合金扁锭成型性能的影响.重庆大学学报. 2004, 27(4): 100-102
    90 T. Gladman. Precipitation Hardening in Metals. Materials Science and Techonlogy. 1999, 15: 30-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700