亚稳β型Ti-Nb-Ta-Zr-O合金的显微组织与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2003年,斋藤等人研发出一组组分为Ti3(Ta+Nb+V) + (Zr、Hf) + O的新型多功能亚稳β钛合金。这组钛合金在室温下经过强变形后,不但同时具有高强度和低弹性模量,还具有超弹性、超塑性等诸多超级性能,是一种潜在的医用生物材料。斋藤等人认为这组亚稳β钛合金之所以具有这些优良性能,是因为它们具有一种特殊的塑性变形机制―无位错塑性变形机制。
     本研究采用冷坩埚悬浮熔炼法制备了这组亚稳β钛合金的一种,其名义成分为Ti-23Nb-0.7Ta-2Zr-O (at.%, TNTZO),并系统研究了固溶态TNTZO合金在塑性变形后的显微组织及随后再结晶退火过程中的显微组织演变,分析了合金的变形机制,并考察了该合金的力学性能、物理性能和耐腐蚀性能。
     研究结果表明:经过室温塑性变形后,TNTZO合金中β相保持稳定,没有应力诱发马氏体相变发生。经较大程度压缩变形后合金具有比较明显的<100>和<111>双织构。由于在冷旋锻过程中晶粒处于平面应变条件,因而经90%冷旋锻变形后, TNTZO合金的显微组织由大量平行于旋锻轴向的板条组织构成。这些板条扭曲并相互环绕,在垂直旋锻轴向的截面上形成由细小纤维状组织交织而成的大理石花纹状组织,同时合金中产生强烈的<110>丝织构。TEM观察结果表明变形后TNTZO合金中出现了高密度的位错聚集。因此,TNTZO合金仍然通过传统的位错滑移机制进行塑性变形,而不是通过所谓的无位错机制进行塑性变形。TNTZO合金的再结晶动力学曲线具有典型的“S”曲线特征,表明TNTZO合金
     的再结晶是典型的形核长大过程。经90%冷旋锻变形的TNTZO合金的再结晶激活能约为180 kJ/mol。TEM观察结果表明TNTZO合金的回复通过多边形化机制进行,再结晶通过形核长大机制进行。随着退火时间的延长,TNTZO合金中小角晶界数量减少,CSL晶界和大角随机晶界数量增多,并出现退火孪晶界。由于再结晶晶粒不遵循定向长大机制,因而再结晶完成后合金中的晶粒取向趋向于随机分布,不存在明显的织构。TNTZO合金具有与普通金属相同的回复与再结晶机制,其回复与再结晶过程与位错的运动密切相关,这从另一个方面表明TNTZO合金通过传统的位错滑移机制进行塑性变形。
     由于织构的存在,变形态TNTZO合金的弹性模量降低;而合金的弹性回复率升高,表现出超弹性行为。在820℃退火5分钟后,由于发生了再结晶,TNTZO合金的弹性模量恢复到固溶态合金的水平。冷旋锻态TNTZO合金在400℃以下具有很低的线膨胀系数,小于5×10-6 K-1,而在820℃再结晶退火5分钟后,合金的线膨胀系数急剧升高,达到约9×10-6 K-1。DSC曲线上吸热峰的出现表明合金在约400~480℃温度区间存在相变。在林格溶液中,TNTZO合金的钝化膜主要由Ti、Nb、Ta和Zr元素的氧化物组成。被Nb、Ta和Zr的氧化物改性的TiO2钝化膜比被Al和V的氧化物改性的TiO2钝化膜更稳定且具有更好的保护作用,因而TNTZO合金具有比Ti-6Al-4V合金更优异的耐蚀性。由于应变和织构的存在,塑性变形对TNTZO合金腐蚀性能的影响比较复杂。较小程度的变形引起TNTZO合金腐蚀性能的恶化,但是经过较大程度变形的合金样品反而具有与固溶态合金样品相近的耐蚀性。
In 2003, a group of metastableβ-type titanium alloys basically expressed as Ti3(Ta+Nb+V) + (Zr、Hf) + O were developed by Saito et. al.. These alloys were called as multifunctional alloys due to their many“super”properties, such as super elasticity, super plasticity, and Invar and Elinvar properties. Particularly, these are the alloys that combine the ultralow elastic modulus and ultrahigh strength, which breaks the norm that a metal can not have both simultaneously. Therefore, they can be expected to be very attractive materials in dental and orthopedic implants. In order to exhibit these properties, according to Saito et. al.,“each alloy system requires substantial cold working”. The unique properties of these alloys are attributed to a dislocation-free plastic deformation mechanism because no dislocation or twin crystal is observed after hard cold-working.
     In this study, a multifunctional alloy with a typical chemical composition of Ti-23Nb-0.7Ta-2Zr-O (at.%, TNTZO) was prepared by cold crucible levitation melting (CCLM) technique. Then the microstructure of the TNTZO alloy after cold working and the microstructural evolution during recrystallization were investigated and the deformation mechanism was analyzed. Additionally, the mechanical, physical, and corrosion properties of this alloy were also studied.
     The results revealed that the TNTZO alloy is still composed of singleβphase and no transformation such as stress-inducedα" martensite andωphase occur after deformation. After severe cold swaging, the microstructure of the TNTZO alloy changed into characteristic“marble-like”structure because grains undergo plane-strain elongation. <100> and <111> compressed texture and <110> fiber texture, which are typical texture components of a bcc metal, are detected in the cold worked TNTZO alloy. Additionally, TEM results show that high density dislocations occur in the deformed TNTZO alloy. Therefore, the TNTZO alloy deforms by the traditional dislocation glide on slip systems, rather than by the dislocation-free mechanism.
     The relationship of the recrystallized fraction versus annealing time for the TNTZO alloy can be described by a typically sigmoid curve, which indicates that the recrystallization process is a typical process of nucleation and growth of new grains. The activation energy of recrystallization was calculated to be 180 kJ/mol for the 90% cold swaged TNTZO alloy. TEM results show that recovery of the TNTZO alloy proceeds by polygonization mechanism, and recrystallization is achieved by the nucleation and growth of new grains at the expense of the deformed structure. Therefore, the number of low angle grain boundaries decreases, however, the number of the coincidence site lattice (CSL) and random boundaries increases with prolonging annealing time. Major texture components of the cold worked TNTZO alloy become diffused after complete recrystallization, thus no recrystallization texture forms. The TNTZO alloy has the same recovery and recrystallization mechanisms as the ordinary bcc metals, which also indicates that the TNTZO alloy deforms by the traditional dislocation glide on slip systems.
     After cold working, Young's modulus of the TNTZO alloy decrease because of the occurrence of deformation texture. Additionally, the cold-worked TNTZO alloy exhibits super elastic property. After annealing at 820℃for 5 min, Young's modulus of the TNTZO alloy recovered to the level before cold working due to the recrystallization of the alloy. The thermal expansion coefficient of the cold swaged TNTZO alloy is extremely low, not exceeding 5×10-6 K-1 from room temperature to 400℃, however, it dramatically increases after annealing, is approximately 9×10-6 K-1. The endothermic peaks in DSC curves reveal that phase transformation occurs in the TNTZO alloy from about 400℃to 480℃.
     The passive film of the TNTZO alloy is mainly composed of the oxides of Ti, Nb, Ta and Zr, and the film of the Ti-6Al-4V alloy consists of the oxides of Ti, Al and V. The passive TiO2 film modified by the oxides of Nb, Ta and Zr possesses higher stability and protective quality than the TiO2 film modified by the oxides of Al and V. Therefore the TNTZO alloy exhibits a better corrosion property than Ti-6Al-4V alloy in Ringer’s solution. Due to the existence of the strain and deformation texture, the effect of deformation on corrosion property of the TNTZO alloy is not monotonic. Small deformation causes the deterioration of the corrosion resistance, at high deformation level, however, the TNTZO alloy shows similar corrosion property to the as-soluted one.
引文
[1]娄贯涛,钛合金的研究应用现状及其发展方向,钛工业进展2003; 20(2): 9-13.
    [2]赵永庆,奚正平,曲恒磊,我国航空用钛合金材料研究现状,航空材料学报2003; 23(增刊): 215-19.
    [3]钱九红,航空航天用新型钛合金的研究发展及应用,稀有金属2000; 24(3): 218-23.
    [4]于思荣,金属系牙科材料的应用现状及部分元素的毒副作用,金属功能材料2000; 7(1): 1-6.
    [5]汪大林,江中明,牙科合金材料的应用研究现状,特种铸造及有色合金1998; 19(3): 42-44.
    [6] Noort R.V., Titanium: the implant material of today, J. Mater. Sci. 1987; 22(11): 3801-11.
    [7] Gottlieb S. and Leventhal M.D., Titanium, a metal for surgery, Journal of Bone and Joint Surgery 1951; 33473-74.
    [8]于思荣,生物医学钛合金的研究现状及发展趋势,材料科学与工程2000; 18(2): 131-34, 56.
    [9]皇甫强,牛金龙,钛合金在医学领域的应用,稀有金属快报2005; 24(1): 33-34.
    [10]宁聪琴,周玉,医用钛合金的发展及研究现状,材料科学与工艺2002; 10(1): 100-06.
    [11]张新平,于思荣,夏连杰,何镇明,钛及钛合金在牙科领域中的研究现状,稀有金属材料与工程2002; 31(4): 246-51.
    [12]马如璋,蒋民华,徐祖雄,功能材料学概论,北京:冶金工业出版社, 1999.
    [13]金自宜,钛系生物医学工程材料,材料导报1993; 7(2): 18-23.
    [14] Zwicker R., Buehler K. and Mueller R. Mechanical properties and tissue reactions of a titanium alloy for implant material. in Titanium'80. 1980. Warrendale: TMS: 504-14.
    [15] Semlitsch M., Staub F. and Weber H., Titanium-aluminum-niobium alloy, development for biocompatible, high strength surgical implants, Biomed Technik 1985; 30(2): 334-39.
    [16]李述军,新型β医用钛合金组织与性能的研究,中国科学院金属研究所博士学位论文2004.
    [17]秦永健,生物医用材料的现状与展望,华东科技1997; 15(9): 34-36.
    [18] Huiskes R., Weinans H. and Rietbergen B.v., The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials, Clin Orthop 1992; 274(1): 124-34.
    [19] Sumner D.R. and Galante J.O., Determinants of stress shielding: design versus materials versus interface, Clin Orthop 1992; 274(1): 202-12.
    [20] Cheal E., Spector M. and Hayes W., Role of loads and prostheses material properties on the mechanics of the proximal femur after total hip arthroplasty, J Orthop Res. 1992; 10(3): 405-22.
    [21] Walker P.R., Leblanc J. and Sikorska M., Effects of aluminum and other cations on the structure of brain and liver chromatin, Biochemistry 1989; 28(9): 3911-15.
    [22] Rao S., Ushida T., tateishi T., Okazaki Y. and Asao S., Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells, Bio-med. Mater. Eng 1996; 6(2): 79-86.
    [23] Niinomi M., Mechanical properties of biomedical titanium alloys, Mater. Sci. Eng., A 1998; 243(1-2): 231-36.
    [24] Nag S., Banerjee R. and Fraser H.L., Microstructural evolution and strengthening mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys, Mater. Sci. Eng., C 2005; 25(3): 357-62.
    [25] Song Y., Xu D.S., Yang R., Li D., Wu W.T. and Guo Z.X., Theoretical study of the effects of alloying elements on the strength and modulus of beta-type bio-titanium alloys, Mater. Sci. Eng., A 1999; 260(1-2): 269-74.
    [26] Banerjee R., Nag S., Stechschulte J. and Fraser H.L., Strengthening mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys, Biomaterials 2004; 25(17): 3413-19.
    [27] Kuroda D., Niinomi M., Morinaga M., Kato Y. and Yashiro T., Design and mechanical properties of newβtype titanium alloys for implant materials Mater. Sci. Eng. A 1998; 243(1-2): 244-49.
    [28] Silva H.M., Schneider S.G. and Neto C.M., Study of nontoxic aluminum and vanadium-free titanium alloys for biomedical applications, Mater. Sci. Eng., C 2004; 24(5): 679-82.
    [29] Yang G.T. and Zhang T., Phase transformation and mechanical properties of the Ti50Zr30Nb10Ta10 alloy with low modulus and biocompatible, J. Alloys Compd. 2005; 392(1-2): 291-94.
    [30] Song Y., Yang R. and Guo Z.X., First principles estimation of bulk modulus and theoretical strength of titanium alloys, Mater. Trans., JIM 2002; 43(12): 3028-31.
    [31] Brown S.A. and Lemons J.E., Medical applications of Titanium and its alloys, Coshohochen, PA: ASTM, 1996.
    [32] Semlitsch M., Titan 2 (1986), 721-40.
    [33] Wang K., The use of titanium for medical applications in the USA, Mater. Sci. Eng., A 1996; 213(1-2): 134-37.
    [34] Okazaki Y., Kyo K., Ito Y. and Tateishi T., Mechanical properties and corrosion fatigue of new titanium alloys for medical implants in physiological saline solution, J. Japan Inst. Metals 1995; 59(10): 1078-83.
    [35] Mihir D.Y., Titan 2 (1986), 712-20.
    [36] Ahmed T., Long M., Silverstri J., Ruiz C. and Rack H. A new low modulus biocompatible titanium alloy. in Titanium 95': Science and Technology. 1995. London: The Institute of Materials: 1760-67.
    [37] Niinomi M., Kobayashi T., Toriyama O., Kawakami N., Ishida Y. and Matsuyama Y., Fracture characteristics, microstructure, and tissue reaction of Ti-5Al-2.5Fe for orthopedic surgery, Metall. Mater. Trans. A 1995; 27(12): 3925-35.
    [38] Higo Y. and Tomita Y. Evaluation of Mechanical Properties of Metallic Biomaterials. in ASTM STP. 1994. Philadelphia: ASTM: 148-55.
    [39] Wang K., Gustavson L. and Dumbleton J. The characterization of Ti-12Mo-6Zr-2Fe. A new biocompatible titanium alloy developed for surgical implants. in Beta titaniums in the 1990's. 1994. Warrendale, PA, USA: The Mineral, Metals and Materials society: 2697-704.
    [40] Hench L.L., Bioceramics, J. Am. Ceram. Soc. 1998; 81(7): 1705-28.
    [41] Bonfield W., Wang M. and Tanner K.E., Interfaces in analogue biomaterials, Acta Mater. 1998; 46(7): 2509-18.
    [42]付艳艳,近β医用钛合金低模量化与高强韧性匹配研究,东北大学硕士学位论文2004.
    [43]余厚毅编译,钛和钛合金的腐蚀与防腐,表面技术1986; 15(3): 1-4.
    [44]郭敏,彭乔,钛的应用开发和腐蚀研究,四川化工与腐蚀控制2000; 3(6): 28-31.
    [45] Myers J.R.,钛及钛合金的腐蚀特性和应用,稀有金属材料与工程1985; 16(5): 48-56.
    [46]魏宝明主编,金属腐蚀理论及应用.第一版.,北京:化学工业出版社, 1984.
    [47]郭敏,彭乔,钛的应用与腐蚀,全面腐蚀控制2000; 14(2): 20-24,42.
    [48] Uhlig H.H. and Revie R.W., Corrosion and corrosion control, 3rd Edition New York: Wiley-Interscience, 1985.
    [49] Jacobs J.J., Gilbert J.L. and Urban R.M., Corrosion of metal orthopaedic implants, J Bone Joint Surg 1998; 80(2): 268-82.
    [50] Torgersen S. and Gjerdet N.R., Retrieval study of stainless steel and titanium miniplates and screws used in maxillofacial surgery J. Mater. Sci. - Mater. Med. 1994; 5(5): 256-62.
    [51] Park J.B. and Lakes R.S., Metallic implant materials, in biomaterials - an Introduction, 2nd edn., New York: Plenum Press, 1992.
    [52] Doyama M. and Kihara J., Computer aided innovation of new materialsⅡ, Amsterdam: Elsevier, 1993.
    [53] Dyson B.F. and Osgerby S., Materials and Engineering Design: The Next Decade, London: Inst. Met., 1989.
    [54]苏小云,臧祥生,工科无机化学(第三版),上海:华东理工大学出版社, 2004.
    [55]廖沐真,吴国是,刘宏霖,量子化学从头计算方法,北京:清华大学出版社, 1984.
    [56]黎乐民,量子化学基本原理和从头计算法,北京:科学出版社, 1980.
    [57]徐光宪,量子化学,北京:科学出版社, 1989.
    [58]潘毓刚,李俊清,祝继康, DV-Xα方法的理论和应用,北京:科学出版社, 1987.
    [59] Morinaga M., Kato M. and Kamimura T. Theoretical design of Beta-type titanium alloys. in Proc. 7th Int. Conf. on Titanium. 1992. San Diego, CA, USA, 276-83.
    [60] Morinage M., Yukawa N. and Ezaki H., Solid solubilities in transition-metal-based f.c.c. alloys, Philos. Mag. A 1985; 51(2): 223-46.
    [61] Abdel-Hady M., Fuwa H., Hinoshita K., Kimura H., Shinzato Y. and Morinaga M., Phase stability change with Zr content in beta-type Ti-Nb alloys, Scripta Materialia 2007; 57(11): 1000-03.
    [62] Quong A.A. and Liu A.Y., First-principles calculations of the thermal expansion of metals, Phys. Rev. B 1997; 56(13): 7767-70.
    [63] Xie J., de Gironcoli S., Baroni S. and Scheffler M., First-principles calculation of the thermal properties of silver, Phys. Rev. B 1999; 59(2): 965-69.
    [64] Ikehata H., Nagasako N., Furuta T., Fukumoto A., Miwa K. and Saito T., First-principlescalculations for development of low elastic modulus Ti alloys, Phys. Rev. B 2004; 70(17): 174113.
    [65] Souvatzis P., Katsnelson M.I., Simak S., Ahuja R. and Eriksson O., First-principles prediction of superplastic transition-metal alloys, Phys. Rev. B 2004; 70, 012201(1): 1-3.
    [66] Saito T., Furuta T., Hwang J., Kuramoto S., Nishino K., Suzuki N., Chen R., Yamada A., Ito K., Seno Y., Nonaka T., Ikehata H., Nagasako N., Iwamoto C., Ikuhara Y. and Sakuma T., Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism, Science 2003; 300(5618): 464-67.
    [67] Saito T., Furuta T., Hwang J., Kuramoto S., Nishino K., Suzuki N., Chen R., Yamada A., Ito K., Seno Y., Nonaka T., Ikehata H., Nagasako N., Iwamoto C., Ikuhara Y. and Sakuma T., Multi functional titanium alloy "GUM METAL", Mater. Sci. Forum 2003; 426-432(1): 681-88.
    [68] Seno Y. A study for dislocation-free plastic deformation mechanism in a new beta type Ti alloy. in 3rd SunBeam Seminar. 2003: Toyota Center R&D Labs., Inc.
    [69] Furuta T., Kuramoto S., Hwang J., Nishino K. and Saito T., Elastic deformation behavior of multi-functional Ti-Nb-Ta-Zr-O alloys, Mater. Trans., JIM 2005; 46(12): 3001-07.
    [70] Furuta T., Kuramoto S., Chen R., Hwang J., Nishino K., Saito T. and Ikeda M., Effect of oxygen on phase stability and elastic deformation behavior in gum metal, J. Jpn. Inst. Met. 2006; 70(7): 579-85.
    [71] Furuta T., Kuramoto S., Hwang J., Nishino K., Saito T. and Niinomi M., Mechanical properties and phase stability of Ti-Nb-Ta-Zr-O alloys, Mater. Trans., JIM 2007; 48(5): 1124-30.
    [72] Kuramoto S., Furuta T., Hwang J., Nishino K. and Saito T., Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O alloy, Metall. Mater. Trans. A 2006; 37(3): 657-62.
    [73] Gutkin M.Y., Ishizaki T., Kuramoto S. and Ovid'ko I.A., Nanodisturbances in deformed Gum Metal Acta Mater. 2006; 54(9): 2489-99.
    [74] Kuramoto S., Furuta T., Hwang J., Nishino K. and Saito T., EBSP analysis on microstructure of gum metal after plastic deformation, J. Jpn. Inst. Met. 2005; 69(11): 953-61.
    [75] Kuramoto S., Furuta T., Hwang J., Nishino K. and Saito T., Elastic properties of Gum Metal, Mater. Sci. Eng., A 2006; 442(1-2): 454-57.
    [76]黄培云,粉末冶金原理,北京:冶金工业出版社, 1997.
    [77]张启芳,戈晓岚,朱欣庆,热加工工艺基础,南京:东南大学出版社, 1996.
    [78]何红媛,周一丹,材料成形技术基础,南京:东南大学出版社, 2000.
    [79]舒群,郭永良,陈子勇,孔凡涛,陈玉勇,铸造钛合金及其熔炼技术的发展现状,材料科学与工艺2004; 12(3): 332-36.
    [80] Morita A., Fukui H., Tadano H., Hayashi S., Hasegawa J. and Niinomi M., Alloying titanium andtantalum by cold crucible levitation melting (CCLM) furnace, Mater. Sci. Eng., A 2000; 280(1): 208-13.
    [81] Powella A., Avyle J. and Damkrogerb B., Analysis of multicomponent evaporation in electron beam melting and refining of titanium alloys Metall. Mater. Trans. B 1997; 28(6): 1227-34.
    [82] Tomooi I., iiideeon N. and Katsuhiko M., Aluminium evaporation from titanium alloys in EB hearth melting process, ISIJ Int. 1992; 32(5): 607-15.
    [83] Bakish R., Electron beam melting and refining, JOM 1986; 38(1): 53-56.
    [84] Mitchell A., Melting, casting and forging problems in titanium alloys, Mater. Sci. Eng., A 1998; 243(1-2): 257-62.
    [85] Sikka V.K., Wilkening D., Liebetrau J. and Mackey B., Melting and casting of FeAl-based cast alloy, Mater. Sci. Eng., A 1998; 258(1-2): 229-35.
    [86] Kattner U., Lin J. and Chang Y., Thermodynamic assessment and calculation of Ti-Al system Metall Trans 1992; A23(8): 2081-90.
    [87] Valery I., Renat I. and Andrey K., Mechanical properties of thermomechanically treated Ti-richγ+α2 titanium aluminide alloys, Scripta Mater. 2003; 49(10): 1047-52.
    [88] Guo J., Liu Y., Su Y. and Jia J., Evaporation behavior of components in Ti-15-3 melt during ISM process, Trans. Nonferrous Met. Soc. China 1998; 8(4): 539-43.
    [89] Guo J., Liu Y. and Su Y., Skull Formation and change during ISM process of Ti-15-5 alloy, Trans. Nonferrous Met. Soc. China 2000; 10(1): 14-18.
    [90] Guo J., Liu Y., Su Y., Ding H., Liu G. and Jia J., Evaporation behavior of aluminum during the cold crucible induction skull melting of titanium aluminum alloys Metall. Mater. Trans. A 2000; 31B(4): 837-44.
    [91]丁宏升,郭景杰,贾均,苏彦庆,真空感应凝壳熔炼TC4合金的显微组织和力学性能,材料科学与工艺1999; 7(S1): 12-16.
    [92] Sakamoto K., Yoshikawa K. and Kusamichi T., Changes in oxygen contents of titanium aluminides by vacuum induction, cold crucible induction and electron beam melting, ISIJ Int. 1992; 32(5): 616-24.
    [93]王文清,李魁胜,铸造工艺学,北京:机械工业出版社, 1998.
    [94]王寿彭,铸件形成理论及工艺基础,西安:西北工业大学出版社, 1994.
    [95] Gutkin M.Y., Ishizaki T., Kuramoto S., Ovid'ko I.A. and Skiba N.V., Giant faults in deformed Gum Metal, International Journal of Plasticity 2008; 24(8): 1333-59.
    [96] Kiritani M., Dislocation-free plastic deformation under high stress, Mater. Sci. Eng., A 2003;350(1-2): 1-7.
    [97] Kiritani M., Satoh Y., Kizuka Y., Arakawa K., Ogasawara Y., Arai S. and Shimomura Y., Anomalous production of vacancy clusters and the possibility of plastic deformation of crystalline metals without dislocations, Philos. Mag. Lett. 1999; 79(10): 797-804.
    [98] Kiritani M., Design of experiments on production and reaction of point defects, Radiat Eff. Defects Solids 1999; 148(1-4): 233-67.
    [99] Kiritani M., Yasunaga K., Matsukawa Y. and Komatsu M., Plastic Deformation of Metal Thin Films without Involving Dislocations and Anomalous Production of Point Defects Radiat Eff. Defects Solids 2002; 157(1 & 2): 3-24.
    [100] Sugio K., Shimomura Y., Mukouda I. and Kiritani M., Crystal Structure of Elongated Thin Foils of Fe and V, Radiat Eff. Defects Solids 2002; 157(1 & 2 ): 43-51.
    [101] Satoh Y., Yoshiie T. and Kiritani M., Local Strain in Tensile Fracture of Metal Foils Estimated from Deformation of Pb Precipitates in Al Matrix, Radiat Eff. Defects Solids 2002; 157(1 & 2 ): 31-42.
    [102] Kiritani M., Yasunaga K., Matsukawa Y. and Komatsu M., Plastic deformation of thin metal foils without dislocations and formation of point defects and point defect clusters, Materials Research Society Symposium - Proceedings 2001; 673(P7.11): 1-6.
    [103] Matsukawa Y., Yasunaga K., Komatsu M. and Kiritani M., Dynamic observation of dislocation-free plastic deformation in gold thin foils, Mater. Sci. Eng., A 2003; 350(1-2): 8-16.
    [104] Matsukawa Y., Yasunaga K., Komatsu M. and Kiritani M., Dynamic observation of dislocation-free deformation process in Al, Cu, and Ni thin foils, Mater. Sci. Eng., A 2003; 350(1-2): 17-24.
    [105] Komatsu M., Matsukawa Y., Yasunaga K. and Kiritani M., Plastic deformation of bcc metal thin foils without dislocation, Mater. Sci. Eng., A 2003; 350(1-2): 25-29.
    [106] Arakawa K., Ono K., Iseki M. and Kiritani M., Elongation Fracture of Metals Containing Pre-introduced Secondary Defects, Radiat Eff. Defects Solids 2002; 157(1 & 2 ): 25-30.
    [107] Kiritani M., Sota T., Tawara T., Arimura H., Yasunaga K., Matsukawa Y. and Komatsu M., Defect Structures Introduced in FCC Metals by High-speed Deformation, Radiat Eff. Defects Solids 2002; 157(1 & 2 ): 53-74.
    [108] Kiritani M., Analysis of high-speed-deformation-induced defect structures using heterogeneity parameter of dislocation distribution, Mater. Sci. Eng., A 2003; 350(1-2): 63-69.
    [109] Tawara T., Matsukawa Y. and Kiritani M., Defect structure of gold introduced by high-speed deformation, Mater. Sci. Eng., A 2003; 350(1-2): 70-75.
    [110] Yasunaga K., Iseki M. and Kiritani M., Dislocation structures introduced by high-speed deformationin bcc metals, Mater. Sci. Eng., A 2003; 350(1-2): 76-80.
    [111] Schi?tz J., Leffers T. and Singh B., Dislocation nucleation and vacancy formation during high-speed deformation of fcc metals, Philos. Mag. Lett. 2001; 81(5): 301-09.
    [1] Saito T., Furuta T., Hwang J., Kuramoto S., Nishino K., Suzuki N., Chen R., Yamada A., Ito K., Seno Y., Nonaka T., Ikehata H., Nagasako N., Iwamoto C., Ikuhara Y. and Sakuma T., Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism, Science 2003; 300(5618): 464-67.
    [2] Morita A., Fukui H., Tadano H., Hayashi S., Hasegawa J. and Niinomi M., Alloying titanium and tantalum by cold crucible levitation melting (CCLM) furnace, Mater. Sci. Eng., A 2000; 280(1): 208-13.
    [3] Fukui H, Yang W, Yamada S, Fujishiro Y, Morita A and M N., Cold Crucible Levitation Melting of Biomedical Ti-30 wt%Ta Alloy, Dent Mater J. 2001; 20(2): 156-63.
    [4] Li Q.Y., Handbook of Nonferrous material processing, Beijing: Metallurgical Industry Press, 1984.
    [5] Li S.J., Hao Y.L., Yang R., Cui Y.Y. and Niinom M., Effect of Nb on microstructural characteristics of Ti-Nb-Ta-Zr, Mater Trans 2002; 43(12): 2964-69.
    [6] Dingley D.J. and Randle V., Microtexture determination by electron backscatter diffraction, Journal of Materials Science 1992; 27(17): 4545-66.
    [7] Randle V., microtexture determination and its applications, London: Institute of Materials, 1992.
    [8] Zhao J. and Adams B.L., Definition of an asymmetric domain for intercrystalline misorientation in cubic materials in the space of Euler Angles, Acta Crystallogr. 1988; A44: 326-36.
    [9]林栋梁,晶体缺陷,上海:上海交通大学出版社, 1996.
    [10]陈家光,李忠,电子背散射衍射在材料科学研究中的应用,理化检验—物理分册2000; 36(2): 71-74, 77.
    [11]刘庆,电子背散射衍射技术及其在材料科学中的应用,中国体视学与图像分析2005; 10(4): 205-10.
    [12]陈绍楷,李晴宇,苗壮,许飞,电子背散射衍射(EBSD)及其在材料研究中的应用,稀有金属材料与工程2006; 35(3): 500-04.
    [13]张寿禄,电子背散射衍射技术及其应用,电子显微学报2002; 21(5): 703-04.
    [14] Brandon D.G., The structure of high-angle grain boundaries, Acta Metall. 1966; 141479-84.
    [15] Kydd W.L. and Mandley J., The stiffness of palatal mucoperiosteum, The Journal of prosthetic dentistry 1967; 18(2): 116-21
    [1] Taylor G.I., The mechanism of plastic deformation of crystals. part i.-theoretical, Roy. Soc. London 1934; A145: 362-87.
    [2] Orowan E., Zur Kristallplastizit?t I: Tieftemperatur-plastizit?t und Beckersche Formel, Z. Phys. 1934; 89: 605-13.
    [3] Orowan E., Zur Kristallplastizit?t II: Die dynamische Auffassung der Kristallplasticit?t, Z. Phys. 1934; 89: 614-33.
    [4] Polanyi M., Ueber eine. Art von Gitterstorung, die einen Kristall. plastisch machen konnte, Z. Phys. 1934; 89: 660-64.
    [5] Kiritani M., Dislocation-free plastic deformation under high stress, Mater. Sci. Eng., A 2003; 350(1-2): 1-7.
    [6] Saito T., Furuta T., Hwang J., Kuramoto S., Nishino K., Suzuki N., Chen R., Yamada A., Ito K., Seno Y., Nonaka T., Ikehata H., Nagasako N., Iwamoto C., Ikuhara Y. and Sakuma T., Multifunctionalalloys obtained via a dislocation-free plastic deformation mechanism, Science 2003; 300(5618): 464-67.
    [7] Saito T., Furuta T., Hwang J., Kuramoto S., Nishino K., Suzuki N., Chen R., Yamada A., Ito K., Seno Y., Nonaka T., Ikehata H., Nagasako N., Iwamoto C., Ikuhara Y. and Sakuma T., Multi functional titanium alloy "GUM METAL", Mater. Sci. Forum 2003; 426-432(1): 681-88.
    [8] Seno Y. A study for dislocation-free plastic deformation mechanism in a new beta type Ti alloy. in 3rd SunBeam Seminar. 2003: Toyota Center R&D Labs., Inc.
    [9] Furuta T., Kuramoto S., Hwang J., Nishino K. and Saito T., Elastic deformation behavior of multi-functional Ti-Nb-Ta-Zr-O alloys, Mater. Trans., JIM 2005; 46(12): 3001-07.
    [10] Furuta T., Kuramoto S., Chen R., Hwang J., Nishino K., Saito T. and Ikeda M., Effect of oxygen on phase stability and elastic deformation behavior in gum metal, J. Jpn. Inst. Met. 2006; 70(7): 579-85.
    [11] Furuta T., Kuramoto S., Hwang J., Nishino K., Saito T. and Niinomi M., Mechanical properties and phase stability of Ti-Nb-Ta-Zr-O alloys, Mater. Trans., JIM 2007; 48(5): 1124-30.
    [12] Kuramoto S., Furuta T., Hwang J., Nishino K. and Saito T., Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O alloy, Metall. Mater. Trans. A 2006; 37(3): 657-62.
    [13] Gutkin M.Y., Ishizaki T., Kuramoto S. and Ovid'ko I.A., Nanodisturbances in deformed Gum Metal Acta Mater. 2006; 54(9): 2489-99.
    [14] Kuramoto S., Furuta T., Hwang J., Nishino K. and Saito T., EBSP analysis on microstructure of gum metal after plastic deformation, J. Jpn. Inst. Met. 2005; 69(11): 953-61.
    [15] Kuramoto S., Furuta, T., Hwang, J., Nishino, K., Saito, T. , Elastic properties of Gum Metal, Mater. Sci. Eng., A 2006; 442(1-2): 454-57.
    [16] Schi?tz J., Leffers T. and Singh B., Dislocation nucleation and vacancy formation during high-speed deformation of fcc metals, Philos. Mag. Lett. 2001; 81(5): 301-09.
    [17] Matsukawa Y., Yasunaga K., Komatsu M. and Kiritani M., Dynamic observation of dislocation-free plastic deformation in gold thin foils, Mater. Sci. Eng., A 2003; 350(1-2): 8-16.
    [18] Kaufman L. and Bernstein H., Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals, New York Academic Press, 1970.
    [19] Moffat D.L. and Larbalestier D.C., The competition between martensite and omega in quenched Ti-Nb alloys, Metall Trans 1988; 19A(7): 1677-86.
    [20] Crocker A.G., Twinned martensite, Acta Metal. 1962; 10(2): 113-22.
    [21] Hanada S., Ozeki M. and Izumi O., Deformation Characteristics in Beta Phase Ti-Nb Alloys, Metall. Trans. A 1985; 16(5): 789-95.
    [22] Hanada S. and Izumi O., Transmission Electron Microscopic Observations of Mechanical Twinning in Metastable Beta Titanium Alloys, Metall. Trans. A 1986; 17(8): 1409-20.
    [23] Hwang J., Kuramoto S., Furuta T., Nishino K. and Saito T., Phase-stability dependence of plastic deformation behavior in Ti-Nb-Ta-Zr-O alloys, J. Mater. Eng. Perform. 2005; 14(6): 747-54.
    [24] Randle V., Application of electron backscatter diffraction to grain boundary characterisation, Int. Mater. Rev. 2004; 49(1): 1-11.
    [25] Hupalo M.F., Padilha A.F., Sandim H.R.Z. and Kliauga A.M., Cold Swaging, Recovery and Recrystallization of Oligocrystalline INCOLOY MA 956-Part I: Deformed State, ISIJ Int. 2004; 44(11): 1894-901.
    [26] Hosford W., Microstructural changes during deformation of [011] fiber-textured metals, Trans TMS-AIME 1964; 230(1): 12-15.
    [27]潘金生,仝健民,田民波,材料科学基础,北京:清华大学出版社, 1998.
    [28] Talling R., Jackson M., Dashwood R. and Dye D. Deformation of Ti-36Nb-2Ta-3Zr-0.3O (Gum Metal). in Titanium: Science and Technology. 2007. Kyoto: The Japan Institute of Metals 631-34.
    [29] Sandim H.R.Z., McQueen H.J. and Blum W., Microstructure of Cold Swaged Tantalum at Large Strains, Scripta Mater. 2000; 42(2): 151-56.
    [1]潘金生,仝健民,田民波,材料科学基础,北京:清华大学出版社, 1998.
    [2]胡庚祥,蔡珣,材料科学基础,上海:上海交通大学出版社, 2000.
    [3] Saito T., Furuta T., Hwang J., Kuramoto S., Nishino K., Suzuki N., Chen R., Yamada A., Ito K., Seno Y., Nonaka T., Ikehata H., Nagasako N., Iwamoto C., Ikuhara Y. and Sakuma T., Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism, Science 2003; 300(5618): 464-67.
    [4] Gorelik S.S., Recrystallization in metals and alloys, Moscow: MIR Publishers, 1981.
    [5] Humphreys F.J. and Hatherly M., Recrystallization and Related Annealing Phenomena, Pergamon, 1995.
    [6] Rollett A.D., Srolovitz D.J., Doherty R.D. and Anderson M.P., Computer Simulation of Recrystallization in Non-uniformly Deformed Metals, Acta Metallurgica 1989; 37(2): 627-39.
    [7] Guclu F.M. and Cimenoglu H., The recrystallization behaviour of CP-titanium, Materials science forum 2004; 1-2(467-470): 459-63.
    [8]于振涛,周廉,邓炬,顾海澄, Ti-2Al-2.5Zr合金再结晶特性及动力学机制,稀有金属材料与工程1999; 28(6): 340-44.
    [9] Balluffi R.W., Grain Boundary Structure and Kinetics, Ohio: ASM, Metals Park, 1980.
    [10] Cahn R.W. and Haasen P., Physical Metallurgy, Fourth Edition, Amsterdam: North Holland, 1996.
    [11] Mahajan S., Pande C.S., Imam M.A. and Rath B.B., Formation of annealing twins in f.c.c. crystals, Acta mater. 1997; 45(6): 2633-38.
    [1] Sittig C., Textor M., Spencer N.D., Wieland M. and Vallotton P.H., Surface characterization of implant materials cpTi, Ti6Al7Nb and Ti6Al4V with different pretreatments, J. Mater. Sci. - Mater. Med. 1999; 10(1): 35-46.
    [2] Wang K., The use of titanium for medical applications in the USA, Mater. Sci. Eng., A 1996; 213(1-2): 134-37.
    [3] Niinomi M., Mechanical properties of biomedical titanium alloys, Mater. Sci. Eng., A 1998; 243(1-2): 231-36.
    [4] Cheal E., Spector M. and Hayes W., Role of loads and prostheses material properties on the mechanics of the proximal femur after total hip arthroplasty, J Orthop Res. 1992; 10(3): 405-22.
    [5] Huiskes R., Weinans H. and Rietbergen B.v., The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials, Clin Orthop 1992; 274(1): 124-34.
    [6] Sumner D.R. and Galante J.O., Determinants of stress shielding: design versus materials versus interface, Clin Orthop 1992; 274(1): 202-12.
    [7] Walker P.R., Leblanc J. and Sikorska M., Effects of aluminum and other cations on the structure of brain and liver chromatin, Biochemistry 1989; 28(9): 3911-15.
    [8] Rao S., Ushida T., tateishi T., Okazaki Y. and Asao S., Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells, Bio-med. Mater. Eng 1996; 6(2): 79-86.
    [9] Song Y., Xu D.S., Yang R., Li D., Wu W.T. and Guo Z.X., Theoretical study of the effects of alloying elements on the strength and modulus of beta-type bio-titanium alloys, Mater. Sci. Eng., A 1999; 260(1-2): 269-74.
    [10] Nag S., Banerjee R. and Fraser H.L., Microstructural evolution and strengthening mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys, Mater. Sci. Eng., C 2005; 25(3):357-62.
    [11] Banerjee R., Nag S., Stechschulte J. and Fraser H.L., Strengthening mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys, Biomaterials 2004; 25(17): 3413-19.
    [12] Kuroda D., Niinomi M., Morinaga M., Kato Y. and Yashiro T., Design and mechanical properties of newβtype titanium alloys for implant materials Mater. Sci. Eng. A 1998; 243(1-2): 244-49.
    [13] Silva H.M., Schneider S.G. and Neto C.M., Study of nontoxic aluminum and vanadium-free titanium alloys for biomedical applications, Mater. Sci. Eng., C 2004; 24(5): 679-82.
    [14] Yang G.T. and Zhang T., Phase transformation and mechanical properties of the Ti50Zr30Nb10Ta10 alloy with low modulus and biocompatible, J. Alloys Compd. 2005; 392(1-2): 291-94.
    [15] Gall K., Juntunen K., Maier H.J., Sehitoglu H. and Chumlyakov Y.I., Instrumented micro-indentation of NiTi shape-memory alloys, Acta Mater. 2001; 49(16): 3205-17.
    [16] Kuramoto S., Furuta T., Hwang J., Nishino K. and Saito T., Elastic properties of Gum Metal, Mater. Sci. Eng., A 2006; 442(1-2): 454-57.
    [17] Talling R.J., Dashwood R.J., Jackson M., Kuramoto S. and Dye D., Determination of (C11-C12) in Ti-36Nb-2Ta-3Zr-0.3O (wt.%) (Gum metal), Scripta Materialia 2008; 59(6): 669-72.
    [18] Hao Y.L., Li S.J., Sun S.Y., Zheng C.Y., Hu Q.M. and Yang R., Super-elastic titanium alloy with unstable plastic deformation, Applied Physics Letters 2005; 87(9): 091906.
    [19] Hao Y.L., Li S.J., Sun B.B., Sui M.L. and Yang R., Ductile titanium alloy with low Poisson's ratio, Physical Review Letters 2007; 98(21).
    [20] Hao Y.L., Li S.J., Sun S.Y. and Yang R., Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2006; 441(1-2): 112-18.
    [21] Hao Y.L., Li S.J., Sun S.Y., Zheng C.Y. and Yang R., Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications, Acta Biomaterialia 2007; 3(2): 277-86.
    [22] Li S.J., Yang R., Niinomi M., Hao Y.L., Cui Y.Y. and Guo Z.X., Phase transformation during aging and resulting mechanical properties of two Ti-Nb-Ta-Zr alloys, Materials Science and Technology 2005; 21(6): 678-86.
    [23] Qazi J.I., Marquardt B., Allard L.F. and Rack H.J., Phase transformation in Ti-35Nb-7Zr-5Ta-(0.06-0.68)O alloys, Mater. Sci. Eng., C 2005; 25(3): 389-97.
    [24] Ohmori Y., Ogo T., Nakai K. and Kobayashi S., Effects ofω-phase precipitation onβ→α,α″transformations in a metastableβtitanium alloy, Mater. Sci. Eng., A 2001; 312(1-2): 182-88.
    [25]沈桂琴,徐斌,彭益群,脱祥明, Ti-15Mo-2.7Nb-3Al-0.2Si高强钛合金的相变,材料工程1999;(03): 19-23.
    [26]罗媛媛,常辉,曾卫东,赖运金,周义刚, Ti-B19合金时效过程中亚稳定β相的分解,热加工工艺2006; 35(4): 43-45,74.
    [27]常辉,曾卫东,罗媛媛,周义刚,周廉,近β型钛合金Ti-B19时效过程中的相变及显微组织,稀有金属材料与工程2006; 35(10): 1589-92.
    [28]张廷杰,钛合金相变的电子显微镜研究(Ⅴ):—亚稳β相时效分解中的两类α相沉淀,稀有金属材料与工程1989; (6): 76-80.
    [29]张廷杰,钛合金相变的电子显微镜研究(Ⅳ):钛合金中的ω相变,稀有金属材料与工程1989; (5): 77-82.
    [30]鲍利索娃,钛合金金相学,北京:国防工业出版社, 1986.
    [1] Schutz R.W., Environmental behavior of beta titanium alloys, JOM 1994; 4624-29.
    [2] Elayaperumal K., De P.K. and Balachandra J., Passivity of type 304 stainless steel-effect of plastic deformation, corrosion 1972; 28(7): 269-73.
    [3] Salvago G., Fumagalli G. and Sinigaglia D., The corrosion behavior of AISI 304L stainless steel in 0.1 M HCl at room temperature—II. The effect of cold working, Corrosion Sci. 1983; 23(5): 515-23.
    [4] Baranov D.A., Lunichkina M.A. and Nesterova A.I., Effect of Preliminary Deformation on the Corrosion Resistance of High-Strength Cast Iron, Zashch. Met. 2003; 39(4): 420-23.
    [5] Baranov D.A., Leirikh I.V. and Myznikova E.S., Corrosion Resistance of Strained, High-Strength Cast Iron in Aqueous Media, Prot. Met 2004; 40(3): 254-56.
    [6] Black J. and Hasting G., Titanium and Titanium Alloys in: Handbook of Biomaterial Properties, Chapman & Hall, London: Springer - Verlag, 1998.
    [7] Szklarska-Smialowska Z., Pitting corrosion of aluminum, Corrosion Science 1999; 41(9): 1743-67.
    [8] Boddy P.J., Oxygen Evolution on Semiconducting TiO2, J. Electrochem. Soc. 1968; 115(2): 199-203.
    [9] Asami K., Hashimoto K. and Shimodaira S., XPS determination of compositions of alloy surfaces and oxides on mechanically polished iron-chromium alloys, Corros. Sci. 1977; 17(9): 713-23.
    [10] Asami K., Hashimoto K. and Shimodaira S., The X-ray photo-electron spectra of several oxides of ion and chromium, Corros. Sci. 1977; 17(7): 559-70.
    [11] Sérgio Luiz de Assisa, Stephan Wolynecb and Costa I., Corrosion characterization of titanium alloys by electrochemical techniques, Electrochimica Acta 2006; 51(8-9): 1815-19.
    [12] Metiko?-Hukovi? M., Kwokal A. and Piljac J., The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution, Biomaterials 2003; 24(21): 3765-75.
    [13] K. A. de Souza and Robin A., Preparation and Characterization of Ti-Ta Alloys for Application in Corrosive Media, Materials Letters 2003; 57(20): 3010-16.
    [14] Nilson T. C. Oliveira, Elivelton A. Ferreira, Lais T. Duarte, Sonia R. Biaggio, Romeu C. Rocha-Filho and Bocchi N., Corrosion resistance of anodic oxides on the Ti-50Zr and Ti-13Nb-13Zr alloys, Electrochimica Acta 2006; 51(10): 2068-75.
    [15] Okazaki Y., Kyo K., Ito Y. and Tateishi T., Effects of Mo and Pd on corrosion resistance of V-free titanium alloys for medical implants, Mater. Trans., JIM 1997; 38(4): 344-52.
    [16] Laque F. L. and Copson H.R., Corrosion Resistance of Metals and Alloys, New York, London: Reinhold Publishing Corporation/Chapman & Hall Ltd., 1963.
    [17] Yu S.Y. and Scully J.R., Corrosion and passivity of Ti-13%Nb-13%Cr in comparison to other biomedical implant alloys, Corrosion 1997; 53(12): 965-72.
    [18] Khan M.A., Williams R.L. and Williams D.F., The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions, Biomaterials 1999; 20(7): 631-37.
    [19] Zhou Y.L., Niinomi M., Akahori T., Fukui H. and Toda H., Corrosion resistance and biocompatibility of Ti-Ta alloy for biomedical applications, Mat Sci Eng A-Struct 2005; 398(1-2): 28-36.
    [20] Simpson J.P., Electrochemical behavior of titanium and titanium alloys with respect to their use as surgical implant materials, in: P. Christel, A. Meunier and Lee A.J.C. (Eds.), Biomedical and Biomechanical Performance of Biomaterials, Amsterdam: Elsevier, 1986.
    [21] H?nninen H.E., Influence of metallurgical variables on environment-sensitive cracking of austenitic alloys, Int. Met. Rev. 1979; 98(3): 85-136.
    [22] Barbucci A., Cerisola G. and Cabot P.L., Effect of Cold-Working in the Passive Behavior of 304 Stainless Steel in Sulfate Media, J. Electrochem. Soc. 2002; 149(12): B534-42.
    [23] Scully J.C., The Fundamentals of Corrosion, New York: Pergamon Pr; 3rd edition, 1990.
    [24] Bockris J. and Khan S., Surface Electrochemistry: A Molecular Level Approach, New York: Plenum Press, 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700