纳米催化剂的微乳法制备及其表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以微乳技术为核心合成手段, 以LaMg_xMn_(1-x)Al_(11)O_(19) 和Ce_xBa_(1-x)Mn_yAl_(11)O_z 六铝酸盐催化剂为主要研究对象,以廉价、无毒的无机盐为前驱物,结合超临界干燥技术,制备了高稳定性、高活性的纳米结构的甲烷燃烧催化剂;同时,组装、合成了核/壳型CdS/SiO_2 纳米粒子及SiO_2 空心球。并通过相应的物理、化学表征手段,研究了催化剂性能与制备条件之间的关系,深入研究了制备方法对最终材料的影响,得到如下一些结论:
    反相微乳合成技术,在纳米材料制备中具有独特的应用价值。通过控制或调节粒子的成核、生长过程,可以有效地控制一次粒子的形貌和尺寸,最终控制催化剂颗粒的形貌与大小;并可以显著地提高前驱体组分的混合均匀性,促进六铝酸盐相在较低的温度下结晶,有利于制备大比表面、高活性的催化剂。并进一步研究了低维材料的热稳定性。微乳液的微结构可以有效地控制前驱体颗粒的形貌;采用超临界干燥,颗粒的形貌可以得到有效地维持。与球形粒子比较,低维针状颗粒具有较高的抗烧结能力;通过控制催化剂的形貌,可以有效地改善催化剂的催化性能。
    在核/壳型CdS/SiO_2 纳米粒子及SiO_2 空心球合成中,利用反相微乳液组装技术,可以有效地控制粒子尺寸的均匀性,使粒子的粒径分布在较窄的范围内,可以制得单分散的纳米粒子。研究表明,通过晶种生长过程,改变反应物的加入量及加料次序等操作参数,可以容易地在界观范围内控制颗粒的尺寸。CdS/SiO_2 复合颗粒上可以进一步引入其他官能团物质,制备新的功能性复合材料。
Catalytic combustion is an environmentally friendly technology, which caneffectively reduce the emissions of CO and NOx. However, synthesis of the catalystswith excellent thermal stability and high activity is a challenge to the development ofthe technology.
    In this paper, the nanotructured hexaaluminate catalysts were synthesized by thereverse microemulsion method, using the nontoxic and inexpensive inorganic salts,instead of the alkoxides, as reactants. The samples were characterized byN_2-adsorption, transmission electron microscopy (TEM), TGA-DTA, and X-raypowder diffraction (XRD). Therefore, the preparation is environmental-friendly andlow-cost. The study shows that the catalyst morphology could be controlledeffectively by the microemulsion microstructure; the homogeneityof precursor couldbe enhanced greatly by the reverse microemulsion method and the supercriticaldrying method; the catalyst morphology has a significant influence on its activity.Compared with the spherical particles, the one-dimmensional nanorod has higherabilityresistant to sintering.
    In addition, the monodispersed CdS-SiO_2 core-shell particles and hollow silicaranging from nanometers (30~100nm) to micrometers (1.5~2μ) were prepared byreverse microemulsions. The particles were characterized by Selected area electrondiffraction(SAED), Scanning electron microscope (SEM), X-ray fluroscence (XRF),etc. The study shows that the core size and shell thickness could be tuned simply bycontrolling the addition amount and the addition way of the reactants.
引文
[1] V. R. Kokatnur,“A disperse technology for paraffin and paint”USP: 2111100,1935.
    [2] T. P. Hoar, J. H. Schulman, “Microemulsion and emulsion”, Nature, 1943,152: 102-103.
    [3] J. H. Schulman, W. Stoeckenius, L. M. Prince, “Mechanism of Formation andStructure of Micro Emulsions by Electron Microscopy”, J. Phys. Chem., 1959, 63:1677-1680.
    [4] R. Leung, M. J. Hou, C. Manohar, “Macro-and Microemulsions”, Ed. by D. O.Shah, Am. Chem. Soc., Washington, D. C, 1985: 325-344.
    [5] M. K. Shama, D. O. Shah, “Macro-and Microemulsions”, Ed. by D. O. Shah,Am. Chem. Soc., Washington, D. C, 1985: 1-18.
    [6] D. J. Mitchell, B. W. Ninham, J. Chem. Faraday Trans. 2, 1981, 77: 601-629.
    [7] I. Lisiecki, M. P. Pileni, “Synthesis of copper metallic clusters using reversemicelles as microreactors”, J. Am. Chem. Soc., 1993, 115: 3887-3896.
    [8] I. Lisiecki, M. P. Pileni, “Copper metallic particles synthesized "in situ" inreverse micelles: influence of various parameters on the size of the particles”, J.Phys. Chem., 1995, 99: 5077-5082.
    [9] J. Cizeron, M. P. Pileni, “Solid solution of CdyZn1-yS nanosize particles madein reverse micelles”, J. Phys. Chem., 1995, 99: 17410-17416.
    [10] L. Levy, J. F. Hochepied, M. P. Pileni, “Control of the size and compositionof three dimensionally diluted magnetic semiconductor clusters”, J. Phys. Chem.,1996, 100: 18322-18328.
    [11] M. P. Pileni, “Nanosized Particles Made in Colloidal Assemblies”, Langmuir, 1997, 13: 3266-3276.
    [12] M. P. Pileni, “Reverse micelles as microreactors”, J. Phys. Chem., 1993, 97:6961-6973.
    [13] C. J. O'Connor, C. T. Seip, E. E. Carpenter, S. Li and V. T. John, “Synthesis and reactivity of nanophase ferrites in reverse micellar solutions”, Nanostructured Mater., 1999, 12: 65-70.
    [14] K. C. Song, J. H. Kim, “Synthesis of high surface area tin oxide powders via water-in-oil microemulsions”, Powder Technology, 2000, 107: 268-272.
    [15] E. Caponetti, L. Pedone, D. C. Martino, V. Pantò, V. Turco Liveri, “Synthesis, size control, and passivation of CdS nanoparticles in water/AOT/n-heptane microemulsions”, Mater. Sci. Eng. C, 2003, 23: 531-539.
    [16] K. E. Marchand, M. Tarret, J. P. Lechaire, L. Normand, S. Kasztelan, T. Cseri. “Investigation of AOT-based microemulsions for the controlled synthesis of MoSx nanoparticles: an electron microscopy study ”, Colloids and Surfaces A., 2003, 214: 239-248.
    [17] L. Motte, C. Petit, P. Lixon, “Synthesis of cadmium sulfide in situ in cadmium bis(2-ethylhexyl) sulfosuccinate reverse micelle: polydispersity and photochemical reaction”, Langmuir, 1992, 8: 1049-1053.
    [18] A. Jada, J. Lang, S.-J. Candau, R. Zana, “Structure and dynamics of water-in-oil microemulsions”, Colloids and Surf., 1989, 38: 251~261.
    [19] F. C. Meldrum, N. A. Kotov, J. H. Fendler, “ultra-thin particulate films prepared from capped and uncapped reverse-micelle-entrapped silver particles”, J. Chem. Soc. Faraday Trans., 1995, 91: 673-680.
    [20] M. P. Pileni, T. Zemb, C. Petit, “Solubilization by reverse micelles: Solute localization and structure perturbation”, Chem. Phys. Lett., 1985, 118 (4) :414-422.
    [21] M. P. Pileni, “Reverse micelles as microreactors”, J. Phys. Chem., 1993, 97:6961~6973.
    [22] M. P. Pileni, B. Hickel, C. Ferradini, J. Chem. Phys. Lett., 1982, 92: 33-37.
    [23] M. P. Pileni, P. Brochette, B. Lerebours, “Hydrated electrons in reverse micelles: 2. quenching of hydrated electron by sodium nitrate”, J. Colloid and Interface Sci., 1984, 98: 549-554.
    [24] C. Petit, P. Lixon, M. P. Pileni, “In situ synthesis of silver nanocluster in AOT reverse micelles”, J. Phys. Chem., 1993, 97: 12974-12983.
    [25] L. R. Angel, D. F. Evans, B. W. Ninham, “Three-component ionic microemulsions”, J. Phys. Chem., 1983, 87: 538~540.
    [26] L. M. Prince. Microemulsion Theory and Pratice. New York: Academic Press, 1997: 145-147.
    [27] C. C. Wang, D. H. Chen, T. C. Huang, “Synthesis of palladium nanoparticles in water-in-oil microemulsions”, Colloids and Surf. A, 2001, 189: 145-154.
    [28] D. H. Chen, S. H. Wu, “Synthesis of nickel nanoparticles in water-in-oil microemulsions”. Chem. Mater., 2000, 12: 1354-1360.
    [29] N. Lufimpadio, J. B. Nagy, E. G. Derouane. Surfactants in Solutions, Vol. 3, Ed. by K. L. Mittal, B. L. Lindman (Eds). New York: Plenum Press, 1984: 1483-1497.
    [30] T. K. Jain, G. Cassin, J. P. Badiali, M. P. Pileni, “Relation between Exchange Process and Structure of AOT Reverse Micellar System”, Langmuir, 1996, 12: 2408~2411.
    [31] G. Cassin, J. P. Badiali, M. P. Pileni, “AOT reverse micelles: depletion model”. J. Phys. Chem., 1995, 99: 12941-12946.
    [32] I. Lisiecki, M. Borjling, L. Motte, B. Ninham, M. P. Pileni, “Synthesis of copper nanosize particles in anionic reverse micelles: Effect of the addition of a cationic surfactant on the size of the crystallites”, Langmuir, 1995, 11: 2385-2392.
    [33] V. Arcoleo, V. T. Liveri, “AFM investigation of gold nanoparticles synthesized in water/AOT/n-heptane microemulsions”, Chem. Phys. Lett., 1996, 258: 223-227.
    [34] C. Sangregorio, M. Galeotti, U. Bardi, P. Baglioni, “Synthesis of Cu_3Au Nanocluster Alloy in Reverse Micelles”, Langmuir, 1996, 12: 5800-5802.
    [35] C. Daubresse, C. Granafils, R. Jerome, P. Teyssie, “Enzyme immobilization in reactive nanoparticles produced by inverse microemulsion polymerization”, Colloid Polym. Sci., 1996, 247: 482~489.
    [36] M. Singhai, V. Chhabra, P. Kang, D. O. Shah, “Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion”, Mater. Res. Bull. , 1997, 32: 239-247.
    [37] M. P. Pileni, I. Lisiecki, “Nanometer metallic copper particle synthesis in reverse micelles”, Colloids and Surf. A, 1993, 80: 63-68.
    [38] V. Chhabra, V. Pillai, D. O. Shah, “Preparation of Bi-Pb-Sr-Ca-Cu-O oxide superconductors by coprecipitation of nanosize oxalate precursor powders in the aqueous core of water-in-oil microemulsions”, Appl. Phys. Lett. , 1993, 62: 765-767.
    [39] C. M. Bender, J. M. Burlitch, D. Barber, C. Pollock, “Synthesis and Fluorescence of Neodymium-Doped Barium Fluoride Nanoparticles”, Chem. Mater., 2000, 12: 1969-1976.
    [40] S. Chang, L. Liu, S. A. Asher, “Preparation and properties of tailored morphology, monodisperse colloidal silica-cadmium sulfide nanocomposites”, J. Am. Chem. Soc., 1993, 116: 6739-6744.
    [41] L. Sun, Y. Zhang, J. Zhang, C. Yan, C. Liao, Y. Lu, “Fabrication of size controllable YVO4 nanoparticles via microemulsion-mediated synthetic process”, Solid State Commmun., 2002, 124: 35-38.
    [42] R. Hua, C. Zang, C. Shao, D. Xie, C. Shi, “Synthesis of barium fluoride nanoparticles from microemulsion”, Nanotech., 2003, 14: 588-591.
    [43] A. E. Giannakas, T. C. Vaimakis, A. K. Ladavos, P. N. Trikalitis, P. J. Pomonis. “Variation of surface properties and textural features of spinel ZnAl_2O_4 and perovskite LaMnO3 nanoparticles prepared via CTAB–butanol–octane–nitrate salt microemulsions in the reverse and bicontinuous states ”, J. Colloid and
    Interface Science, 2003, 259: 244-253.
    [44] T. Liu, L. Guo, Y. Tao, Y. B. Wang, W. D. Wang, “Synthesis and interfacialstructure of nanoparticles ?-Fe2O3 coated with surfactant DBS and CTAB”,Nanostructured Mater., 1999, 11: 487-492.
    [45] V. Pillai, D. O. Shah, “Synthesis of high-coercivity cobalt ferrite particlesusing water-in-oil microemulsions”, J. Magn. Magn. Mater., 1996, 163: 243-248.
    [46] J. Fang, K. L. Stokes, J. A. Wiemann, W. L. Zhou, J. Dai, F. Chen, C. J.O'Connor, “Microemulsion-processed bismuth nanoparticles”, Mater. Sci. Eng. B,2001, 83: 254-257.
    [47] W. Que, Y. Zhou, C. H. Kam, Y. L. Lam, Y. C. Chan, L. H. Gan, G. R. Deen,“Fluorescence characteristics from microemulsion technique derived erbium (III)oxide nanocrystals”, Mater. Res. Bull., 2001, 36: 889-895.
    [48] R. A. Menezes, W. D. Nix, “High temperature dislocation mobility in LiFpart I. Charged dislocations in ionic crystals”, 1974, 16: 57-66
    [49] M. Kishida, T. Fujita, K. Umaxoshi, J. Ishiyama, H. Nagata, K.Wakabayashi, “Novel preparation of metal-supported catalysts by colloidalmicroparticles in a water-in-oil microemulsion -catalytic-hydrogenation ofcarbon-dioxide”, J. Chem. Soc. Chem. Commun. , 1995: 763-764.
    [50] C. Larpent, E. Bernard, J. Richard, S. Vaslin, “Synthesis of functionalizednanoparticles via copolymerization in microemulsions and surface reactions”,Reactive Func. Polym., 1997, 33: 49-59.
    [51] J. P. Chen, C. M. Sorensen, K. J. Klabunde, G. C. Hadjipanayis,“Magnetic-properties of microemulsion synthesized cobalt fine particles”, J. Appl.Phys., 1994, 75: 5876-5884.
    [52] A. Hammouda, T. Gulik, M. P. Pileni, “Synthesis of nanosize latexes byreverse micelle polymerization”, Langmuir, 1995, 11: 3656-3659.
    [53] T. H. Chieng, L. M. Gan, C. H. Chew, S. C. Ng, K. L. Pey, “Microstructuralcontrol of porous polymeric materials via a microemulsion pathway using mixed nonpolymerizable and polymerizable anionic surfactants”, Langmuir, 1996, 12:
    319-324.
    [54] 高保娇, 高建峰, 周加其,葛震,“超微镍粉的微乳液法制备研究”,无机化学学报, 2001, 17: 491-495.
    [55] 胡林, 张朝平,“镍/铁复合纳米微粒制备及颗粒尺寸的研究”,复旦学报(自然科学版) , 2003, 42(1): 35-38。
    [56] V. Chhabra, V. Pillai, B. K. Mishira, A. Morrone, D. O. Shah, “Synthesis,characterization, and properties of microemulsion-mediated nanophase TiO2particles”, Langmuir, 1995, 11: 3307-3311.
    [57] 王敏, 王玉军, 郭霖,“用油包水型微乳液法制备超细硫酸钡颗粒”,清华大学学报(自然科学版), 2002, 42 (12) : 1594-1597.
    [58] J. Xu, Y. Li, “Formation of zinc sulfide nanorods and nanoparticles in ternaryW/O microemulsions”, J. Colloids and Interface Science, 2003, 259: 275-281.
    [59] 李华刚, 张朝平, 罗玉萍,“水-表面活性剂比对微乳液法制备磁性Ni-Fe复合纳米微粒的影响”, 应用化学, 2003, 20: 233-237。
    [60] M. Boutonnet, J. Kizling, P. S. G. Maire, “The preparation of monodispersecolloidal metal particles from microemulsions”, Colloids and Surf., 1982, 5:209-212.
    [61] R. Touroude, P. Girard, G. Maire, J. Kizling, M. Boutonnet-Kizling, P.Stenius, “Preparation of colloidal platinum/palladium alloy particles fromnon-ionic microemulsions: Characterization and catalytic behaviour”, ColloidsSurface, 1992, 67:9-19
    [62] K. Kurihara, J. Kizling, P. Stenius, J. H. Fendler, “Laser and pulseradiolytically induced colloidal gold formation in water and in water-in-oilmicroemulsions”, J. Am. Chem. Soc., 1983, 105(9):2574-2579.
    [63] P. Barnickel, A. Wokaun, W. Sager, H.-F. Eicke, “Size tailoring of silvercolloids by reduction in W/O microemulsions”, J. Colloid Interface Sci., 1992,148: 80-90.
    [64] M. L. Steigerwald, A. P. Alivisatos, J. M. Gibson, T. D. Harris, R. Kortan, A.J. Muller, A. M. Thayer, T. M. Duncan, D. C. Douglass, L. E. Brus, “Surfacederivatization and isolation of semiconductor cluster molecules”, J. Am. Chem.Soc., 1988, 110(10):3046-3050.
    [65] K. Kandori, K. Kon-no, A. Kitahara, “Dispersion stability of nonaqueouscalcium carbonate dispersion prepared in water core of W/O microemulsion”,J.Colloid Interface Sci., 1987, 115: 579-582.
    [66] Kazuhiko Kandori, Kijiro Kon-no, Ayao Kitahara, “Formation of ionicwater/oil microemulsions and their application in the preparation of CaCO_3particles”, J. Colloid Interface Sci., 1988, 122: 78-82.
    [67] V. Pillai, P. Kumar, M. S. Multani, D. O. Shah, “Structure and magneticproperties of nanoparticles of barium ferrite synthesized using microemulsionprocessing”, Colloids and Surfaces A: Physicochemical and Engineering Aspects,1993, 80, 69-75.
    [68] V. Pillai, P. Kumar, M. J. Hou, P. Ayyub, D. O. Shah, “Preparation ofnanoparticles of silver halides, superconductors and magnetic materials usingwater-in-oil microemulsions as nano-reactors”, Advances in Colloid and InterfaceScience, 1995, 55: 241-269.
    [69] L. D. Pfefferle, W. C. Pfefferle, Catal. Rev.-Sci. Eng., 1987, 29, 219-267.
    [70] B. K. Harrison, W. R. Ernst, Combust. Sci. Tech., 1978, 19, 31-41.
    [71] S. H. Oh, P. J. Mitchell, R. M. Siewert, Catalytic contral of air pollution, ACSsymposium series, 1992, 12, 495-509.
    [72] H. Arai, T. Yamada, K. Eguchi, Appl. Catal. A, 1986, 26, 265-276.
    [73] J. Rayadurni, J. J. Carbeny, “Kinetics of Carbon Monoxide Oxidation onSolid Oxide Solution and Platinum on Alumina -A Comparative Study”, J. Catal.,1994,147, 594-597.
    [74] G. G. Jernigan, G. A. Somorjai, “Carbon monoxide oxidation over threedifferent oxidation states of copper: metallic copper, copper (I) oxide, and copper (II) oxide -a surface science and kinetic study”, J. Catal., 1994,147, 567-577.
    [75] Z. R. Ismagilov, M. A. Kerzhentsev, Catal. Rev.-Sci. Eng., 1990, 32, 51-103.
    [76] H. Bosch, F. Janssen, “Formation and control of nitrogen oxides”, Catal.Today, 1988, 2, 369-521.
    [77] 曾汉才(Zeng Hancai), 燃烧与污染(Combustion and pollution), 华中理工大学出版社(Huazhong S&E university Press), 武昌(Wuchang), 1992, P27。
    [78] K. S. Song, H. X., Cui S. D. Kim. S.-K. Kang, “Catalytic combustion of CH_4and CO on La1-xMxMnO3 perovskites”, Catal. Today, 1999, 47, 155-160.
    [79] G. Saracco, F. Geobaldo, G. Baldi, “Methane combustion on Mg-dopedLaMnO_3 perovskite catalysts”, Appl. Catal. B, 1999, 20, 277-288.
    [80] H. Arai, M. Machida, “Thermal stabilization of catalyst supports and theirapplication to high-temperature catalytic combustion”, Appl. Catal. A, 1996, 138,161-176.
    [81] C. Bozo, N. Guilhaume, E. Garbowski, “Combustion of methane onCeO_2-ZrO_2 based catalysts”, Catal. Today, 2000, 59, 33-45.
    [82] N. Freestone, “Applied chemistry”, Chem. & Ind., 1995, 9, 346-347.
    [83] 缪建英,陈笃慧, 杨乐夫, 蔡俊修,“超细Ce_(0.5)Zr_(0.5)O_2 的制备及其催化甲烷燃烧性能研究”,环境化学, 1999, 18(1):39-45。
    [84] M. Machida, K. Eguchi, H. Arai, Chem. Lett., 1987, 185:767-770.
    [85] M. Machida, K. Eguchi, H. Arai, “Effect of structural modification on thecatalytic property of Mn-substituted hexaaluminates”, J. Catal., 1990, 123:477-485.
    [86] P. Artizzu-Duart, Y. Brulle, F. Gaillard, E. Garbowski, N. Guilhaume, M.Primet, “Catalytic combustion of methane over copper-andmanganese-substituted barium hexaaluminates”, Catal. Today, 1999, 54:181-190.
    [87] G. Groppi, M. Bellotto, C. Cristiani, P. Forzatti, P. L. Villa, “Preparation andcharacterization of hexaaluminate-based materials for catalytic combustion”, Appl.Catal. A, 1993, 104:101-108.
    [88] D. L. Trimm,Appl. Catal. A, 1983, 7:249-282.
    [89] R. Prasad, L. A., Kennedy E. Ruckenstein, “Catalytic Combustion”, Catal. Rev.-Sci. Eng., 1984, 26:1-58.
    [90] M. F. M. Zwinkels, S. G. Jaras, P. B. Menon, T. A. Griffin, “Catalytic materials for high-temperature combustion”, Catal. Rev-Sci. Eng., 1993, 35: 319-358.
    [91] P. Briot, A. Auroux, D. Jones, M. Primet, “Effect of particle size on the reactivity of oxygen-adsorbed platinum supported on alumina”, Appl. Catal., 1990, 59:141-152.
    [92] P. Briot, M. Premit, “Catalytic oxidation of methane over palladium supported on alumina : Effect of aging under reactants”, Appl. Catal., 1991, 68: 301-314.
    [93] R. F. Hicks, H., Qi M. L. Young, R. G. Lee, “Effect of catalyst structure on methane oxidation over palladium on alumina ”, J. Catal., 1990, 122:295-306.
    [94] S. H. Oh, P. J. Mitchell, R. M. Siewert, “Methane oxidation over alumina-supported noble metal catalysts with and without cerium additives”, J. Catal., 1991, 132:287-301.
    [95] S. H. Oh, P. J. Mitchell, “Effects of rhodium addition on methane oxidation behavior of alumina-supported noble metal catalysts”, Appl. Catal. B, 1994, 5: 165-179.
    [96] R. Burch, F. J. Urbano, “Investigation of the active state of supported palladium catalysts in the combustion of methane”, Appl. Catal. A, 1995, 124: 121-138.
    [97] J. G. McCarty, V. L. Wong, Y. F. Chang, Scr. Metal. Mater., 1994, 31(8):1115-1124.
    [98] K. Otto, C. P. Hubbard, W. H. Weber, G. W. Graham, “Raman-spectroscopy of palladium oxide on gamma-alumina applicable to automotive catalysts -nondestructive, quantitative-analysis -oxidation-kinetics fluorescence quenching”, Appl. Catal. B, 1992, 1:317-327.
    [99] M. Lybovsky, L. Pfefferle, “Complete methane oxidation over Pd catalystsupported on a-alumina: Influence of temperature and oxygen pressure on thecatalyst activity”, Catal. Today, 1999, 47:29-44.
    [100] C. K. Ryu, M. W. Ryoo, I. S. Ryu, S. K. Kang, “Catalytic combustion ofmethane over supported bimetallic Pd catalysts: Effects of Ru or Rh addition”,Catal. Today, 1999, 47:141-147.
    [101] K. Sekizawa, H. Widjaja, S. M. Maeda, Y. Ozawa, K. Eguchi, “Lowtemperature oxidation of methane over Pd catalyst supported on metal oxides”,Catal. Today, 2000, 59:69-74.
    [102] W. S. Epling, G. B. Hoflund, “Catalytic oxidation of methane overzro_2-supported pd catalysts”, J. Catal., 1999, 182:5-12.
    [103] K. Nomura, K. Noro, Y. Nakamura, Y. Yazawa, H. Yoshida, A. Satsuma, T.Hattori, “Pd-Pt bimetallic catalyst supported on SAPO-5 for catalytic combustionof diluted methane in the presence of water vapor”, Catal. Lett., 1998, 53:167-169.
    [104] T. Nitadori, T. Ichiki, M. Misono, Bull. Soc. Jpn., 1988, 61:621-626.
    [105] H. M. Zhang,Y. Teraoka, N. Yamazoe,Appl. Catal., 1988, 41:137-146.
    [106] K. Eguchi, H. Arai, “Recent advances in high temperature catalyticcombustion”, Catal. Today, 1996, 29:379-386.
    [107] M. O’Connell, A. K. Norman, C. F. Hultermann, M. A. Morris, “Catalyticoxidation over lanthanum-transition metal perovskite materials”, Catal. Today,1999, 47, 123-132.
    [108] M. Machida, K. Eguchi, H. Arai, J. Am. Ceram. Soc., 1988, 71:1142-1153.
    [109] M. Machida, K. Eguchi, H. Arai, “Effect of additives on the surface area ofoxide supports for catalytic combustion”, J. Catal., 1987, 103:385-393.
    [110] S. R. Jansen, J. W. de Haan, L. J. M. van de Ven, R. Hanssen, H. T. Hintzen,R. Metselaar, “Incorporation of nitrogen in alkaline-earth hexaaluminates with aβ-alumina-or a magnetoplumbite-type structure”, Chem. Mater., 1997, 9:1516-1524.
    [111] M. Machida, K. Eguchi, H. Arai, Chem. Lett., 1986, 170:151-153.
    [112] M. Machida, M. Murakami, A. Sato, T. Kijima, H. Arai, “Liquid-phase formation of spinel surface-layers on hexaaluminate microcrystals”, Chem. Lett., 1993, 263:1869-1872.
    [113] M. Machida, H. Kawasaki, K. Eguchi et al, Chem. Lett., 1988, 200: 1461-1464.
    [114] M. Machida, K. Eguchi, H. Arai, “Catalytic properties of BaMAl11O19-(M α= Cr, Mn, Fe, Co, and Ni) for high-temperature catalytic combustion”, J. Catal., 1989, 120, 377-386.
    [115] H. Inoue, K. Sekizawa, K. Eguchi, H. Arai, “Changes of crystalline phase and catalytic properties by cation substitution in mirror plane of hexaaluminate compounds”, J. Solid State Chem., 1996, 121, 190-196.
    [116] H. Arai, a H. Fukuzawa, “Research and development on high temperature catalytic combustion”, Catal. Today, 1995, 26:217-238.
    [117] P. Artizzu, N. Guilhaume, E. Garbowski, Y. Brulle, M. Primet, “Catalytic combustion of methane on copper-substituted barium hexaaluminates”, Catal. Lett., 1998, 51:69-75.
    [118] P. Artizzu, J. M. Millet, E. Garbowski, M. Primet, “Catalytic combustion of methane on substituted barium hexaaluminates”, Catal. Today, 2000, 59:163-177.
    [119] M. Machida, A. Sato, T. Kijima, H. Inoue, K. Eguchi H. Arai, “Catalytic properties and surface modification of hexaaluminate microcrystals for combustion catalyst”, Catal. Today, 1995, 26:239-245.
    [120] M. Bellotto, G. Artioli, C. Cristiani, P. Forzatti, G. Groppi, “On the crystal structure and cation valence of Mn in Mn-substituted Ba-?-Al2O3”, J. Catal., 1998, 179:597-605.
    [121] L. Lietti, C. Cristiani, G. Groppi, P. Forzatti, “Preparation, characterization and reactivity of Me-hexaaluminate (Me=Mn, Co, Fe, Ni, Cr) catalysts in the catalytic combustion of NH3-containing gasified biomasses”, Catal. Today, 2000, 59:191-204.
    [122] G. Groppi, C. Cristiani, P. Forzatti, “BaFexAl_(12-x)O_(19) system forhigh-temperature catalytic combustion: physico-chemical characterization andcatalytic activity”, J. Catal., 1997, 168:95-103.
    [123] B. W. Jang, R. M. Nelson, J. J. Spiver, M. Ocal, R. Oukaci, G. Marcelin,“Catalytic oxidation of methane over hexaaluminates andhexaaluminate-supported Pd catalysts”, Catal. Today, 1999, 47:103-113.
    [124] A. J. Zarur, J. Y. Ying, “Reverse microemulsion synthesis of nanostructuredcomplex oxides for catalytic combustion”, Nature, 2000, 403:65-66.
    [125] A. J. Zarur, H. H. Hwu, J. Y. Ying, “Reverse microemulsion-mediatedsynthesis and structural evolution of barium hexaaluminate nanoparticles”,Langmuir, 2000, 16, 3042-3049.
    [126] A. J. Zarur, N. Z. Mehenti, A. T. Heibel, J. Y.Ying, “Phase behavior,structure, and applications of reverse microemulsions stabilized by nonionicsurfactants”, Langmuir, 2000, 16:9168-9176.
    [127] L. L. Hench., J. K. West, “The sol-gel process”, Chem. Rev., 1990, 90:33-72.
    [128] L. Yan, L. T. Thompson, “Synthesis and characterization of aerogel-derivedcation-substituted barium hexaaluminates”, Appl. Catal. A, 1998, 171:219-224.
    [129] A. G. Ersson, E. M. Johansson, S. G. Jaras, “Techniques for preparation ofmanganese-substituted lanthanum hexaaluminates”, Stud. Surf. Sci. Catal., 1998,118:601-608.
    [130] J. Wang, Z. Tian, J. Xu, Y. Xu, Z. Xu, L. Lin, “Preparation of MnSubstituted La-Hexaaluminates Catalysts by supercritical drying method”, Catal.Today 2003, 103: 213-219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700