基于退火孪晶的304不锈钢晶界特征分布优化及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用电子背散射衍射(EBSD)技术、扫描电子显微镜(SEM)、光学显微镜研究了轧制和退火以及初始状态对304奥氏体不锈钢晶界特征分布(GBCD)的影响。采用基于EBSD的单一截面迹线分析法对合金GBCD中的∑3晶界进行了共格与非共格的区分测定。在了解合金轧制退火过程中合金GBCD演变基本规律的前提下,通过对合金组织“原位”跟踪观察,进一步阐明了合金实现GBCD优化的微观机制。最后通过晶界腐蚀实验比较了各种晶界的腐蚀抗力。
     冷轧退火对合金的特殊晶界比例f_(SBs)和GBCD产生重要影响。研究发现,小形变冷轧后较比中等形变冷轧后的合金样品在随后的退火过程中更容易诱发高比例(超过80%)的∑3~n(n=1,2,3)晶界,而且f_(∑9+∑27)晶界与f_(∑3)的比值f_(∑9+∑27/∑3)超过0.1,而中等形变(20%~50%)后的样品退火后该值不超过0.05。表明小形变量是促进304奥氏体合金在后续退火过程中广泛发生∑3~n孪晶反应的必要条件。对于小形变后在相对低温长时间退火处理(GBE1),随着退火时间的延长,合金中∑3~n(n=1,2,3)晶界比例f_(SBs)和f_(∑9+∑27/∑3)逐渐提高,最高值分别达80%和0.2。而相同形变冷轧的样品经高温短时退火(GBE2)后,上述两值随退火时间的延长先增后减。由∑3~n晶界构成的特殊晶界团是GBCD优化了的合金的典型组织特征,小形变冷轧后的样品经低温长时间退火(GBE1)和高温短时间退火(GBE2)处理后,前者的特殊晶界团尺寸明显大于后者,且其一般大角度晶界网络连通性被阻断的效果也优于后者。在已实现GBCD优化的合金样品中,其特殊晶界团内存在大量的非共格∑3晶界。另外还发现合金经小形变冷轧后在两步退火GBE工艺中,样品首先在相对低温下短时退火有利于合金在第二步退火过程中GBCD的再优化,而多道次循环冷轧退火处理对合金的GBCD优化没有显著影响,仅造成残留亚结构分布的变化。
     利用SEM和EBSD技术研究了合金的初始状态包括晶粒尺寸和碳化物对合金最终GBCD优化效果的影响。研究结果表明,时效状态或碳化物的存在通过影响晶界的迁移行为对合金的GBCD优化具有负面效应,碳化物的充分溶解或防止碳化物的晶界析出是合金实现GBCD优化的必要条件之一。原始晶粒尺寸对GBE处理后合金的GBCD也产生一定的影响。当原始晶粒取向随机分布时,细晶组织的GBCD优化效果好于粗晶组织。
     通过对合金组织“原位”跟踪观察,了解了合金GBCD演变过程,进而分析阐明了合金实现GBCD优化的微观机制。小形变冷轧后在相对低的温度下退火可诱发某些原有晶界的优先迁移,并伴以特殊晶界团的形成,特殊晶界团内部通过非共格∑3晶界的迁移反应促进∑3~n晶界的大量增殖,其周围的大角度晶界在应力(应变)梯度作用下的优先迁移以及通过与附近晶界的相互作用形成∑3~n(n=0,1,2)和非∑3~n的低Z-CSL晶界,从而实现一般大角度晶界网络连通性的阻断。进一步的分析得出非共格∑3晶界的大量形成和某些晶界面的优先迁移是合金实现GBCD优化的主要微观机制。
     最后通过晶界腐蚀实验评价了各种晶界的腐蚀抗力,发现∑1和∑3(包括共格与非共格)晶界表现出优异的腐蚀抗力。约有50%的∑9晶界和少数一般大角度晶界在腐蚀抗力上表现出特殊性,分析表明晶界的这种特殊性不仅和构成该晶界两侧晶粒的取向差有关还和晶界所处的晶面位置密切相关。
     本文的创新点主要为:
     (1)利用基于EBSD的单一截面迹线分析法对合金GBCD中的∑3晶界进行了共格与非共格的区分判定,发现在被优化的合金GBCD中,弯曲的非共格∑3晶界是主体,其它∑3~n(n=2,3...)晶界是非共格∑3晶界迁移反应所致。
     (2)通过合金显微组织的原位跟踪观察,了解了合金在冷轧退火过程中GBCD演变以及特殊晶界团形成和扩大的规律。认为某些晶界面在应力作用下的优先迁移并伴以非共格∑3晶界的形成是特殊晶界团不断长大和∑3~n晶界不断增加的重要原因。进而提出了非共格∑3晶界的形成和某些原来的晶界面在应力作用下的优先迁移是合金实现GBCD优化的主要微观机制。
The effects of strain-annealing treatments and initial microstructures on the grain boundary character distribution(GBCD) in 304 stainless steel were studied by electron backscatter diffraction(EBSD),scanning electron microscopy(SEM) and optical microscopy(OM).The single-section trace analysis method based on EBSD was employed to distinguish statistically the incoherent and coherent∑3 boundaries in the samples as processed.The mechanism of GBCD optimization was clarified based on the in-situ observation on the GBCD evolution at the different stages of strain-annealing treatments.Finally,the corrosion characteristics of various grain boundaries were assessed and compared by intergranular corrosion testing.
     The processing varieties of cold-rolling and annealing have a significant influence on the fraction of special grain boundaries(f_(SBs)) and the GBCD.It is found that low strain(6~10%) followed by annealing can produce more∑3~n(n=0,1,2,3...) grain boundaries(more than 70%) than for intermediate strain(20~50%) followed by annealing does.The trend is also true for the ratio of fraction summation of∑9+∑27 boundaries(f_(∑9+∑27)) to the fraction of∑3 boundaries (f_(∑3)),i.e f_((∑9+∑27/∑3)).The averaged f_((∑9+∑27/∑3)) is 0.13 in the case of low strain(6%) followed by annealing and only 0.05 in the case of intermediate strain(20~50%) followed by annealing.As to the dependence of the f_(SBs) and f_((∑9+∑27/∑3)) on the annealing time,it shows some variations for different grain boundary engineering(GBE) processes.In the GBE1 process which involves low strain(6%) and subsequent long-time(24~96 h) annealing at relatively low temperature(900℃),the f_(SBs) and f_((∑9+∑27/∑3)) are increasing with the annealing time prolonged. Upon annealing for 96 h,their value hit the record of 80%and 0.2,respectively.However,in the GBE2 process which involves low strain(6%) and subsequent short-time annealing at high temperature(1050℃),the f_(SBs) and f_((∑9+∑27/∑3))were increasing firstly and then decreasing with the annealing time.The special grain boundary cluster with large Size(more than 200μm) appeared as the typical microstructure feature in the optimized GBCD.The larger cluster(nearly 1mm in dimension) has developed with connectivity of HABs network intorrupted substantially in the 304 stainless steel specimens treated by GBE1 method.In such cluster,densely-populated∑3~n(n=1,2,3...) grain boundaries emerge.As the majority of∑3~n grain boundaries,∑3 boundaries have been measured by the single-section trace analysis method based on EBSD.It is found that the major part of∑3 boundaries is incoherent.The two-step annealing treatment applied to the 304 stainless steel specimens previously treated by 6%cold-rolling is evidenced to be effective for GBCD evolution.The first annealing at relatively low temperature(900℃) for short time(1 h) contributes a lot to the final optimization of GBCD.However,multi-cycle treatment didn't show different effects on the GBCD apart from singe cycle treatment except it brings some change to the residual sub-structure population.
     The effects of carbide and grain size in the starting state on the GBCD are also investigated by SEM and EBSD technology.The results show that presence of carbide in the initial specimen plays a negative role in the GBCD optimization.When the initial random orientation distribution was obtained,it is suggested that the finer microstructure is better for GBCD optimization.
     Based on the in-situ microstructure observations,the GBCD evolution process is revealed and the mechanism of GBCD optimization clarified as well.The strain-induced grain boundary migration occurs during annealing in GBE1 treated 304 stainless steel.Accompanying with this process,the∑3~n grain boundary clusters come into being,within which∑3~n grain boundaries are multiplied significantly through the migration and interaction of incoherent∑3 grain boundaries. Meanwhile,the preferentially migrated grain boundaries can modify the neighboring grain boundaries and promote∑3~n(n=0,1,2,3) and non-∑3~n low∑CSL boundaries,which in return break the connectivity of the HABs network effectively.Further discussion points out that the formation of a large number of incoherent∑3 grain boundaries and strain-induced grain boundary migration might be the mechanism of GBCD optimization based on the twin-induced GBE.
     Finally,the corrosion behaviors of random and special grain boundaries are compared in a sensitized type 304 stainless steel previously treated by particular GBE process.The results show that∑1 and∑3(incoherent and coherent) grain boundaries exhibit better intergranular corrosion resistance.Meanwhile,nearly half of∑9 grain boundaries and a small number of random HABs possess good intergranular corrosion resistance,which indicates that the specialness of grain boundary is not only related to the misorientation of the neighboring grains but also related to the grain boundary plane location.
     The main achievements include:
     (1) The incoherent and coherent∑3 boundaries are distinguished statistically by the single-section trace analysis method based on EBSD.It is found that the major part of ∑3 boundaries is incoherent in the optimized GBCD.The high order∑3~n boundaries are produced via the migration and interaction of incoherent∑3 boundaries.
     (2) Based on the in-situ microstructure observations,the evolution process of GBCD are elucidated in detail.It is pointed out that the formation of incoherent∑3 boundaries and the strain-induced preferential migration of particular grain boundaries are responsible for the GBCD optimization based on twin-induced GBE.
引文
[1].肖纪美.不锈钢的金属学问题[M].北京;冶金工业出版社,2006:8
    [2].George,G.,Shaikh,H.,Introduction to austenitic stainless steels,in Corrosion of Austenite stainless steels[M].Alpha Science International Ltd.Pangbourne England.2002:3
    [3].Thum,E.E.,The book of Stainless steels[M].ASM,1933:5.
    [4].Bain,C.E.,Abron,G.H.,Rutherford,J.J.B.,Tran.ASST,1935,21:481.
    [5].Khatak,H.S.,Raju,V.R.,General guidelines for corrosion control,in Corrosion of Austenite stainless steels[M].Alpha Science International Ltd.Pangbourne England.2002:3.
    [6].Holzworth,M.L.,Symonds A.E.,Inhibition of stress corrosion in type 304stainless steel by lithium silicate[J],Corrosion,1969,25(7):287-292.
    [7].Staehle,R.W.,Localized corrosion[M].1974.
    [8].Streicher,M.A.,General and intergranular corrosion of austenitic stainless steels in acids[J].Electrochem,Soc.,Vol.106,No.63,1959,pp.161-180
    [9].华保定,沈行素,戴钟道,席淑云,18铬-8镍型不锈钢的晶间腐蚀与电位的关系[J].金属学报,1965,1:14-17.
    [10].Vaugham,D.A.,Corrosion[J].1963,19,pp.315-326.
    [11].Benson,R.B.,Hydrogen embrittlement of stainless steel[J].Trans.Met.Soc.,AIME,Vol.242,No.10,1968,pp.2199-2203
    [12].Kramer,D.,Helium embitterment of a ferritics stainless steel[J].Trans.Met.Soc.,AIME,Vol.254,No.9,1969,pp.1909-1914
    [13].Garr,K.R.,Effect of helium on stress-rupture behavior of type-316 stainless steel [J].Met.Trans.,Vol.2,No.l,1971,pp.269-273
    [14].Watanabe,T.,An approach to grain-boundary design for strong and ductile polycrystal[J].Res.Mech,Vol.11,No.1,1984,pp.47-84
    [15].Lejcek,P.,Paidar,V.,Challenges of interracial classification for grain boundary engineering[J].Materials Science and Technnology,Vol.21,No.4,2005,pp. 392-398
    [16].Lin,P.,Palumbo,G.,Erb,U.,Aust,K.T.,Influence of grain boundary character distribution on sensitization and intergranular corrosion[J].Scripta Metallurgica et Materialia,Vol.33,No.9,1995,pp.1387-1392
    [17].Pan,Y.,Adams,B.L.,Olson,T.,Grain boundary structure effects on intergranular stress corrosion cracking of alloy X-750[J].Acta Mater,Vol.44,No.12,1996,pp.4685-4695
    [18].Lehockey,E.M.,Palumbo,G.,On the creep behaviour of grain boundary engineered nickel[J].Materials Science and Engineering A,Vol.237,1997,pp.168-172
    [19].UAlberl,U.,Muellejans,H.,Ruehl,M.,Bismuth segregation at copper grain boundaries[J].Acta Metall,Vol.44,No.15,1999,pp.4047-4060
    [20].Shimada,M.,Kokawa,H.,Wang,Z.J.,etc,Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-nduced grain boundary engineering[J].Acta Metall,Vol.50,No.15,2002,pp.2331-2341
    [21].Lee,S.L.,Richards,N.L.,The effect of single-step low strain and annealing of nickel on grain boundary character[J].Materials Science and Engineering A,Vol.390,2005,pp.81-87
    [22].Guyot,B.M.,Richards,N.L.,A study on the effect of cold rolling and annealing on special grain boundary fractions in commercial-purity nickel[J].Materials Science and Engineering A,Vol.395,2005,pp.87-97
    [23].Thomson,C.B.,Randle,V.,"Fine tuning" at ∑3 boundaries in nickel[J].Acta Mater,Vol.45,No.12,1997,pp.4909-4916
    [24].夏爽,周邦新,陈文觉等.金属学报[J].高温退火过程中铅合金品界特征分布的演化,Vol.42,No.2,2006,pp.129-133
    [25].王卫国,周邦新,冯柳等.金属学报[J].冷轧变形Pb-Ca-Sn-Al合金在回复和再结晶过程中的晶界特征分布,Vol.42,No.7,2007,pp.715-721
    [26].King,Wayne E.,Schwartz,Adam J.,Toward optimization of the grain boundary character distribution in OFE copper[J].Scripta Materialia,Vol.38,No.3,1998, pp.440-455
    [27].Lee,D.S.,Ryoo,H.S.,Hwang,S.K.,A grain boundary engineering approach to promote special boundaries in Pb-base alloy[J].Materials Science and Engineering A,Vol.354,2003,pp.106-111
    [28].Kumar,M.,King,W.E.,Schwartz,A.J.,Modifications to the microstructural topology in f.c.c,materials through thermomechanical processing[J].Acta Mater,Vol.48,2000,pp.2081-2091
    [29].Kumar,M.,Schwartz,A.J.,King,W.E.,Microstructural evolution during grain boundary engineering of low to medium stacking fault energy fcc materials[J].Acta Mater,Vol.50,2002,pp.2599-2612
    [30].Thaveeprungsriporn,V.,Sinsrok,P.,Thong-Aram,D.,Effect of iterative strain annealing on grain boundary network of 304 stainless steel[J].Scripta Mater,Vol.44,2001,pp.67-71
    [31].Lee,S.Y.,Chun,Y.B.,Han,J.W.,etc,Effect of thermomechanical processing on grain boundary characteristics in two-phase brass[J].Materials Science &Engineering A,Vol.363,2003,pp.307-315
    [32].Lehockey,E.M.,Limoges,D.,Palumbo,G.,etc,On improving the corrosion and growth resistance of positive Pb-acid battery grids by grain boundary engineering [J].Journal of Power Sources,Vol.78,1999,pp.79-83
    [33].Spigarelli,S.,Cabibbo,M.,Evangelista,E.,etc,Analysis of the creep strength of a low-carbon AISI 304 steel with low-∑ grain boundaries[J].Materials Science &Engineering A,Vol.352,2003,pp.93-99
    [34].Xia,S.,Zhou,B.X.,Chen,W.J.,etc.Effects of strain and annealing processed on the distribution of ∑3 boundaris in a Ni-based superaloy[J].Scripta Materialia,Vol.54,2006,pp.2019-2022
    [35].Watanabe,T.,Fujii,H.,Oikawa,H.,Arai,K.I.,Grain boundaries in rapidly solidified and annealed Fe-6.5%mass Si polycrystalline ribbons with high ductility[J].Acta Metall,Vol.37,No.3,1988,pp.941-952
    [36].Lee,K.T.,Szpunar,J.A.,Morawiec,A.,Knorr,D.B.,Rodbell,K.P.,Correlation between special grain boundaries and electromigration behavior of aluminum thin films[J].Canadian Metall.Quarterly,Vol.34,No.3,1995,pp.287-292
    [37].Herbeuval,I.,and Biscondi,M.,C.R.Influence of inter crystalline structure on zinc diffusion in symmetrical flexion joints of(001) axis of aluminum.Acad.Sci.Paris,Vol.273,No.21,1971,pp.1416-1425
    [38].Watanabe,T.,Yamada,M.,Shima,S.,Karashima,S.,Misorientation dependence of grain-boundary sliding in(1010) tilt zinc bicrystals[J].Phil.Mag.A,Vol.40,No.5,1979,pp.667-683
    [39].Kokawa,H.,Watanabe,T.,Karashima,S.,Kokawa,H.,Structural Changes during Sliding of Aluminium Grain Boundaries with Different Initial Structures[J].Scripta Metallurgica,Vol.17,No.10,1983,pp.1155-1159
    [40].Kokawa,H.,Watanabe,T.,and Karashima,S.,Sliding Behaviour and Dislocation Structures in Aluminium Grain Boundaries[J].Philosophical Magazine A,Vol.44,No.6,1981,pp.1239-1254
    [41].Westbrook,J.H.,and Aust,K.T.,Solute hardening at interfaces in high-purity lead [J].Acta Meta,Vol.11,No.10,1981,pp.1151-1161
    [42].Bi,Hong Yun.,Kokawa,Hiroyuki.,Wang,Zhan Jie.,Shimada,Masayuki.,Sato,Yutaka S.,Suppression of chromium depletion by grain boundary structural change during twin-induced grain boundary engineering of 304 stainless steel[J].Scripta Materialia,Vol.47,2003,pp.219-223
    [43].Bouchet,D.,Priester,L.,Intergranular segregation and crystallographic parameters of grain boundaries in nickel-sulfur system[J].Scripta Materialia,Vol.20,No.7,1986,pp.961-966
    [44].Laws,M.S.,Goodhew,P.J.,Grain boundary structure and chromium segregation in a 316 stainless steel[J].Acta Metall,Vol.39,No.7,1991,pp.1525-1533
    [45].Chen,Fu.Sen.and King,A.H.,The misorientation dependence of diffusion induced grain boundary migration[J].Scripta Materialia,Vol.20,No.10,1986,pp.1401-1404
    [46].Yamamoto,Y.,Moriyama,M.,Kajihara,M.,and Mori,T.,Kinetics of diffusion induced grain boundary migration of[100]twist boundary in the Cu(Zn) system [J].Acta Metall,Vol.47,No.6,1999,pp.1757-1766
    [47].Goukon,N.,Ikeda,T.,and Kajihara,M.,Characteristic features of diffusion induced grain boundary migration for ∑9[110]asymmetric tilt boundaries in the Cu(Zn) system[J].Acta Metall,Vol.48,No.7,2000,pp.1551-1562
    [48].Ishibashi,R.,Horiuchi,T.,Kuniya,J.,Yamamoto,M.,Tsurekawa,S.,Kokawa,H.,Watanabe,T.,and Shoji,T.,Effects of Grain Boundary Character Distribution on Stress Corrosion Cracking Behavior in Austenitic Stainless Steels[J].Materials Science Forum,Vol.475-479,No.1-5,2005,pp.3863-3866
    [49].Palumbo,G.,Erb,U.,Enhancing the operating life and performance of lead-acid batteries via grain-boundary engineering[J].MRS Bulletin,Vol.24,No.11,1999,pp.27-32.
    [50].Hiroyuki Kokawa,Masayuki Shimada,Zhan Jie Wang,Yutaka S.Sato and Masato Michiuchi:Grain Boundary Engineering for Intergranular Corrosion Resistant Austenitic Stainless Steel[J].Key Engineering Materials,Vol.261-263,2004,pp.1005-1010.
    [51].Lehoceky,E.M.,Palumbo,G.,Lin,P.,Brennenstuhl,A.M.,On the relationship between grain boundary character distribution and intergranular corrosion[J].Scripta Materialia,Vol.36,No.10,1997,pp.1211-1218
    [52].Tsurekawa,S.,Watanabe,T.,Materials Research Society Symposium.Grain boundary microstructure dependent intergranular fracture in polycrystalline molybdenum,Vol.586,2000,pp.237-242
    [53].Yamaura,S.,Tsurekawa,S.,Watanabe,T.,Mater Trans.[J].The control of oxidation-induced intergranular embitterment by grain boundary engineering in rapidly solidified Ni-Fe alloy ribbons[J].,Vol.44,No.7,2003,pp.1494-1502
    [54].Konvalova,E.V.,Percvalova.,O.B.,Koneva,N.A.,Kozlov,E.V.,Materials Science and Engineering[J].Features of the microhardness near random and special type of boundaries in a Ni_3Al intermetallic compound[J].,Vol.387-389,No.15,2004,pp.955-959
    [55].Soifer,Ya.M.,Verdyan,A.,Kazakevich,M.,Rabkin,E.,Nanohardness of copper in the vicinity of grain boundaries[J].Scripta Materialia,Vol.47,No.12,2002,pp.799-804
    [56].Yin,Y.F.,Faulkner,R.G.,Creep damage and grain boundary precipitation in power plant metals[J].Mate.Sci.&Tech.,Vol.21,No.11,1997,pp.123-1246
    [57].Watanabe,T.,Key issues of grain boundary engineering for superplasticity[J].Materials Science Forum,Vol.243-245,1997,pp.21-30
    [58].Avramovic-cingara,G.,Aust,K.T.,Perovic,D.D.,Palumbo,G.,etc,Superplasticity and grain boundary character distribution in overaged Al-Li-Cu-Mg-Zr alloy[J].Canadian metallurgical Quaterly,Vol.34,No.3,1995,pp.265-273
    [59].Watanabe,T.,Texturing and grain boundary engineering for materials design and development in the 21st century[J].Materials Science Forum,Vol.408-412,No.1,2002,pp.39-48
    [60].Furuya,Y.,Hagood,N.W.,Kimura,H.,Watanabe,T.,Shape memory effect and magnetostriction in rapidly solidified Fe-29.6 at%Pd alloy[J].Mater.Trans JIM,Vol.39,No.12,1998,pp.1248-1254
    [61].Specht,E.D.,Wang,Z.L.,Kroeger,D.M.,Grain boundary studies of high-temperature superconducting materials using electron backscatter Kikuchi diffraction[J].Ultramicroscopy,Vol.67,No.1-4,1997,pp.35-37
    [62].Specht,E.D.,Goyal,A.,Kroeger,D.M.,etc,The effect of colonies of aligned grains on critical current in high-temperature superconductors[J].Physcia C,Vol.242,No.1-2,1995,pp.164-168
    [63].Specht,E.D.,Goyal,A.,Kroeger,D.M.,Scaling of percolative current flow to long lengths in biaxially textured conductors[J].Supercond.Sci.Technol,Vol.13,No.5,2000,pp.592-597
    [64].Palumbo,G.,Lehoceky,E.M.,Lin,P.,Applications for grain boundary engineered materials[J].JOM,Vol.50,No.2,1998,pp.40-43
    [65].Cheung,C.,Erb,U.,Palumbo,G.,Application of grain boundary engineering concepts to alleviate intergranular cracking in Alloys 600 and 690[J].Mater.Sci.Eng.A,Vol.185,No.1-2,1994,pp.39-43
    [66].Lehoceky,E.M.,Palumbo,G.,Lin,P.,Improving the weldability and service performance of nickel- and iron-based superalloys by grain boundary engineering [J].Metallurgical and Materials Transactions,Vol.29A,No.12,1998,pp.3069-3079
    [67].Watanabe T,Grain-boundary design for advanced materials on the basis of the relationship between texture and grain-boundary-character-distribution(GBCD)[J].Textures and Microscopy,Vol.20,No.1-4,1993,195-216.
    [68].Lee,K.T.,and Szpunar,J.A,The role of special grain boundaries during the grain growth in Fe-3%Si[J].Canadian Metallurgical Quarterly,Vol.134,No.3,1995,pp.257-263
    [69].Shibayanagi,T.,Ichimiya,K.,Umakoshi,Y.,Grain boundary migration in Fe-3mass%Si alloy bicrystals with twist boundary[J].Science and Technology of advanced materials,Vol.1,No.2,2000,pp.87-95
    [70].Lin,P.,Palumbo,G.,Harase,J.,Aust,K.T.,Coincidence site lattice(CSL) grain boundaries and Goss texture development in Fe-3%Si alloy[J].Acta Metall,Vol.44,No.12,1996,pp.4677-4683
    [71].Cao,S.Q.,Zhang,J.X.,Wu,J.X.,Wang,L.,Chou,J.G.,Microtexture,grain boundary character distribution and secondary working embrittlement of high strength IF steels[J].Materials Science and Engineering,Vol.392,No.1-2,2005,pp.203-208
    [72].Lin,Hui.,Pope,D.P.,The influence of grain boundary geometry on intergranular crack propagation in Ni_3Al[J].Acta Metall,Vol.41,No.2,1993,pp.553-562
    [73].王卫国,周邦新,“晶界工程若干关键问题”,第11届中国体视学与图象分析学术会议论文集,中国宁波,2006年10月,241-247.
    [74].Schuh,C.A.,Kumar,M.,King,W.E.,Universal features of grain boundary networks in FCC materials[J].Journal of Materials Science,Vol.4.0,No.4,2005,pp.847-852
    [75].Basinger,J.A.,Homer,E.R.,Fullwood,D.T.,Adams,B.L.,Two-dimensional grain boundary percolation in alloy 304 stainless steel[J].Scripta Materialia,Vol.53,No.8,2005,pp.959-963
    [76].Kim,S.H.,Erb U.,Palumbo,G.,Grain boundary character distribution and intergranular corrosion behavior in high purity aluminum[J],Scripta Mater.,Vol.44,No.5,2001,pp.835-839
    [77].Gertsman,V.Y.,Janecek,M.,Tangri,K.,Grain boundary ensembles in polycrystals[J].Acta Metall,Vol.44,No.7,1996,pp.2869-2882
    [78].Gertsman,V.Y.,Henager J.C.H.,Grain boundary junctions in microsturecute generated by multiple twinning[J].Interface Science,Vol.11,No.4,2003,pp.403-415
    [79].Palumbo,G.,Aust,K.T.,Triple-line corrosion in high purity nickel[J].Mater.Sci.Eng,Vol.113,No.7,1989,pp.139-147
    [80].Gertsman,V.Y.,and Tangri,K.,Computer simulation study of grain boundary and triple junction distributions in microstructures formed by multiple twinning[J].Acta Metallmater,Vol.43,No.6,1995,pp.2317-2324
    [81].[81]Mishin,O.V.,Distributions of Grain Boundaries and Triple Junctions in Variously Textured Copper[J].Scripta Materialia,Vol.38,No.3,1998,pp.423-428
    [82].Fortier,P.,Aust,K.T.,and Miller,W.A.,Effects of symmetry,texture and topology on triple junction character distribution in polycrystalline materials[J].Acta Metall,Vol.43,No.1,1995,pp.339-349
    [83].Davies,P.,Randle,V.,Watldns,G.,Davies,H.,Triple junction distribution profiles as assessed by electron backscatter diffraction[J].Journal of Materials Science,Vol.37,No.19,2002,pp.4203-4209
    [84].Yi,Y.S.,Kim,J.S.,Characterization methods of grain boundary and triple junction distributions[J].Scripta Materialia,Vol.50,No.6,1998,pp.855-859
    [85].Fortier,P.,Miller,W.A.,Aust,K.T.,Triple junction and grain boundary character distributions in metallic materials[J].Acta Metall,Vol.45,No.8,1997,pp.3459-3467
    [86].张坤,王卫国,方晓英,郭红.不同温度轧制Pb-Ca-Sn-Al合金高温退火后的晶界特征分布[J],金属学报,Vol.44,No.6,2008,pp.652-658
    [87].方晓英,王卫国,郭红,张欣,周邦新.304不锈钢冷轧退火∑3n特殊晶界分布研究[J],金属学报,Vol.43,No.12,2007,pp.1239-1244
    [88].Wang,W.,Guo,H.,Effects of thermo-mechanical iterations on the grain boundary character distribution of Pb-Ca-Sn-Al alloy[J].Materials Science and Engineering,Vol.445-446,No.15,2007,pp.155-162
    [89].Schuh,Christopher A.,Kumar,Mukul.,King,Wayne E.,Analysis of grain boundary networks and their evolution during grain boundary engineering[J].Acta Metall,Vol.5,No.3,2003,pp.687-700
    [90].Randle,V.,Overview No.127The role of the grain boundary plane in cubic polycrystals[J].Acta Metall,Vol.46,No.5,1997,pp.1459-1480
    [91].Kim,Chang-Soo.,Rollett,Anthony D.,Rohrer,Gregory S.,Grain boundary planes:New dimensions in the grain boundary character distribution[J].Scripta Materialia,Vol.54,No.6,2006,pp.1005-1009
    [92].Wang.W.G,YIn,F.X,Guo H,He Li,Zhou B.X.,Effect of recovery treatment after large strain on the grain boundary character distribution of subsequently cold rolled and annealed Pb-Ca-Sn-Al alloy[J].Scripta Materialia,Vol.491,No.1-2,pp.199-206
    [93].Bouchet,D.,Priester,L.,Grain boundary plane and intergranular segregation in nickel-sulfur system[J].Scripta Materialia,Vol.21,No.4,1987,pp.475-478
    [94].Xiaoying Fang,Kun Zhang,Hong Guo,Weiguo Wang,Bangxin Zhou.Twin-induced grain boundary engineering in 304 stainless steel[J].Materials Science and Engineering A,Vol.487,No.1-2,2008,pp.7-13
    [95].Randle,V.,'Special' boundaries and grain boundary plane engineering[J].Scripta Materialia,Vol.54,No.6,2006,pp.1011-1015
    [96].Randle,v.,Twinning-related grain boundary engineering[J].Acta.Mater,Vol.52,No.6,2004,pp.4067-4081
    [97].张欣,王卫国,郭红,姜英,固溶和预时效Pb-Ca-Sn-Al合金形变退火晶界特征分布[J],金属学报,Vol.43,No.5,2007,pp.454-458
    [98].Kim,Chang-Soo.,Hu,Yan,Rohrer,Gregory S.,Randle,Valerie,Five-parameter grain boundary distribution in grain boundary engineered brass[J].Scripta Materialia,Vol.52,No.97,2005,pp.633-637
    [99].Michiuchi,M.,Kokawa,H.,Wang,Z.J.,Sato,Y.S.,Sakai,K.,Twin-induced grain boundary engineering for 316 austenitic stainless steel[J].Acta Metall,Vol.54,No. 19,2006,pp.5179-5184
    [100].Schuh,C.A.,Minich,R.W.,Kumar,M.,Connectivity and percolation in simulated grain-boundary networks[J].Philos Mag,Vol.83,No.6,2003,pp.711-726
    [101].Venables,J.A.,Harland,C.J.,Electron backscattering patterns-new technique for obtaining crystallographic information in scanning electron-microscope[J].Phil Mag,Vol.27,No.5,1973,pp.1193-1200
    [102].Alam,M.N.,Blackman,M.,Pashley,D.W.,High angle Kikuchi patterns.Proc.Royal Society of London 1954,A221:224
    [103].Brandon,D.G.,The structure of high-angle grain boundaries[J].Acta Metall,Vol.14,No.11,1966,pp.1479-1484
    [104].Randle,V.,Carlton House Terrace,London SW1Y 5DB.The Role of Coincidence site lattice in grain boundary engineering,The Institute of Materials,1996
    [105].Wright,S.I.,Larsen,R.J.,Extracting twins from orientation imaging microscopy scan data.Journal of Microscopy,Vol.205,2002,pp.245-252
    [106].Randle,V.,A methodology for grain boundary plane assessment by single-section trace analysis[J].Scdpta Matedalia,Vol.44,2001,pp.2789-2794
    [107].D.M.Saylor,B.S.El-Dasher,B.L.Adams.Measuring the five-parameter grain-boundary distribution from observations of planar sections[J].Met.Mater.Trans.,2004,35A,pp.1981-1989.
    [108].Mahajan,S.,Pande,C.S.,Imam,M.A.,Rath,B.B.,Formation of annealing twins in f.c.c,crystals[J].Acta MetaIl,Vol.45,No.6,1997,pp.2633-2638
    [109].Lee,S.B.,Yoon,D.Y.,and Henry,M.F.,Abnormal grain growth and grain boundary faceting in a model Ni-base superalloy[J].Acta Metall,Vol.48,No.12,2000,pp.3071-3080
    [110].Wang,L.,Xie,G.,Zhang,J.,Lou,L.H.,On the role of carbides during the recrystallization of a directionally solidified nickel-base superalloy[J],Scripta Materialia,Vol.55,No.5,2006,pp.Pages 457-460
    [111].余永宁.金属学原理[M].北京:冶金工业出版社,2000,6
    [112].Humphrey F.J.,Hatherly M.,Recrystallization and related annealing phenomena[M],Second ed.,Elsevier,Oxford,2004
    [113].Saylor D.M.,Morawiec A.,Rohrer G.S.,The relative free energies of grain boundaries in magnesia as a function of five macroscopic parameters[J].Acta Mater.,Vol.51,No.8,2003,pp.3657-3686
    [114].Dillon S.J.,Rohrer G.S.,Mechanism for the development of anisotropic grain boundary character distributions during normal grain growth[J].Acta Mater.,2008(in press)
    [115].Beck,P.A.,Sperry,P.R.,Hsun,H.,The orientation dependence of the rate of grain boundary migration[J].J.Appl.Phys.,Vol.420,No.21,1950,pp.420-426
    [116].Rohrer G.S.,山东理工大学作的学术报告讲义,2008,10,22
    [117].Fullman R.L.,Fisher J.C.,Formation of annealing twins during grain growth[J],Journal of applied physics,Vol.22,No.11,1951,pp.1350-1355
    [118].Meyers M.A.,Murr.L.E..A model for the formation of annealing twins in fcc metals and alloys[J],Acta.Metall,Vol.26,No.9,1978,pp.951-962
    [119].Garg,A.,Clark,W.A.T.,HIrht,J.P.,Dissociated and faceted large-angle coincident-site-lattice boundaries in silicon[J].Phil.Mag.,Vol.59,No.3,pp.479-499
    [120].Lejcek,P,Paidar V.,Hofmann S.,Special[100]tilt grain boundaries in iron:A segregation study[J],Mater.Sci.For.,Vol.294,No.12,1999,pp.103-106
    [121].Lejcek,P.,Paidar,V.Adamek,J.,Segregation and corrosion behaviour of incommensurate 45°[100]grain boundaries in an Fe-Si alloy:The role of grain boundary plane orientation[J].Acta Metall,Vol.45,No.9,1994,pp.3915-3926
    [122].Paidar,V.,Lejcek,P.,Anisotropic behaviour of grain boundaries[J].Mater.Sci.For.,Vol.482,No.7,2005,pp.63-70
    [123].Janssens,K.G.F.,Olmsted,D.,Holm,E.A.,Foiles,S.,Computing the mobility of grain boundaries[J].Nature mater,Vol.5,No.1,2006,pp.124-127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700