基于电子背散射衍射和纳米压痕技术的奥氏体不锈钢微结构与性能关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料的微结构与性能之间存在密切的关系。对材料微结构在高温下的“原位”观察,以及材料微区残余应力的测试等,对于研究材料的失效机理具有重要意义。但是长期以来,这方面的研究工作一直是研究热点,也是研究难点。近年来,随着材料测试表征技术和理论的不断发展和完善,为我们解决上述问题提供了可能。本论文综合应用电子背散射衍射(electron backscatter diffraction, EBSD)技术、纳米压痕(nano-indentation)技术和电子显微镜等,对在工程中广泛应用的奥氏体不锈钢及其焊接接头在1200℃超高温下的组织转变和焊接界面处微米级微区的残余应力分布等进行了系统的研究和分析,以期为奥氏体不锈钢在复杂工况下的应用和失效分析提供科学依据。
     全文共分九章。第一章为绪论,介绍了本工作的来源、意义和所做的主要工作,综述了国内外有关EBSD技术和纳米压痕技术在材料科学中的研究现状与进展。
     为了使读者更好阅读本论文,以及体现论文的系统性,第二章简要介绍了EBSD和纳米压痕技术的基础原理、设备结构、数据获取原理及可靠度分析。
     第三章为本文所用的实验材料和方法。详细介绍了奥氏体不锈钢材料及其焊接接头材料的金相试样实现方法,另外还对其形貌和微结构的表征技术以及性能测试手段进行了介绍。
     第四章重点介绍了一种新的“原位跟踪(in-situ-tracking)"观察和测量技术。与传统常规方法和严格的“原位”分析技术相比,“原位跟踪”观测法即能够实现对材料特定部位显微组织、化学成分和性能等的连续观察与研究,又不需要增加特殊的,甚至是昂贵的专用实验设备,为我们进行更多材料微结构-性能分析提供了有效手段。
     第五章利用SEM和EBSD“原位跟踪”观测技术,观察和研究了奥氏体不锈钢在1200℃超高温下的回复与再结晶过程,特别是研究了材料在高温下的晶粒取向以及晶界性质的转变过程。发现奥氏体不锈钢显微组织在1200℃超高温下的“回复与再结晶”过程较常规高温更快,这与材料中位错的快速运动和相互作用有关,晶粒长大符合位错模型机制。
     第六章研究了奥氏体不锈钢焊接熔池“液—固界面”处的结晶生长关系,从实验上证实了熔池结晶的竞争生长机制,即焊缝组织中形成<100>织构。另外,还通过EBSD“原位跟踪”观测还研究了焊接界面附近显微组织在超高温下的转变规律以及取向演变特征。
     第七章研究了奥氏体不锈钢在1200℃超高温下表面氧化膜的形成及其脱落机理。认为奥氏体不锈钢表面氧化膜具有多膜层结构,氧化环境及氧化膜—基体界面处的元素分布和扩散对氧化膜的结构与性能有直接影响:氧化膜的失效行为主要表现为氧化层中裂纹的产生和不致密氧化层的脱落。
     第八章采用具有高空间分辨率和测量精度的纳米压痕技术,首次实现了对奥氏体—铁素体异种钢焊熔合区附近微米级范围内的残余应力测量。结果显示,在焊态接头中,熔合区附近区域的残余应力整体为压应力,且最大压应力在熔合区中;焊后热处理能有效释放接头中残余应力,对母材热影响区组织最为明显。
     第九章是全文总结。最后简要的列出了作者在博士生期间的科研情况和公开发表的论文等。
Generally, material microstructure is closely related with its property. "In-situ" observing the material microstructure during high temperature, and measuring micrometer-scale residual stress of materials etc., are important to analyze the failure mechanism of materials. For a long time, however, these studies are research hotspot, but also are research difficulties. In the recent years, with the development and improvement of material characterization techniques and theories, it is possible to overcome the above difficulties. In the present work, the microstructural transformation during 1200℃super-high temperature and the micrometer-scale residual stress at the weld interface of austenitic stainless steels and welded joints widely used in the engineering are examined systematically using electron backscatter diffraction (EBSD) technique, nano-indentation technique, and scanning electron microscopy (SEM) etc.. It is respected to provide scientifical basis to the application of austenitic stainless steels serviced under complicated conditions and its failure analysis.
     This dissertation consists of nine chapters. Chapter one is an introduction, in which the origin and support of the project, significance and the major author's work are introduced briefly. The research status and development of both EBSD and nano-indentation techniques in materials science are reviewed.
     In order to better understand this dissertation, and reflecting the system of dissertation, in chapter two the fundamental knowledge, the system structure, the principle of data acquisition, and data dependability of EBSD and nano-indentation techniques are introduced briefly.
     Chapter three illustrates the experimental materials and methods used in this dissertation, on the emphasis of the metallographic samples preparation of austenitic stainless steels and welded joints. In addition, the characterization techniques for morphologies and microstructures, measurements of properties are also demonstrated.
     In chapter four, a novel "in-situ-tracking" approach for evaluating microstructural variations using SEM, EDS and EBSD is introduced. Comparing with the regular methods and the strict "in-situ" techniques, the present "in-situ-tracking" approach provides a possibility to achieve the examination in series on the variations of microstructures, compositions and properties at a fixed place during treatments simply and economically. It is an effective approach for studying more materials microstructure-property.
     In chapter five, the "in-situ-tracking" approach using SEM and EBSD is proposed to examine the "recovery and recrystallization" process of austenitic stainless steel, especially the grain orientation evolution and grain boundary variation, during 1200℃super-high temperature. It is found that comparing to the regular high temperature service (below 900℃), the present "recovery and recrystallization" process is accelerated due to dislocation fastened movement and intensive interaction. The grain growth mechanism still meets the well-accepted dislocation model of subgrain combination.
     In chapter six, the crystallographic relationship of the "liquid-solid" interface of the weld pool of austenitic stainless steel is investigated. It has experimentally demonstrated the reasonability of the competitive growth resulting from the solidification of weld pool. That is to say, the<100> texture has been formed in the weld metal. Additionally, the microstructural transformation and grain orientation evolution at the weld interface during high temperature are studied using the EBSD "in-situ-tracking" method.
     In chapter seven, the formation and failure mechanism of oxidation scale on the stainless steel substrate surface served at 1200℃with corrosion environment are analyzed. The results indicate that the scale on the stainless steel substrate surface consisted of poly-film layers, depending on the oxidation environment, and the elements distribution and diffusion at the scale-substrate interface. The formation of cracks in the scale and the fall off of the non-compact scale are the main problem at the failure behavior of stainless steel oxidation scale.
     In chapter eight, the nano-indentation technology with higher resolution and measuring precise is firstly adopt to measure micrometer-scale residual stress around the fusion bound. The results suggest that in the as-welded joint, the residual stresses around the fusion bound are entirely compressive, and the maximum compressive stresses occurrs in the fusion bound; after post-weld heat treated (PWHT), the compressive stresses around fusion bound are reduced by thermal stress relief, especially the heat-affected zone (HAZ).
     Chapter nine is the conclusions of all the research works mentioned in this dissertation. The last part of the dissertation lists author's published papers finished during the doctorate study period.
引文
[1]Adam, J. S.; Mukul K. and Brent, L. A. Electron backscatter diffraction in materials science [M].2000; New York, Kluwer Academic Publisher.
    [2]http://www.edax.com.cn
    [3]Bhushan, B. Nanotribology and nanomechanics [J]. Wear.259(7-12):1507-1531.
    [4]Venables, J. A. and Harland C. J. A new technique for obtaining crystallographic information in the scanning electron microscope [J]. Philosophical Magazine.1973,27(5):1193-1200.
    [5]Dingley, D. J. A comparison of diffraction techniques for the SEM [J]. Scanning Electron Microscopy.1981,4(2):273-286.
    [6]Kunze, K.; Wight, S. I.; Adams, B. L. and Dingley, D. J. Advances in automatic EBSP single orientation measurements [J]. Texture and Microstructures.1993,20(1-4):41-54.
    [7]Wright, S. I. and Nowell, M. M. Chemistry assisted phase differentiation in automated electron backscatter diffraction [M].2002; Canada, Cambridge University Press.
    [8]Wright, S. I. and Nowell, M. M. A review of in-situ EBSD experiments [J]. 中国体视学与 图像分析.2005,10(4):193-198.
    [9]Valerie, R. Applications of electron backscatter diffraction to materials science:status in 2009 [J]. Journal of Materials Science.2009,44:4211-4218.
    [10]Jorge-Badiola, D.; Lza-Mendia, A. and Gutierrez I. EBSD characterization of a hot worked 304 austenitic stainless steel under strain reversal [J]. Journal of Microscopy-Oxford.2009, 235(1):36-49.
    [11]Yin, F.; Sakaguchi, T. and Zhong, Y. EBSD characterization of the twining microstructures in a high-damping Mn-Cu alloy [J]. Materials Transactions.2007,48(8):2049-2055.
    [12]Glavicica, M. G.; Kobryn, P. A. and Semiatin, S. L. Validation of automated EBSD method to deduce the beta-phase texture in Ti-6A1-4V with a colony-alpha microstructure [J]. Materials Science and Engineering A.2004,385(1-2):372-376.
    [13]Semoroz, A.; Durandet, Y. and Rappaz, M. EBSD characterization of dendrite growth directions, textures and misorientations in hot-dipped Al-Zn-Si coatings [J]. Acta Materialia. 2001,49(3):529-541.
    [14]Chen, S. K.; Du, J. H. and Gao, G. R. Microstructure study of CVD W coating on Mo single
    crystal rods with (111) axial orientation by EBSD [J]. Materials Science and Engineering A. 2006,434(1-2):95-98.
    [15]Tommasi, A.; Gibert B. and Mainprice D. Anisotropy of thermal diffusivity in the upper mantle [J]. Nature.2001,411:783-786.
    [16]Bystricky, M.; Kunze, K. Burlini L. and Burg, J. P. High shear strains of Olivine Aggregates: rheological and seismic consequences [J]. Science.2000,290:1564-1567.
    [17]Field, D. P.; Jiang, Q.T. and Nowell, M. M. Special issue on the international workshop on EBSD applications to electronic materials-forward [J]. Journal of Electronic Materials.2002, 31(1):1-1.
    [18]Koblischka, V. A.; and Koblischka, M. R. EBSD analysis of melt-textured YBCO with embedded Ag-2411 nanoparticles [J]. Materials Science and Engineering B.2008,151(1): 65-68.
    [19]Lay, S.; Allibert, C. H. and Christensen, M. Morphology of WC grains in WC-Co alloys [J]. Materials Science and Engineering A.2008,486(1-2):253-261.
    [20]Ruppi, S. Enhanced performance of α-Al2O3 coatings by control of crystal orientation [J]. Surface and Coating Technology.2008,202(17):4257-4269.
    [21]Feng, H. B.; Zhou and Y. Jia, D. C. Microstructural characterization of spark plasma sintered in situ TiB reinforced Ti matrix composite by EBSD and TEM [J]. Materials Transactions. 2005,46(3):575-578.
    [22]Charpentier, M.; Hazotte, A. and Daloz, D. Lamellar transformation in near-Ⅴ TiAl alloys-quantitative analysis of kinetics and microstructures [J]. Materials Science and Engineering A. 2008,491(1-2):321-330.
    [23]Dan, N. H. High coercivity in Ni-Fe-Al-Co-B alloys prepared by mechanical milling [J]. Journal of Magnetism and Magnetic Materials.2008,320(3-4):429-434.
    [24]Binner, J.; Chang, H. and Higginson, R. Processing of ceramic-metal interpenetrating composites [J]. Journal of the European Ceramic Society.2008,29(5):837-842.
    [25]Scott, T. B.; Petherbridge, J. R.; Findlay, I.; Glascott, J.; and Allen, G.C. Recrystallization of uranium resulting from electron beam welding [J]. Journal of Alloys and Compounds.2008, 475(1-2):766-772.
    [26]Norman, A. F.; Brought, I. and Prangnell, P. B. High resolution EBSD analysis of the grain
    structure in an AA2024 friction stir weld [J]. Materials Science Forum.2000,331(3): 1713-1718.
    [27]Jorge-Badiola, D.; Lza-Mendia, A. and Gutierrez I. Evaluation of intragranular misorientation parameters measured by EBSD in a hot worked austenitic stainless stain [J]. Journal of Microscopy-Oxford.2007,228(3):373-383.
    [28]Dillien, S.; Seefeldt, M. and Allain, S. EBSD study of the substrate development with cold deformation of dual phase steel [J]. Materials Science and Engineering A.2010,527(4-5): 947-953.
    [29]Mingard, K.; Roebuck, B.; Bennett, E.; Gee, M.; Nordenstrom, H.; Sweetman, G. and Chan, P. Comparison of EBSD and conventional methods of grain size measurement hardmetals [J]. International Journal of Refractory Metals and Hard Materials.2009,27(2):213-223.
    [30]杨平.电子背散射衍射技术及其应用[M].2007;北京,冶金工业出版社.
    [31]HKL online report. Grain size, grain boundary and quantitative texture analysis of a Cu thin film.
    [32]Li, H.; Yin, F.; Sawaguchi, T.; Ogawa, K.; Zhao, X; and Tsuzaki, K. Texture evolution analysis of warm-rolled Fe-28Mn-6Si-5Cr shape memory alloys [J]. Materials Science and Engineering A.2008,494(1-2):217-226.
    [33]Ramirez-Rico, J.; de Arellano-Lopez, A. R.; Martinez-Fernandez, J.; Pena, J. I. and Larrea, A. Crystallographic texture in Al2O3-ZrO2 directionally solidified eutectics [J]. Journal of European Ceramic Society.2008,28(14):2681-2686.
    [34]EBSD in materials science
    [35]田朝旭.Q235碳素钢不同热变性条件下退火过程的织构分析[J].北京科技大学学报.2003,25(5):422-427.
    [36]Unhi, H. S. and Bowen, A. W. Analysis and presentation if electron backscatterd diffraction texture data-examples from heat treated Al-Li alloy sheet [J]. Material Science and Technology.1996,12(12):880-885.
    [37]Wang, S. C.; Zhu, Z. and Starink, M. J. Estimation of dislocation densities in cold rolled Al-Mg-Cu-Mn alloys by combination of yield strength data, EBSD and strength models [J]. Journal of Microscopy-Oxford.2005,217(1-2):174-178.
    [38]Sato, H. and Zaefferer, S. and Watanabe, Y. In-situ observation of butterfly-type martensite in
    Fe-30 wt.%Ni alloy during tensile test during high resolution EBSD [J]. ISIJ International. 2009,49(11):1784-1791.
    [39]Gazder, A. A.; Cao, W. Q. and Davies C. H. J. An EBSD investigation of IF steel subjected to equal channel angular extrusion [J]. Materials Science and Engineering A.2008,497(1-2): 341-352.
    [40]Villain, J.; Corradi, U. and Weippert, C. Determination of mechanical properties of differently oriented beta-tin crystals in small solder joints and small tensile specimens using EBSD and nano hardness measurements [J]. Electronic Packaging and Conference Proceedings.2007,1-2:356-359.
    [41]Wu, G. L. and Jenson, D. J. Automatic determination of recrystallization parameters based on EBSD map [J]. Materials Characterization.2008,59(6):794-800.
    [42]Wright, S. I.; Field, D. P. and Nowell, M. M. Impact of local texture on recrystallization and grain growth via in-situ EBSD [J]. Materials Science Forum.2005,495-497(1-2):1121-1130.
    [43]Engler, O. An EBSD local texture study on the nucleation of recrystallization at shear bands in the alloy Al-3Mg [J]. Scripta Materailia.2001,44(2):229-236.
    [44]Halfpeeny, A.; Prior, D. J. and Wheeler, J. Using EBSD to measure misorientation between 'parent' and 'daughter' grains:implications for recrystallization and nucleartion [J]. Materials Science Forum.2004,467-470(1-2):573-578.
    [45]Choi, S. H. and Chin, K. G. Evaluation of stored energy in cold-rolled IF steels from EBSD data and its application to recrystallization modeling [J]. Materials Science Forum.2004, 467-470(1-2):39-44.
    [46]Fukino, T. and Tsurekawa, S. In-situ SEM/EBSD observation of alpha/gamma phase transformation in Fe-Ni alloy [J]. Materials Transactions.2008,49(12):2770-2775.
    [47]Seward, G. G E.; Celotto, S. and Prior, D. J. In-situ SEM-EBSD observations of the hcp to bcc phase transformation in commercially pure Ti [J]. Acta Materialia.2004,52(4):583-587.
    [48]Kunikova, T.; Wendrock, H. and Wetzig, K. EBSD investigation of intergranular corrosion attack on low interstitial stainless steel [J]. Materials and Corrosion.2004,55(6):437-443.
    [49]Godet, S.; Ho, Y. L. and Jonas, J. J. An EBSD study of orientation relationships during the phase transformations in ultra high performance steels [J]. Materials Science Forum.2007, 539-543(1-5):4414-4619.
    [50]Kamaya, M. Influence of bulk damage on cracking initiation in low-cycle fatigue of 316 stainless steel [J]. Fatigue and Fracture of Engineering Materials and Structures.2009,33(2): 94-104.
    [51]Randle, V.; Davies, P. and Hulm, B. Grain boundary plane reorientation in copper [J]. Philosophical Magazine.1999,79(4):305-316.
    [52]Zisman, A. A.; Van, B. S.; Seefeldt, M. and Van, H. P. Gradient matrix method to image crystal curvature by processing EBSD data and trial recognition of low-angle boundaries in IF steel [J] Materials Science and Engineering A.2008,474(1-2):165-172.
    [53]Koblischka, V. A. and Koblischka, M. R. Ion damage during preparation of nanostructure in magnetite by means of ion-beam milling [J]. Superlattices Microstructure.2008,44(4-5): 468-475.
    [54]Zafarani, N.; Raabe, D.; Roters, F. and Zaefferer, S. On the origin of deformation-induced rotation patterns below nanoindenters [J]. Acta Materialia.2008,56(1):31-42.
    [55]Ohfuji, T. Suzuki, S.; Takaki, S. And Kimura, T. Low-temperature fracture of high purity iron and its relationship to the grain boundary character [J]. Material Transaction.1992,33(1): 138-142.
    [56]Field, D. P.; Weiland, H. and Kunze, K. Intergranular cracking in aluminum alloys [J]. Can Metall Quart.1995,34(2):203-210.
    [57]Miyamoto, H.; Ikeuchi, K. and Mimaki, T. The role of grain boundary plane orientation on intergranular corrosion of symmetric and asymmetric [110] tilt grain boundaries in directionally solidified pure copper [J]. Scripta Materialia.2004,50(9):1217-1421.
    [58]Randle, V. and Dingley, D. J. Measurement of boundary plane inclination in a scanning electron microscope [J]. Scripta Metallurgical.1989,23(7):1565-1570.
    [59]Randle, V. Crystallographic characterization of planes in the scanning electron microscope [J]. Materials Characterization.1995,34(1):29-34.
    [60]Randle, V. A methodology for grain boundary plane assessment by single-section traces analysis [J]. Scripta Materialia.2001,44(12):2789-2794.
    [61]谢季佳,徐娟,洪友士.利用迹线测量晶体材料中特征面取向的EBSD方法[J].电子显微学报.2008,27(4):271-274.
    [62]Bouyne, E.; Flower, H. M.; Lindley, T. C. and Pineau, A. Use of EBSD technique to examine
    microstructure and cracking in a bainitic steel [J]. Scripta Materialia.1998,39(3):295-300.
    [63]陈绍楷,李晴宇,苗壮,许飞.孪晶面和孪晶位向关系的EBSD测定[J].电子显微学报.2005,24(4):385-358.
    [64]Blochwitz, C.; Jocab, S. and Tirschler, W. Grain orientation effects on the growth of short fatigue cracks in austenitic stainless steel [J]. Materials Science and Engineering A.2008, 496(1):59-66.
    [65]Veneges, V.; Caleyo, F.; Gonzalez, J. L. and Baudin, T. EBSD study of hydrogen-induced cracking in API-5L-X46 pipeline steel [J]. Scripta Materialia.2005,52(2):147-152.
    [66]Zhai, T.; Wilkison, A. J. and Martin, J. W. A crystallographic mechanism for fatigue crack propagation through grain boundaries [J]. Acta Materialia.2000,48(20):4917-4927.
    [67]Kunikova, T.; Wendrock, H.; Wetzig, K. and Hrivnakova, D. EBSD investigation of intergranular corrosion attack on low interstitial stainless steel [J]. Materials and Corrosion. 2004,55(6):437-443.
    [68]Nohava, J.; Hausild, P. Karlik, M. and Bompard, P. Electron backscatting diffraction analysis of secondary cleavage cracks in a reactor pressure vessel steel [J]. Materials Characterization. 2003,49(2):211-217.
    [69]Jeffray, W. K. and Clyde, L. B. Crack tip deformation fields in ductile single crystal [J]. Acta Materilia.2002,50(9):2367-2380.
    [70]Wright; S. I. and Nowell, M, M. EBSD image quality mapping [J]. Microscopy and Microanlysis.2006,12(1):72-84.
    [71]Keller, R. R; Roshko, A.; Geiss, R. H., Bertness, K. A. and Quinn, T. P. EBSD Measurement of Strains in GaAs due to Oxidation of Buried AlGaAs Layers [J]. Microelectronic Engineering.2004,75 (1):96-102.
    [72]Luo, J. F.; Ji, Y.; Zhong, T. X. and Zhang, Y. Q. EBSD measurements of elastic strain fields in a GaN/sapphire structure [J]. Microelectronics Reliability.2006,46(1):178-182.
    [73]Fan, L. X.; Guo, D. L.; Ren, F. and Xiao, X. H. The use of electron backscatter diffraction to measure the elastic strain fields in a misfit dislocation-free InGaAsP/InP heterostructure [J]. Journal of Physics D.2007,16(11):7301-7305.
    [74]Troost, K. Z.; van der Sluis, P. and Gravesteijin, D. J. Microscale elastic-strain determination by backscatter Kikuchi diffraction in the scanning electron microscope [J]. Applied Physics Letter.1993,62(10):1110-1112.
    [75]Chevalier, L.; Calloch, S.; Hild, F. and Marco, Y. Digital image correlation used to analyze the multiaxial behavior of rubber-like materials [J]. European Journal of Mechanics A.2001, 20(2):169-187.
    [76]Wilkinson, A. J. Methods for determining elastic strains from electron back scatter diffraction and electron channeling patterns [J]. Materials Science and Technology.1997,13(1):79-84.
    [77]Wilkinson, A, J. Measurement of elastic strains and small lattice rotations using electron back scatter diffraction [J]. Ultramicroscopy.1996,62(4):237-247.
    [78]Wilkinson, A, J. Advances in SEM-based diffraction studies of defects and strains in semiconductors [J]. Journal of Electron Microscopy.2000,49(2):299-310.
    [79]Wilkinson, A, J,; Meaden, G. and Dingley, D. J. High-resolution elastic strain measurement fromelectron backscatter diffraction patterns:new levels of sensitivity [J]. Ultramicroscopy. 2006,106(4):307-313.
    [80]Tao, X. and Eades, A. Measurement and mapping of small changes of crystal orientation by electron backscattering diffraction [J]. Microscopy and Microanalysis.2005,11(4):341-353.
    [81]Tao, X. and Eades, A. Errors, artifacts, and improvements in EBSD processing and mapping [J]. Microscopy and Microanalysis.2005,11(1):79-87.
    [82]Villert, S.; Maurice, C.; Wyon, C. and Fortunier, R. Accuracy assessment of elastic strain measured by EBSD [J]. Journal of Microscopy.2008,233(2):290-301.
    [83]Wilkinson, A. J.; Meaden, G. and Dingley, D. J. High resolution mapping of strains and rotations uusing electron backscatter diffraction [J]. Materials Science and Technology.2006, 22(11):1271-1278.
    [84]Wilkinson, A. J.; Meaden, G and Dingley, D. J. Mapping strains at the nanoscale using electron back scatter diffraction [J]. Superlattices and Microstructures.2009,45(4):285-294.
    [85]Miyamoto, G.; Shibata, A.; Maki, T. and Furuhara, T. Precise measurement of strain accommodation in austenite matrix surrounding martensite in ferrous alloys by electron backscatter diffraction analysis [J]. Acta Materialia.2009,57(4):1120-1131.
    [86]Quested, P. N.; Henderson, P. J. and Mclean, M. Observations of deformation and fracture heterogeneities in a nickel-base superalloy using electron backscatter diffraction [J]. Acta Metallurgical.1988,36(10):2743-2752.
    [87]Wilkinson, A. J. and Dingley, D. J. The distribution of plastic deformation in a metal matrix composite caused by straining transverse to the fiber direction [J]. Acta Metallurgical.1992, 40:3557.
    [88]Adams, B. L.; Wright, S. I. and Kunze, K. Orientation imaging; the emergence of a new microscopy [J]. Metallurgical Transaction A.1993,24(4):819-831.
    [89]Tuker, A. M.; Wilkinson, A. J.; Henderson, M. B.; Ubhi, H. S. and Martin, J. W. Measurement of fatigue crack plastic zones in fine-grained materials using electron backscatter diffraction [J]. Materials Science and Technology.2000,16(4):427-430.
    [90]Orsund, R.; Hjelen, J. and Nes, E. Local lattice curvature and deformation heterogeneities in heavily deformed aluminum [J]. Scripta Metallurgical.1989,23(7):1193-1197.
    [91]Driver, J. H.; Juun Jensen, D. and Hansen, N. Large strain deformation structures in Al single crystals with rolling texture orientations [J]. Acta Metallurgical.1994,42:3105.
    [92]Wert, J. A.; Liu, Q. and Hansen, N. Dislocation boundary formation in a cold-rolled cube-oriented Al single crystal [J] Acra Materialia.1997,45(6):2565-2576.
    [93]Randle, V.; Hansen, N. and Juun Jensen, D. The deformation behavior of grain boundary regions in polycrystalline aluminum [J]. Jensen Philosophical Magazine.1996,73A(2): 265-282.
    [94]Prior, D. J. Problems in determining the misorientation axes for small angular misorientation, using electron backscatter diffraction in the SEM [J]. Journal of Microscopy.1999,195(3): 217-225.
    [95]Sun, S.; Adams, B.L. and King, W. E. Observations of lattice curvature near the interface of a deformed aluminium bicrystal [J]. Philosophical Magazine,2000,80(1):9-25.
    [96]Dasher, B. S.; Adams, B. L. and Rollett, A. D. Viewpoint:Experimental recovery of geometrically necessary dislocation density in polycrystals [J]. Scripta Materialia.2003, 48(2):141-145.
    [97]Field, D.P.; Trivedi, P. B., Wright, S. I. and Kumar, M. Analysis of local orientation gradients in deformed single crystals [J]. Ultramicroscopy.2005,103(1),33-39.
    [98]Humphreys, F. J.; Bate, P. S. and Hurley, P. J. Orientation averaging of electron backscattered diffraction data [J]. Journal of Microscopy.2000,201(1):50-58.
    [99]Brough, I.; Bate, P. S. and Humphreys, F. J. Optimising the angular resolution of EBSD [J].
    Materials Science and Technology.2006,22(11):1279-1286.
    [100]Kamaya, M.; Wilkinson, A. J. and Titchmarsh, J. M. Measurement of plastic strain of polycrystalline material by electron backscatter diffraction [J]. Nuclear Engineering and Design.2005,235(6):713-725.
    [101]Kamaya, M.; Wilkinson, A. J. and Titchmarsh, J. M. Quantification of plastic strain of stainless steel and nickel alloy by electron backscatter diffraction [J]. Acta Materialia.2006, 54(2):539-548.
    [102]Kamaya, M. Measurement of local plastic strain distribution of stainless steel by electron backscatter diffraction [J]. Materials Characterization.2009,60(2):125-132.
    [103]Wright, S. I. A review of automated orientation imaging microscopy (OIM) [J]. Journal of Computer-Assisted Microscopy.1993,5(33):207-221.
    [104]Brewer, L. N.; Othon, M. A.; Young, L. M. and Angeliu, T. M. Misorientation mapping for visualization of plastic deformation via electron back-scattered diffraction [J]. Microscopy and Microanalysis.2006,12(1):85-91.
    [105]Othon, M. A. and Morra, M. M. EBSD characterization of residual plastic strain across alloy 182 weld joints [J]. Microsc Microanal.2005,11(2):522-523.
    [106]Hill, R.; Storkers, R and Zdunek, A. B.; A theoretical study of the Brinell hardness test [J]. Proceedings of the royal society of London.1989,423:301-330.
    [107]周亮,姚学英.纳米压痕硬度计测试方法的研究进展[J].综述与热点.2006,26(6):6-16.
    [108]Li, X,; Diao, D. and Bhushan, B. Fracture mechanisms of thin amorphous carbon films in nanoindentation [J]. Acta Mater.1997,45(11):4453-4461.
    [109]Pharr, G.M. Measurement of mechanical properties by ultra-low load indentation [J]. Materials science and engineering A.1998,253:151-159.
    [110]Li, X. D. and Bhushan, B. A review of nanoindentation continuous stiffness measurement technique and its application [J]. Materials Characterization.2002,48(1):11-36.
    [111]谢存毅.纳米压痕技术在材料科学中的应用[J].实验技术.2001,30(7):432-435.
    [112]Bhushan, B.; Kulkarmi, A. V., Bonin, W. and Wvrobek, J. T. Nanoindentation and picoindentation measurements using a capacitive tranducer system in atomic force microscopy [J]. Philosophical Magazine A.1996,74(6):1117-1128.
    [113]Olive, W. C. and Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research.1992,7(6):1564-1583.
    [114]Dierner, M. F. and Nix, W. D. A method for interpreting the data from depth-sensing indentation instruments [J]. Journal of Materials Reaseach.1986,1(4):601-609.
    [115]Li, X. D. and Bhushan, B. Development of continuous stiffness measurement technique for composite magnetic tapes [J]. Scripta Materialia.2000,42(10):929-935.
    [116]Randall, N. X.; Holknder, E. J. and Julia, S. C. Characterization of integrated circuit aluminium bounding pads by nanoindentation and scanning force microscopy [J]. Surface and Coating Technology.1999,99(1-2):111-117.
    [117]Volinsky, A. A. and Gerberich, W. W. Nanaindentation techniques for assessing mechanical reliability at the nanoscale [J]. Microelectronic Engineering.2003,69(2-4):519-527.
    [118]Beegan, D.; Chowdhury, S. and Laugier, M. T. A nanoindentation study of copper films on oxidized silicon substrate [J]. Surface and Coating Technology.2003,176(1):124-130.
    [119]Pahlovy, S. A.; Momota, S. And Yao, Y. X. Nano hardness measurement of single crystal silica by an easy new technique [J]. Proc of S PI E.2005,6040:60401J
    [120]Sanchez, J. M.; Elmansy, S. and Sun, B. Cross-sectional nanoindentation a new technique for thin film interfacial adhesion characterization [J]. Acta Materialia.1999,47(17): 4405-4413.
    [121]Huang, H. Winchester, K. and Liu, Y. Determination of mechanical properties of PECVD silicon nitride thin films for tunable MEMS optical filters [J]. Journal Micromechanics and Microengineering.2005,15(3):608-614.
    [122]Bruno, P.; Cicalab G and Losaccoc, A. M. Mechanical properties of PECVD hydrogenated amorphous carbon coating via nanoindentation and nanoscratching techniques [J]. Surface and Coating Technology.2004,180-181:259-264.
    [123]Charitidis, C. A., and Logothetidis S. Effect of normal load on nanotribological properties of sputtered carbon nitride films [J]. Diamond and Related Materials.2005,14(1):98-108.
    [124]Han, S. M.; Saha, R. and Nix, W. D. Determining hardness of thin films in elastically mismatched film on substrate sysytems using nanoindentation [J]. Acta Materialia.2006, 54(6):1571-1581.
    [125]Fang, T.H.; Chang, W.J. and Tsai, S. L. Nanomechanical characterization of polymer using atomic force microscopy and nanoindentation [J]. Microelectronic Journal.2005,36(1): 55-59.
    [126]Li, X. and Bhushan, B. Continuous stiffness measurements of layered materials used in magnetic storage devices [J]. Journal of Information Storage Process System.2001, 3(2):131-142.
    [127]Bhushan, B. Tribology and mechanics of magnetic storage devices [M].1996, New York, Springer-Verlag.
    [128]Qi, H. J.; Teo, K. B. and Lau, K. K. B. Determination of mechanical properties of carbon nanotubes and vertically aligned acrbon nanotube forests using nanoindentation [J]. Journal of Mechanics Physics Solids.2003,51(11-12):2213-2237.
    [129]Li, X. Nardi, P. and Baek, C. W. Direct nanomechanical nachining of gold nanowires using a nanoindenter and an atomic force microscope [J]. Journal of Micromechanics and Microengineering.2005,15(3):551-556.
    [130]Guillaume, C. and Mike, H. Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation [J]. Biophysical Journal.2002,82(7):2970-2981.
    [131]Yan, W.; Siqun, W.; Dingguo, Z. and Cheng, X. Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation [J]. Bioresource Technology.2010,101(8): 2867-2871.
    [132]Furnemont, Q.; Kempf, M.; Jacques, P.J. and Goken M. On the measurement of the nano hardness of the constitutive phases of TRIP-assisted multiphase steels [J].Materials Seienee and Engineering A.2002,328(1):26-32.
    [133]Yeol, C.; Wung, C. and Dongil, K. Analysis of mechanical property distributionin multiphase ultra-fme-grained steels by nanoindeniation [J]. Scripta Materialia.2001,45(12): 1401-1406.
    [134]Direct observation and analyses of dislocation substructures in the a phase of an α/β Ti-alloy formed by nanoindeniation [J]. Acta Meterial.2005,53(19):5101-5115.
    [135]Ken, K.; Diago, S. and Junji, M. Nanoindentation tests for TiO2, MgO and YSZ single crystal [J]. Journal of Alloys and Compounds.2005,386(1-2):261-264.
    [136]Zhang, T. Y.; Chen, L. Q. and Fu, R. Measurement of residual stress in thin films deposited
    on silicon wafer by indentation fracture [J]. Acta Materialia,1999,47(14):3869-3878.
    [137]Herbert, E. G.; Olive, W. C. and Boer, M. P. Measuring elastic modulus and residual stress of freestanding thin films using nanoindentation technique [J]. Journal of Materials Research. 2009,13(4):317-322.
    [138]Jiang, J. Estimation of residual stress by instrumented indentation [J]. Journal of Ceramic Processing Research.2009,10(3):391-400.
    [139]Tsui, T. Y.; Olive, W. C. and Pharr, G. M. Influences of stress on the measurement of mechanical properties using nanoindentation:using nanoindentation:Part Ⅰ. experimental studies in an aluminum alloy [J]. Journal of Materials Research.1996,11(3):752-759.
    [140]Bolshakov, A.; Olive, W. C. and Pharr, G. M. Influences of stress on the measurement of mechanical properties using nanoindentation:using nanoindentation:Part Ⅱ. finite element simulations [J]. Journal of Materials Research.1996,11(3):760-768.
    [141]Suresh, S. and Giannakopoulos, A. E. A new method for estimating residual stresses by instrumented sharp indentation [J]. Acta Materialia.1998,46(16):5755-5765.
    [142]Carlsson, S. and Larsson, P. L. On the determination of residual stress and strain fields by sharp indentation testing. Part 1:theoretical and numerical analysis [J]. Acta Materialia.2001, 49(12):2179-2191.
    [143]Carlsson, S. and Larsson, P. L. On the determination of residual stress and strain fields by sharp indentation testing. Part 2:experimental investigation [J]. Acta Materialia.2001,49(12): 2193-2203.
    [144]Lee, Y. H. and Kwon, D. Measurement of residual-stress effect by nanoindentation on elastically strained (100) W [J]. Scripta Materialia.2003,49(5):459-465.
    [145]Lee, Y. H. and Kwon, D. Estimation of biaxial surface stress by instrumented indentation with sharp indenters [J]. Acta Materialia.2004,52(6):1555-1563.
    [146]Lee, Y. H.. Ji, W. J. and Kwon, D. Stress measurement of SS400 steel beam using the continuous indentation technique [J]. Experimental Mechanics.2004,44(1):55-61.
    [147]Cao, Y.P.; Xue, Z. Y. and Chen, X. Correlation between the flow stress and the normal indentation hardness of soft metal [J]. Scripta Materialia.2008,59(5):518-521.
    [148]Ma, D.J.; Ong, C. W. and Lu, J. Methodology for the evaluation of yield strength and hardening behavior of metallic materials by indentation with spherical tip [J]. Journal of
    Applied Physics.2003,94(1):288-294.
    [149]Li, X. and Bhushan, B. Continuous stiffness measurement and creep behavior of composite magnetic tapes [J]. Thin Solid Films.2000,401(6):377-378.
    [150]Li, X. and Bhushan, B. Dynamic mechanical characterization of magnetic tapes using nanoindentation techniques [J]. IEEE Transaction Magnization.2001,37(10):1616-1619.
    [151]Shen, B. L.; Itoi, T. and Yamasaki, T. Indentation creep of nanocrystalline Cu-TiC alloys prepared by mechanical alloying [J]. Scripta Materialia.2000,42(9):893-898.
    [152]Cseh, G.; Bar, J. and Gualadt, H. J. Indentation creep in a short fiber-reinforced metal matrix composite [J]. Materials Science and Engineering A.1999,272(1):145-151.
    [153]Xin, M. and Fusahito, Y. Rate-dependent indentation hardness of a power-law creep solder alloy [J]. Applied Physics Letter.2003,82(2):188-190.
    [154]Li, X. and Bhushan, B. Nanofatigue srudied of ultra-thin hard carbon overcoats used in magnetic storage devices [J]. Journal of Applied Physics. IEEE,2002,91(10):8334-8336.
    [155]Mukhopadhyay, A. K. Comparative study of indentation fatigue in structural ceramics [J]. Journal of Materials Science Letter.1999,18(4):333-337.
    [156]Bhushan, B.; Gupta, B. K. and Azarian, M. H. Nanoindentation, microscratch, friction and studies of coatings for contact recording applications [J]. Wear.1995,181-183(7):743-758.
    [157]Bushan, B. and Li, X. Micromechnical and tribological characterization of doped single-crystal silicon and polysillicon films for microelectrmechanical systems devices [J]. Journal of Materials Research.1997,12(1):54-63.
    [158]Carvalho, N. J. M. and DeHosson, J. T.M. Deformation mechanism TiN/(Ti, AI)N multilayers under depth-sensing indentation [J]. Acta Materialia.2006,54(7):1857-1862.
    [159]Zheng, X. J.; Zhou, Y. C.; Liu, J. M. and Li, A. D. Use of nanomechanical fracture-testing for detennining the interfaeial adhesion of PZT ferroeleetric thin films [J]. Surface and Coatings Technology.2003,176(1):67-74.
    [160]Erinc, M.; Schreurs, P. J. G and Zhang, G Q. Microstructural damage analysis of SnAgCu solder joints and an assessment on indentation procedures [J]. Journal of Materials Science. 2005,16(10):693-700.
    [161]Yan, J. Takahashi, H. and Tamaki, J. Transmission electron microscopic observation of nanoindentations made on ductile-machined silicon wafers [J]. Applied Physics Letter.2005,
    87:211901.
    [162]Graca, S.; Vilar, R. and Colaco, R. The role of indentation size effect on the abrasive wear behavior of ductile metallic materials [J]. Wear.2010,268(7-8):931-938.
    [163]Sadrabadi, P.; Durst, K. and Goken, M. Study on the indentation size effect in CaF2: dislocation structure and hardness [J]. Acta Materialia.2009,57(4):1281-1298.
    [164]Shim, S.; Bei, H. and Geroge, E. P. A different type of indentation size effect [J]. Scripta Materialia.2008,59(10):1095-1098.
    [165]Rashid, K.; Abu, A. and Geroge, Z. Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro-and nano-indentation experimentS [J]. Plasticity.2004,20(10):1139-1182.
    [166]Elmustafa, A. A. and Stone, D. S. Nanoindentation and the indentation size effect:kinetics of deformation and strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids.2003,51(2):357-381.
    [167]潘春旭,材料物理与实验化学教程[M].2010;长沙,中南大学出版社.
    [168]Russ, J. C.; Bright, D. S. and Hare, T. M. Application of the hough transformation too electron diffraction patterns [J]. Journal of Computer-assisted Microscopy.1989,1(1):3-37.
    [169]Dingley, D. J. and Wright, S. I. Determination of crystal phase from an electron backscatter diffraction pattern [J]. Journal of Applied Crystallography.2009,42(2):234-241.
    [170]Paul, V. C. Method and means for recognizing complex patterns.1964 3,069,654, US Patent.
    [171]Hertz, H. Unber die beruhrung fester elastischer korper [J]. Journal of Reine und Angewandte Mathematik.1882,92:156-171.
    [172]Sneddon, I. N.The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile [J]. International Journal of Engineering Science. 1965,3(1):47-57.
    [173]Tabor, D. The hardness of metals [M].1952; Oxford, Clarendon Press.
    [174]Lucignano, C. and Quadrini, F. Instrumented flat indentation on polyester nanocomposite coatings [J]. Internation Journal of Surface Science and Engineering.2008,2(5):409-418.
    [175]Pethica, J. B. and Oliver, W. C. Mechanical properties of nanometer volumes of material: use of the elastic response of small area indentations [J]. Materials Research Society.1989,
    13-23.
    [176]Sneddon, I.N. The relationship between load and penetration in the axisymmetric Bousinesq problem for a puneh of arbitrary profile [J]. Journal of Engineering Science.1965,3(1): 47-53.
    [177]郭振丹,纳米压入技术在金属材料微区力学性能表征中的应用研究[D].2008,上海,华东师范大学,硕士论文.
    [178]王春亮,纳米压痕实验方法研究[D].2007;上海,上海材料研究所,硕士论文.
    [179]Chen, L. Q.; Zhao, M. H. and Zhang, T. Y. The teating method of mechanical properties of thin films [J]. Journal of Mechanical Strength.2001,23(4):13-429.
    [180]葛列里克.金属和合金的再结晶[M].1985;北京,机械工业出版社.
    [181]罗伯奇.腐蚀工程手册[M].2003;北京,中国石化出版社.
    [182]Nelson, T. W.; Lippold, J. C.; and Mills, M. J. Nature and evolution of the fusion boundary in ferritic-austenitic dissimilar weld metals [J]. Welding Journal.1999,78(10):329s-337s.
    [183]Fulcuda, H. and Chon, T. W. A probabilistic theory of strength of short-fiber composites with variable fiber length and orientation [J]. Material Science.1982,17:1003-1001.
    [184]Wu, X.; Cooper, C. and Bowen, P. In-situ observations of titanium metal-matrix composites under transverse tensile loading [J]. Metallurgical And Materials Transactions A.2001,32 (7): 1851-1860.
    [185]Donald A. M. The use of environmental scanning electron microscopy for imaging wet and insulating materials [J]. Nature Materials.2003,2(8):511-516.
    [186]Zou, Y.; Pan, C.; Fu, F. and Chen, C. In situ observations for corrosion process at fusion boundary of Cr5Mo dissimilar steel welded joints in H2S containing solution [J]. Acta Metallurgica Sinica.2005,41(4):421-426.
    [187]黄文长,潘春旭付强.珠光体-奥氏体异种钢焊接接头中碳迁移的“原位”观察”[J].机械工程材料.2006,30(4):17-19.
    [188]Mills, W. J. Fracture toughness of type 304 and 316 stainless steel and their welds [J]. International Materials Reviews.1997,42(2):45-84.
    [189]毕洪运.晶界工程抑制SUS304不锈钢晶界贫铬机制[J].钢铁.2005,40(6):68-71.
    [190]张文钺.金属熔焊原理及工艺[M].1979;北京,机械工业出版社.
    [191]Sengapta, A. and Balogh, M. Transmission electron microscopy study of stress-ruptured
    aged 304h stainless steel after prolonged exposure in service [J]. Materials Engineering and Performance.1996,5(6):691-694.
    [192]Babu, S. S. and David, S.A. Phase stability and atom probe field ion microscopy of type 308CRE stainless steel weld metal [J]. Metallurgical and Materials Transactions A.1996, 27(3):763-774.
    [193]李晓刚.304奥氏体钢的高温高压氢腐蚀[J].金属学报.1993,29(4):B169-B172.
    [194]Alvi, M. H. and Rollett, A. D. Partitioning an OIM scan in deformed and recrystallized regions using intragranular orientation variation [J]. Materials Science and Engineering A. 2000.
    [195]Azeem, M. A.; Tewari, A. and Ramamurty, U. Effect of recrystallization and grain growth on the mechanical properties of an extruded AZ21 Mg alloy [J]. Materials Science and Engineering A.2010,527(4-5):898-903.
    [196]赵敬世.位错理论基础[M].1989;北京.国防工业出版社.
    [197]潘金生.材料科学基础[M].1998;北京.清华大学出版社.
    [198]Nakayama, E.; Fukumoto, M. and Miyahara, M. Evaluation of local fatigue strength in spot weld by small specimen [J]. Fatigue and Fracture of Engineering Materials and Structures. 2010,33(5):267-275.
    [199]Marashi, P; Pouranvari, M. and Sanaee, S. M. H. Relationship between fatigue behavior and weld fusion zone attributes of austenitic stainless steel resistance spot welds [J]. Materials Science and Technology.2008,24(12):1506-1512.
    [200]周尧和,胡壮麒,介万奇.凝固技术[M].1998;北京,机械工业出版社.
    [201]Savage, W. F.; Lundin, C. D. and Aronson, A. H. Weld metal solidification mechanism [J]. Welding Journal.1965,44(4):175-181.
    [202]Savage, W. F. and Aronson, A. H. Preferred orientation in the weld fusion zone [J]. Welding Journal.1966,45(2):85-89.
    [203]Kaneko, Y.; Yamane, S. and Oshima, K. Numerical simulation of MIG weld pool in switchback welding [J]. Welding in the world.2009,53(11-12):333-341.
    [204]Xie, L.; Ziegmann G. and Jiang, B. Y. Numerical simulation method for weld line development in micro injection molding process [J]. Journal of Central South University of Technology.2009,16(5):774-780.
    [205]埃里希.福克哈德.不锈钢焊接冶金[M].2004;北京,化学工业出版社.
    [206]Pragnell, W. M. and Evans, H. E. Chromium depletion at 2-dimensional features during the selective oxidation of a 20Cr-25Ni austenitic steel [J]. Oxidation of Metal.2006,66(2): 209-230.
    [207]Norling, R. and Nylund, A. The influence of temperature on oxide-scale formation during erosion-corrosio [J]. Oxidation of Metal.2005,63(1):87-111.
    [208]Torkar, M.; Godec, M. and Lamut, M. Origin of flakes on stainless steel heater [J]. Engineering Failure Analysis.2007,14(7):1218-1223.
    [209]Perez, F. J.; Pedraza, F. and Sanz, C. Effect of thermal cycling on the high temperature oxidation resistance of austenitic AISI 309S stainless steel [J]. Materials and Corrosion.2002, 53(2):231-238.
    [210]Li, T. F. High-temperature Oxidation and Heat Corrosion of Metal [M].2003, Beijing, Chemical Industry Press.
    [211]Bauer, R.; Baccalaro, M. and Jeurgens, L. P. H. Oxidation behavior of Fe-25Cr-20Ni-2.8Si during isothermal oxidation at 1,286 K; life-time prediction [J]. Oxidation of Metal.2008, 69(2):265-285.
    [212]Lobb, R. C. and Evans, H, E. An evaluation of the effect of surface chromium concentration on the oxidation of a stainless steel [J]. Corrosion Science.1983,23(1):55-73.
    [213]Evans, H. E.; Donaldson, A. T. and Gilmour, T. C. Mechanisms of breakaway oxidation and application to a chromia-forming steel [J]. Oxidation of Metal.1999,52(3):379-402.
    [214]Tholence, F. and Norell, M. High temperature corrosion of cast alloys in exhaust environments [J]. Oxidation of Metal.2008,69(1):37-62.
    [215]Feng, R. H. Pan, C. X. and Yang, S. B. Failure characteristic and mechanism of the austenitic stainless steel ROF internal cover [J]. Journal of Wuhan Transportation University. 2000,24:622-626.
    [216]Beechem, T.; Christensen, A.; Green, D. S. and Graham, S. Assessment of stress contribution in GaN high electron mobility transistors of differing substrate using Raman spectroscopy [J]. Journal of Applied Physics.2009,106(11):114509.
    [217]Tanaka, M.; Kitazawa, R.; Tomimatsu,T.; Liu,Y. F. and Kagawa, Y. Residual stress measurement of an EB-PVD Y2O3-ZrO2 thermal barrier coating by micro-Raman
    spectroscopy [J]. Surface and Coating Technology.2009,204(9):657-660.
    [218]Kamaya, M.; Wilkinson, A. J. and Titchmarsh, J. M. Quantification of plastic strain of stainless steel and nickel alloy by electron backscattered diffraction [J]. Acta Materilia.2006, 54(2):539-548.
    [219]Villert, S.; Maurice, C.; Wyon, C. and Fortunier, R. Accuracy assessment of elastic strain measurement by EBSD [J]. Journal of Microscope.2009,233(2):290-301.
    [220]Bucheheit, T. E. and Tandon, R. Measuring residual stress in glasses and ceramics using instrumented indentation [J]. Journal of Materials Research.2007,22(10):2875-2887.
    [221]Huber, N. and Heerens, J. On the effect of a general residual stress state on indentation and hardness testing [J]. Acta Materialia.2008,56(20):6205-6213.
    [222]Buchheit, T. E.; and Tandon, R. Measuring residual stresses in glasses and ceramics using instrument indentation [J]. Journal of Materials Research.2007,22(10):2875-2887.
    [223]Laha, K.; Chandravathi, K. S.; Bhanu, K. and Mannan, S. L. An assessment of creep deformation and fracture behavior of 2.25Cr-1 Mo similar and dissimilar weld joints [J]. Metallurgical and Materials Transaction A.2001,32(1):115-124.
    [224]Faber, G. and Gooch, T. G. Welded joints between stainless and low alloy steels:current position [J]. Welding in the world.1982,20(1):87-98.
    [225]Iring, B. Dissimilar metal welding paves the way to new ventures [J]. Welding Journal. 1992,71(1):27-33.
    [226]Schimmoeler, H. A. and Ruge, J. L. Estimation of residual stressese in reactor pressure vessel steel specimens clad by stainless steel strip electrode [J]. Residual Stresses in Welded Construction and Their Effects.1977,251-258.
    [227]Sarafianos, N. Residual stress measurements by X-ray diffraction in the ferritic-austenitic interface weldment [J]. Metallugical and Materials Transaction A.1993,24(10):2095-2105.
    [228]Pan, C. X.; Li, A. and Hoimquist, M. TEM microstructures of stainless steel strip overlay joints [J]. Materials of Science and Technology.1998,14(2):201-205.
    [229]Francis, J. A.; Bhadeshia, H. K. and Withers, P. J. Welding residual stresses in ferritic power plant steels [J]. Materials of Science and Technology.2007,23(10):1009-1110.
    [230]Leggatt, R. H. Residual stresses in welded structures [J]. International Journal of Pressure Vessels and Piping 2008,85(2):144-151.
    [231]Smithells, C. J. Metals reference book [M].1976; London and Boston, Fulmer Research Institute Limited.
    [232]Sedek, P.; Brozda, J.; Wang, L. and Withers, P. J. Residual stress relief in MAG welded joints of dissimilar steels [J]. International Journal of Pressure Vessels and Piping.2003, 80(7):705-713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700