钛酸钡基陶瓷的制备、微结构及介电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛酸钡具有优良的压电、热释电和铁电性,可制作多层陶瓷电容器、铁电随机存储器、热释电探测器、倍频器、介质移相器、压控滤波器等众多的功能元器件。为了进一步提高其介电非线性和减小低频下的介质损耗,通过A位掺Sr2+形成钛酸锶钡(Ba_(1-x)Sr_xTiO_3,简称BST)材料。但钛酸锶钡材料当外加直流电场超过几百kV/cm后,其漏电流密度以数量级上升,并在2MV/cm左右发生击穿。人们通过改进制备工艺、掺杂等多种措施仍未能解决这一重要问题,因而不得不考虑用其它材料代替钛酸锶钡。锆钛酸钡(BaZr_xTi_(1-x)O_3,简称BZT)漏电流低、耐电强度高,是一种可能代替钛酸锶钡的材料,而锡钛酸钡(BaSn_xTi_(1-x)O_3,简称BTS)作为一种典型的钛酸钡基弛豫铁电材料也受到大家的重视,对这些钛酸钡基材料进行掺杂改性是需要进一步研究的重要问题。
     本文系统研究了掺杂种类及浓度与钛酸钡基陶瓷微结构、介电性能和铁电性能的关系,对掺杂机理进行了探讨,并采用第一性原理讨论了钛酸钡基材料的电子结构。取得的成果如下:
     ①锆钛酸钡陶瓷的晶粒尺寸直接影响其电畴类型,较大晶粒尺寸的BZT陶瓷中没有90°畴存在;在BZT陶瓷中存在鱼骨状、薄片状和水波纹等形状的电畴;随晶粒尺寸增大,BZT陶瓷的矫顽场强逐渐减小,剩余极化强度逐渐增大。
     ②掺杂锆钛酸钡陶瓷中,Mn~(4+)、Al3+、Hf~(4+)、Ce~(4+)、Ni~(3+)(Ni_2O_3量<1 at.%)均进入BZT陶瓷的晶胞取代B位的Ti~(4+)和Zr~(4+),但Ni_2O_3量≥2 at.%时,出现第二相Ni_2O_3。MnO_2、Al_2O_3、CeO_2、Ni_2O_3和HfO_2均具有细晶作用。
     MnO_2、CeO_2、HfO_2、Ni_2O_3可降低BZT陶瓷的介质损耗,但Al_2O_3使其介质损耗升高。BZT陶瓷相变弥散程度随MnO_2、Al_2O_3量增加而减弱,随Ni_2O_3、HfO_2量增加先减弱后增强,掺MnO_2、Al_2O_3、Ni_2O_3、HfO_2时无频率色散现象;掺1 at.%CeO_2的BZT陶瓷介电峰宽化且存在明显频率色散。BZT陶瓷剩余极化强度和矫顽场强随MnO_2、CeO_2量增加而减小;随Ni_2O_3量增加,BZT陶瓷剩余极化强度逐渐减小,矫顽场强先减小后增大;BZT陶瓷矫顽场强随Al_2O_3量增加而增大;随HfO_2量增加,BZT陶瓷的剩余极化强度先增加后减小,矫顽场强先减小后增大。综合考虑,B位可变价的MnO_2的引入可使锆钛酸钡陶瓷在室温下具有较大的介电常数和较低的介质损耗,是一种较为理想的掺杂改性物。
     ③当x为0~0.30时,BaSn_xTi_(1-x)O_3陶瓷随锡量(x)增加由四方相向立方相过渡。Mn~(4+)、Zn~(2+)取代锡钛酸钡B位的Ti~(4+)和Sn~(4+)。Sn~(4+)、Mn~(4+)和Zn~(2+)均具有细晶作用。BaSn_xTi_(1-x)O_3陶瓷室温介质损耗低于钛酸钡陶瓷。BaSn_xTi_(1-x)O_3陶瓷的相变弥散程度随锡量增加逐渐增强。BaTi0.9Sn0.1O3陶瓷相变弥散程度随MnO_2量增加逐渐减弱,而ZnO可使其相变弥散程度增强。BaSn_xTi_(1-x)O_3陶瓷剩余极化强度随锡量(x)增加而减小;当x为0.10~0.20,锡钛酸钡陶瓷矫顽场强随锡量增加而增大。
     ④掺杂钛酸钡陶瓷中,V~(5+)和La~(3+)分别取代钛酸钡B位的Ti~(4+)和A位的Ba2+;MgO量<1.5at.%时, Mg~(2+)取代B位的Ti~(4+),当MgO量≥1.5 at.%时,出现第二相MgO。MgO和La_2O_3具有细晶作用,但钛酸钡陶瓷的晶粒尺寸随V_2O_5量增加而增大。
     V_2O_5可降低钛酸钡陶瓷介质损耗,而MgO使其介质损耗增加;La_2O_3量达一定程度可使钛酸钡陶瓷介质损耗降低。钛酸钡陶瓷中掺MgO和La_2O_3会使介电峰有一定程度宽化。随V_2O_5量增加,钛酸钡陶瓷剩余极化强度先增加到最大值随后减小;掺V_2O_5后,钛酸钡陶瓷矫顽场强明显降低。综合考虑,B位可变价的V_2O_5的引入可使钛酸钡陶瓷具有较低的介质损耗和较大的剩余极化强度,是一种较为理想的掺杂改性物。
     ⑤电子结构的第一性原理计算表明:钛酸钡中Ba-O、Ti-O分别以离子键、共价键形式结合,其相变是Ti原子相对位置发生改变引起的。Ti和O的杂化主要是由O 2p态和Ti 3d态所提供。铁电相钛酸钡的Ti-O杂化程度低于顺电相钛酸钡。
     掺锆钛酸钡禁带宽度随锆量增加而增大。掺Zr~(4+)后,总态密度和分态密度变化明显,这是Zr-4d电子与O-2p电子间发生杂化所致。掺铪钛酸钡禁带宽度随铪量增加先增大后减小,其能带结构简并度随铪量增加而降低,其铁电性强于纯钛酸钡。掺Hf后,O-Ti键布居数增加,共价键结合增强,而O-Ba键布居数绝对值减小,离子键结合减弱。O-Ti、O-Hf之间存在强烈杂化,这是掺铪钛酸钡铁电性形成的原因。
Barium titanate is one of the important ferroelectric materials with perovskite structure, which has been used as multi-layer ceramic capacitor (MLCC), ferroelectric random access memories (FRAM), pyroelectric detector, frequency multiplier, dielectric phase shifter and voltage-controlled filter, and so forth because of its excellent piezoelectric, pyroelectric and ferroelectric properties. There are still some disadvantages in barium titanate materials. In order to further improve the dielectric nonlinearity and reduce dielectric loss at the low frequency, Sr2 + are doped into barium titanate to substitute for Ba2+ on A-site to form barium strontium titanate (Ba_(1-x)Sr_xTiO_3, short for BST) material. However, when the applied electric field exceeds a few hundred kV/cm, the leakage current density of barium strontium titanate increases by an order of magnitude, and the breakdown occurs at about the 2MV/cm. The important problem has not yet been solved by improving the preparation process and doping. Therefore, other materials have been developed to replace barium strontium titanate. Barium zirconate titanate (BaZr_xTi_(1-x)O_3, short for BZT) is a possible good substitute because of low leakage current density and high breakdown strength. Barium stannate titanate (BaSn_xTi_(1-x)O_3, short for BTS) is a typical barium titanate-based relaxor ferroelectrics, which have been attracted much attention. Further research on doping and modification of these barium titanate-based materials is needed.
     In this paper, the influence of the doping type and concentration on microstructures, dielectric and ferroelectric properties of barium titanate-based ceramics has been investigated systematically and the doping mechanism has been discussed. The electronic structure of barium titanate-based materials has been studied by first-principle calculation. The results are as follows:
     ①Grain size of barium zirconate titanate ceramics can affect the type of its domain structure. There is no 90°domain in the BZT ceramics with the larger grain size. Domains with herribone, lamellar and water-mark characters are observed in BZT ceramics. As the grain size increases, the coercive field of BZT ceramics decreases, while the remnant polarization increases.
     ②Mn~(4+), Al3+, Hf~(4+), Ce~(4+) and Ni~(3+) (Ni_2O_3 content<1 at.%) enter into the cell of BZT ceramics to substitute for Ti~(4+) and Zr~(4+) on the B sites. When content of Ni_2O_3 is more than 2 at.%, there is the second phase Ni_2O_3. MnO_2, Al_2O_3, CeO_2, Ni_2O_3 and HfO_2 have grain refinement.
     MnO_2, CeO_2, HfO_2 and Ni_2O_3 can reduce dielectric loss, but Al_2O_3 increases the dielectric loss. The diffuseness of phase transition of BZT ceramics weakens with the increasing of MnO_2 and Al_2O_3 content, and the diffuseness of phase transition initially increases and then decreases with the increasing of Ni_2O_3 and HfO_2 content. There is no obvious frequency dispersion phenomenon in barium zirconnate titante doped with MnO_2, Al_2O_3, Ni_2O_3 and HfO_2. The dielectric peak of BZT ceramics doped with 1 at.% CeO_2 broadens and there is apparent frequency dispersion phenomenon. The remnant polarization and coercive field of BZT ceramics decrease with increasing of MnO_2 and CeO_2 content. As Ni_2O_3 content increases, the remnant polarization decreases and the coercive field initially decreases and then increases. The coercive field of Al-doped BZT ceramics increases with the increase of Al_2O_3 content. As HfO_2 content increases, the remnant polarization initially increases and then decreases, while the coercive field initially decreases and then increases. In conclusion, variable-valent MnO_2 on B sites is an ideal modifier, because that it can lead to the larger dielectric constant and lower dielectric loss of barium zirconate titanate ceramics at room temperature.
     ③When x is 0~0.30, BaSn_xTi_(1-x)O_3 ceramics transit from the tetragonal phase to cubic phase as x increases. Mn~(4+) and Zn~(2+) enter into the cell to substitute for Ti~(4+) and Sn~(4+) on B sites. Sn~(4+), Mn~(4+) and Zn~(2+) have grain refinement. The dielectric loss of BaSn_xTi_(1-x)O_3 ceramics at room temperature is lower than that of barium titanate ceramics. The diffuseness of phase transition of BaSn_xTi_(1-x)O_3 ceramics enhances gradually with the increase of tin content. The diffuseness of phase transition of BaTi0.9Sn0.1O3 ceramics weakens with the increasing of MnO_2 content and addition of ZnO can enhance the diffuseness of phase transition. The remnant polarization of BaSn_xTi_(1-x)O_3 ceramics decreases with the increasing of tin content. When x is 0.10~0.20, the coercive field increases with the increase of tin content.
     ④In doped barium titanate ceramics, V~(5+) and La~(3+) enter into the cell to substitute for Ti~(4+) on B sites and Ba2+ on sites, respectively. When MgO content is less than 1.5 at.%, Mg~(2+) enters into the cell to replace Ti~(4+) on B sites, and there is second phase (MgO) when MgO content is above 1.5 at.%. MgO and La_2O_3 have grain refinement. Grain size of barium titanate ceramics increases with the increasing of V_2O_5 content.
     V_2O_5 can reduce dielectric loss, and MgO increases the dielectric loss. When La_2O_3 content is above the critical value, it can reduce the dielectric loss of barium titanate ceramics. The dielectric peak of MgO-doped and La_2O_3-doped BZT ceramics broadens. As V_2O_5 content increases, the remnant polarization of barium titanate ceramics initially increases the maximum and then decreases. The coercive field of V_2O_5-doped barium titanate ceramics is much lower than that of pure barium titanate ceramics. In conclusion, variable-valent V_2O_5 on B sites is an ideal modifier, because that it can lead to the lower dielectric loss and larger remnant polarization of barium titanate ceramics.
     ⑤Electronic structure by first-principles calculations shows that Ba-O and Ti-O of barium titanate is ionic bonds and covalent bonds, respectively. The phase transition is due to the change in the relative position of Ti atoms. Hybridization of Ti and O is mainly from the O 2p states and Ti 3d states. Hybridization of ferroelectric phase of barium titanate is lower than that of paraelectric phase.
     Band gap of Zr-doped barium titanate increases with the increasing of zirconium content. When Zr~(4+) is doped, the total density of states and partial density of states changes significantly, which is due to hybridization between Zr-4d electron and the O-2p. As hafnium content increases, band gap of Hf-doped barium titanate initially increases and then decreases, and the degeneracy of band structure increases. Ferroelectricity of Hf-doped barium titanate is stronger than pure barium titanate. When hafnium is doped, the populations of O-Ti bond increase and covalent bond enhances, while the absolute value of populations of O-Ba bond decreases and ionic bond weakens. There is strong hybridization between O-Ti and O-Hf, which is the cause of formation of ferroelectricity.
引文
[1]陈文,吴建青,许启明.材料物理性能[M].武汉:武汉理工大学出版社, 2010.
    [2]田莳.材料物理性能[M].北京:北京航空航天大学出版社, 2001.
    [3]陈騑騢.材料物理性能[M].北京:机械工业出版社, 2006.
    [4]肖国庆,张军战.材料物理性能[M].北京:中国建材工业出版社, 2005.
    [5]曲远方.功能陶瓷及应用[M].北京:化学工业出版社, 2003.
    [6] E. Soergel. Visualization of ferroelectric domains in bulk single crystals[J]. Applied Physics B, 2005, 81(6): 729-752.
    [7] B. Yang, N.J. Park, B.I. Seo, Y.H. Oh, S.J. Kim, S.K. Hong, S.S. Lee, Y.J. Park. Nanoscale imaging of grain orientations and ferroelectric domains in (Bi1-xLax)4Ti3O12 films for ferroelectric memories[J]. Applied Physics Letters, 2005, 87(6): 062902.
    [8] R.O. Piltz. Neutron diffraction study of domain structures in poled and unpoled PZN-4.5%PT[J]. Physica B. 2006, 385-386: 169-172.
    [9]符春林,杨传仁,陈宏伟,王迎新,胡立业.铁电薄膜中的电畴研究进展[J].材料导报,2004, 18(10): 68-72.
    [10]张飒,程璇,张颖.铁电陶瓷的电畴及畴变观测研究进展[J].功能材料, 2005, 36(1): 15-22.
    [11] M.E.莱因斯, A.M.格拉斯,钟维烈译.铁电体及有关材料的原理和应用[M].北京:科学出版社, 1989.
    [12]李翰如.电介质物理导论[M].成都:成都科技大学出版社, 1990.
    [13] C.C. Chou, C.S. Chen. Banded domain structures and polarization arrangements in PbTiO3 single crystals[J]. Ceramics International, 2000, 26(7): 693-697.
    [14] Y.B. Park, J.L. Ruglovsky, H.A. Atwater. Microstructure and properties of single crystal BaTiO3 thin films synthesized by ion implantation-induced layer transfer[J]. Applied Physics Letters, 2004, 85(3): 455-457.
    [15] C. Ke, X. Wang, X.P. Hu, S.N. Zhu, M. Qi. Nanoparticle decoration of ferroelectric domain patterns in LiNbO3 crystal[J]. Journal of Applied Physics, 2007, 101(6): 064107.
    [16] A. Chernykh, V. Shur, E. Nikolaeva, E. Shishkin, A. Shur, K. Terabe, S. Kurimura, K. Kitamura, K. Gallo. Shapes of isolated domains and field induced evolution of regular and random 2D domain structures in LiNbO3 and LiTaO3[J]. Materials Science and Engineering B, 2005, 120(1-3): 109-113.
    [17] M. Müller, E. Soergel, M.C. Wengler, K. Buse. Light deflection from ferroelectric domainboundaries[J]. Applied Physics B, 2004, 78(3-4): 367-370.
    [18] L. Jin, Z. Xi, Z. Xu, X. Yao. Study of ferroelectric domain morphology in PMN-32%PT single crystals [J]. Ceramics International, 2004, 30(7): 1695-1698.
    [19] H. R. Zeng, H. F. Yu, S. X. Hui, G. R. Li, H. S. Luo, Q. R. Yin. Depth profile dependence of domain configuration variations in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals [J]. Materials Science and Engineering B, 2006, 127(1): 58-61
    [20] M. C. Shin, S. J. Chung, S. G. Lee, R. S. Feigelson. Growth and observation of domain structure of lead magnesium niobate-lead titanate single crystals [J]. Journal of Crystal Growth, 2004, 263(1-4): 412-420.
    [21] T. Liu, C.S. Lynch. Domain engineered relaxor ferroelectric single crystals[J]. Continuum Mechanics and Thermodynamics, 2006, 18(1-2): 119-135.
    [22] I.V. Mardasova, K.G. Abdulvakhidov, M.A. Burakova, M.F. Kupriyanov. The effect of a constant electric field on the domain structure of ferroelectric PbSc0.5Nb0.5O3 crystals[J]. Technical Physics Letters, 2002, 28(8): 664-665.
    [23] T. H?rtling, L.M. Eng. Gold-particle-mediated detection of ferroelectric domains on the nanometer scale[J]. Applied Physics Letters, 2005, 87(14): 142902.
    [24] Y. Uesu, S. Kurimura, Y. Yamamoto. Optical second harmonic images of 90°domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3[J]. Applied Physics Letters, 1995, 66(17): 2165-2167.
    [25] L. Zhang, W. Kleemann. Second-harmonic study of polar symmetry and domain structure in SrTi18O3[J]. Applied Physics Letters, 2002, 81(16): 3022-3024.
    [26] E.D. Mishina, N.E. Sherestyuk, D.R. Barskiy, A.S. Sigov, Y.I. Golovko, V.M. Mukhorotov, M.D. Santo, T. Rasing. Domain orientation in ultrathin (Ba,Sr)TiO3 films measured by optical second harmonic generation[J]. Journal of Applied Physics, 2003, 93(10): 6216-6222.
    [27] Y. Barad, J. Lettieri, C.D. Thesis, D.G. Schlom, V. Gopalan, J.C. Jiang, X.Q. Pan. Probing domain microstructure in ferroelectric Bi4Ti3O12 thin films by optical second harmonic generation[J]. Journal of Applied Physics, 2001, 89(2): 1387-1392.
    [28] Y.M. Kang, J.K. Ku, S. Baik. Crystallographic characterization of tetragonal (Pb,La)TiO3 epitaxial thin films grown by pulsed laser deposition[J]. Journal of Applied Physics, 1995, 78(4): 2601-2606.
    [29] K.S. Lee, J.H. Choi, J.Y. Lee, S. Baik. Domain formation in epitaxial Pb(Zr, Ti)O3 thin films [J]. Journal of Applied Physics, 2001, 90(8): 4095-4102.
    [30] S.K. Streiffer, J.A. Eastman, D.D. Fong, C. Thompson, A. Munkholm, M.V. Ramana Murty,O. Auciello, G.R. Bai, G.B. Stephenson. Observation of nanoscale 180°stripe domains in ferroelectric PbTiO3 thin films[J]. Physical Review Letters, 2002, 89(6): 067601.
    [31] A.L. Roytburd, S.P. Alpay, L.A. Bendersky, V. Nagarajan, R. Ramesh. Three-domain architecture of stress-free epitaxial ferroelectric films[J]. Journal of Applied Physics, 2001, 89(1): 553-556.
    [32] S.H. Lee, H.M. Jang, S.M. Cho, G.C. Yi. Polarized Raman scattering of epitaxial PbTiO3 thin film with coexisting c and a domains[J]. Applied Physics Letters, 2002, 80(17): 3165-3167.
    [33] C.E. Valdivia, C.L. Sones, J.G. Scott, S. Mailis, R.W. Eason, D.A. Scrymgeoui, V. Gopalan, T. Jungk, E. Soergel, I. Clark. Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination[J]. Applied Physics Letters, 2005, 86(2): 022906.
    [34] J.H. Chen, B.H. Hwang, T.C. Hsu, H.Y. Lu. Domain switching of barium titanate ceramics induced by surface grinding[J]. Materials Chemistry and Physics, 2005, 91(1): 67-72.
    [35] J.F. Chou, M.H. Lin, H.Y. Lu. Ferroelectric domains in pressureless-sintered barium titanate[J]. Acta Materialia, 2000, 48(13): 3569-3579.
    [36] F. Xu, S. Trolier-Mckinstry, W. Ren, B.M. Xu, Z.L. Xie, K.J. Hemker. Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films[J]. Journal of Applied Physics, 2001, 89(2): 1336-1348.
    [37] Y. Drezner, S. Berger. Nanoferroelectric domains in ultrathin BaTiO3 films[J]. Journal of Applied Physics, 2003, 94(10): 6774-6778.
    [38]符春林.铁电薄膜材料及其应用[M].北京:科学出版社, 2009.
    [39] Q.R. Yin, H.R. Zeng, H.F. Yu, G.R. Li. Near-field acoustic and piezoresponse microscopy of domain structures in ferroelectric material[J]. Journal of Materials Science, 2006, 41(1): 259-270.
    [40]彭昌盛,宋少先,谷庆宝.扫描探针显微技术理论与应用[M].北京:化学工业出版社, 2007.
    [41] J. He, S.H. Tang, Y.Q. Qin, P. Dong, H.Z. Zhang, C.H. Kang, W.X. Sun, Z.X. Shen. Two-dimensional structures of ferroelectric domain inversion in LiNbO3 by direct electron beam lithography[J]. Journal of Applied Physics, 2003, 93(12): 9943-9946
    [42] A.L. Tolstikhina, N.V. Belugina, S.A. Shikin. AFM characterization of domain structure of ferroelectric TGS crystals on a nanoscale[J].Ultramicroscopy, 2000, 82: 149-152.
    [43] H.R. Zeng, H.F. Yu, X.G. Tang, R.Q. Chu, G.R. Li, Q.R. Yin. Piezoresponse force microscopy studies of nanoscale domain structures in ferroelectric thin film[J]. MaterialsScience and Engineering B, 2005, 120(1-3): 104-108.
    [44] C.S. Ganpule, V. Nagarajan, B.K. Hill, A.L. Roytburd, E.D. Williams, R. Ramesh, S.P. Alpay, A. Roelofs, R. Waser, L.M. Eng. Imaging three-dimensional polarization in epitaxial polydomain ferroelectric thin films[J]. Journal of Applied Physics, 2002, 91(3): 1477-1481.
    [45] A. Roelofs, T. Schneller, K. Szot, R. Waser. Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity[J]. Applied Physics Letters, 2002, 81(27): 5231- 5233.
    [46] X. Zhao, J.Y. Dai, J. Wang, H.L.W. chan, C.L. Choy, X.M. Wan, H.S. Luo. Domain structure and evolution in (PbMg1/3Nb2/3O3)0.75(PbTiO3)0.25 single crystal studied by temperature- dependent piezoresponse force microscopy[J]. Journal of Applied Physics, 2005, 97(9): 094107.
    [47] Y. Kitanaka, Y. Noguchi, M. Miyayama. Ferroelectric domain structure and c-axis polarization switching in monoclinic Bi4Ti3O12 single crystals[J]. Applied Physics Letters, 2007, 90(20): 202904.
    [48] W. Huang, S.W. Jiang, Y.R. Li, J. Zhu, Y. Zhang, X.H. Wei, H.Z. Zeng. Crystallization behavior and domain structure in textured Pb(Zr0.52Ti0.48)O3 thin films by different annealing processes[J]. Thin Solid Films, 2006, 500(1-2): 138-143.
    [49] R. Jayavel, S. Madeswaran, R.M. Kumar, K. Terabe, K. Kitamura. Domain patterns on ferroelectric Rh:BaTiO3 single crystals[J]. Materials Science and Engineering B, 2005, 120(1-3): 137-140.
    [50] H.F. Yu, H.R. Zeng, H.X. Wang, G.R. Li, H.S. Luo, Q.R. Yin. Domain structures in tetragonal Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals studied by piezoresponse force microscopy[J]. Solid State Communications, 2005, 133(5): 311-314.
    [51] H. Zeng, S.B. Lu, L.S. Dai, J.S. Liu, Z.H. Wang, C.M. Zuo. Ferroelectric domain structure of discrete PbTiO3 nanograins[J]. Materials Letters, 2005, 59(22): 2808-2811.
    [52] J. Wang, Z.H. Zhou, J.M. Xue. Phase transition, ferroelectric behaviors and domain structures of (Na1/2Bi1/2)1-xTiPbxO3 thin films[J]. Acta Materialia, 2006, 54(6): 1691-1698.
    [53] A. Gruverman, A. Kholkin. Nanoscale ferroelectrics: processing, characterization and future trends[J]. Reports on Progress in Physics 2006, 69(8): 2443-2474.
    [54] C. Dehoff, B.J. Rodriguez, A.I. Kingon, R.J. Nemanich, A. Gruverman, J.S. Cross. Atomic force microscopy-based experimental setup for studying domain switching dynamics in ferroelectric capacitors[J]. Review of Scientific Instruments, 2005, 76(2): 023708.
    [55] X.J. Zheng, Y.G. Lu, L. He, Y.Q. Gong. Nanoscale domain switching in Bi3.15Eu0.85Ti3O12 thin films annealed at different temperature by scanning probe microscopy[J]. MaterialsLetters, 2007, 62(3): 440-42.
    [56] A. Wu, P.M. Vilarinho, V.V. Shvartsman, G. Suchaneck, A.L. Kholkin. Domain populations in lead zirconate titanate thin films of different compositions via piezoresponse force microscopy[J]. Nanotechnology. 2005, 16(11): 2587-2595.
    [57] X. Chen, W. Zhu, O.K. Tan, X. Yao. Scanning probe microscopy observation of nanoscale domain switching in sol-gel PbTiO3 thin films[J]. Materials Chemistry and Physics, 2002, 75(1-3): 90-94.
    [58]钟维烈.铁电体物理学[M].北京:科学出版社, 2000.
    [59] H.E. Alaoui-Belghiti, R.V. Mühll, A. Simon, M. Elaatmani, J. Ravez. Relaxor or classical ferroelectric behavior in ceramics with composition Sr2-xA1+xNb5O15-xFx (A = Na, K) [J]. Materials Letters, 2002, 55(3): 138-144.
    [60]徐家跃,金敏.新型弛豫铁电晶体[M].北京:化学工业出版社, 2008.
    [61] L. E. Cross. Relaxor ferroelectrics[J]. Ferroelectrics, 1987, 76: 241-267.
    [62] G. A. Smolenskii, V.A. Bokov, V.A. Isupov, N.N. Krainik, R.E. Pasynkov, A.I. Sokolov. Ferroelectrics and related materials[M]. Gordon and Breach Science Publishers, 1984.
    [63] G. Burns, F.H. Dacol. Ferroelectric with a glassy polarization phase[J]. Ferroelectrics, 1990, 104: 25-35.
    [64] X. Yao, Z. Chen, L.E. Cross. Polarization and depolarization behavior of hot pressed lead lanthanum zirconate titanate ceramics[J] . Journal of Applied Physics, 1983, 54(6): 3399-3403.
    [65] N. Setter, L.E. Cross. The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics[J]. Journal of Applied Physics, 1980, 51(8): 4356-4360.
    [66] X.W. Zhang, Q. Wang, B.L. Gu. Study of the order-disorder transition in A( B' B '')O3 perovskite type ceramics[J]. Journal of the American Ceramic Society, 1991, 74(11): 2846-2850.
    [67] C.A. Randall, A.S. Bhalla, T.R. Shrout, L.E. Cross. Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order[J]. Journal of Materials Research, 1990, 5(4): 829-834.
    [68] L.A. Burisll, H. Qian, J.L. Peng, X.D. Fan. Observation and analysis of nanodomain textures in the dielectric relaxor lead magnesium niobate[J]. Physica B, 1995, 216(1-2): 1-23.
    [69] G. Schmidt. Diffuse phase transitions[J]. Ferroelectrics, 1988, 78: 199-206.
    [70] T. Egami, S. Teslic, W. Dmowski, P.K. Davies, I.W. Chen, H. Chen. Microscopic origin of relaxor ferroelectricity in PMN and PLZT[J]. Journal of the Korean Physical Society, 1998, 32: S935-S938.
    [71]胡长征.新型无铅铌、钽酸盐陶瓷的制备与介电、铁电特性研究[D].武汉:武汉理工大学, 2010.
    [72]李莹.铋层状结构铁电材料组成设计与性能优化[D].西安:西安科技大学, 2008.
    [73]张志刚.掺杂铌酸锂晶体结构与性能研究[D].大连:大连理工大学, 2010.
    [74]殷之文.电介质物理学[M].北京:科学出版社, 2003.
    [75]张福学,王丽坤.现代压电学(中册) [M].北京:科学出版社, 2002.
    [76] A. S. Bhalla, R. Guo, R. Roy. The perovskite structure-a review of its role in ceramic science and technology[J]. Materials Research Innovations, 2000, 4(1): 3-26.
    [77] H.D. Megaw. Ferroelectricity in crystals[M]. London: Methuen, 1957.
    [78] F. Jona, G. Shirane. Ferroelectric crystals[M]. London: Pergamon Press, 1962.
    [79] C.L. Fu, C.R. Yang, H.W. Chen, Y.X. Wang, L.Y. Hu. Microstructure and dielectric properties of BaxSr1-xTiO3 ceramics[J]. Materials Science and Engineering B, 2005, 119(2): 185-188.
    [80] M.W. Zhang, J.W. Zhai, B. Shen, X. Yao. MgO doping effects on dielectric properties of Ba0.55Sr0.45TiO3 Ceramics[J]. Journal of the American Ceramic Society, 2011, doi: 10.1111/j.1551-2916.2011.04577.x.
    [81] Q.W. Zhang, J.W. Zhai, X. Yao. Dielectric and tunable properties of barium strontium titanate ceramics under the stresses[J]. Journal of Alloys and Compounds, 2011, 509(34): 8577-8580.
    [82] D. Zhang, T.W. Button, V.O. Sherman, A.K. Tagantsev, T. Price, D. Iddles. Effects of glass additions on the microstructure and dielectric properties of barium strontium titanate (BST) ceramics[J]. Journal of the European Ceramic Society, 2010, 30(2): 407-412.
    [83] T. Maiti, R. Guo, A.S. Bhalla. Electric field dependent dielectric properties and high tunability of BaZrxTi1?xO3 relaxor ferroelectrics[J]. Applied Physics Letters, 2006, 89(12): 122909.
    [84]李标荣.无机介电材料[M].上海:上海科技出版社, 1986.
    [85] W. Cai, Y.Z. Fan, J.C. Gao, C.L. Fu, X.L. Deng. Microstructure, dielectric properties and diffuse phase transition of barium stannate titanate ceramics[J]. Journal of Materials Science: Materials in Electronics, 2011, 22(3): 265-272.
    [86] R. Vivekanandan, T.R.N Kutty. Grain boundary layer ceramic capacitors based on donor- doped Ba(Ti1-xSnx)O3[J]. Materials Science and Engineering: B, 1990, 6(4):221–231.
    [87] C.L. Fu, F.S. Pan, H.W. Chen, W. Cai, C.R. Yang. Effect of annealing on leakage current characteristics of Pt/Ba0.6Sr0.4TiO3/Pt thin-film capacitors[J]. Journal of Materials Science: Materials in Electronics, 2007, 18(4): 453-456.
    [88] S.Y. Lee, B.S. Chiou. Improving dielectric loss and mechanical stress of barium strontium titanate thin films by adding chromium layer[J]. Japanese Journal of Applied Physics, 2007, 46(10A): 6550-6553.
    [89] C.C. Leu, C.Y. Chen, C.H. Chien, M.N. Chang, F.Y. Hsu, C.T. Hu. Domain structure study of SrBi2Ta2O9 ferroelectric thin films by scanning capacitance microscopy[J]. Applied Physics Letters, 2003, 82(20): 3493-3495
    [90] X.G. Tang, K.H. Chew, H.L.W. Chan. Diffuse phase transition and dielectric tunability of Ba(ZryTi1-y)O3 relaxor ferroelectric ceramics[J]. Acta Materialia, 2004, 52(17): 5177-5183.
    [91] J. Xu, W. Menesklou, E. Ivers-Tiffée. Investigation of BZT thin films for tunable microwave applications[J]. Journal of the European Ceramic Society, 2005, 25(12): 2289-2293.
    [92] X.J. Chou, J.W. Zhai, H.T. Jiang, X. Yao. Dielectric properties and relaxor behavior of rare-earth(La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics[J]. Journal of Applied Physics, 2007, 102(8):084106.
    [93] W.S. Choi, J Yi, B Hong. The effect of cerium doping in barium zirconate titanate thin films deposited by rf magnetron sputtering system[J]. Materials Science and Engineering B, 2004, 109(1-3):146-151.
    [94]黄新友,高春华,陈祥冲,周浩伟,谭红根.二氧化铈掺杂锆钛酸钡陶瓷性能和结构的研究[J].电子元件与材料, 2004, 23(10): 27-29.
    [95] X.G. Tang, H.L.W. Chan. Effect of grain size on the electrical properties of (Ba,Ca)(Zr,Ti)O3 relaxor ferroelectric ceramics [J]. Journal of Applied Physics, 2005, 97(3):034109
    [96] A. Dixit, R.S. Katiyar, D.C. Agrawal. Enhanced tunability and relaxor characteristics in calcium substituted barium zirconium titanate thin films[J]. Integrated Ferroelectrics, 2007, 91(1):48-61.
    [97] W. Chaisan, R. Yimnirun, S. Ananta, D.P. Cann. Phase development and dielectric properties of (1-x)Pb(Zr0.52Ti0.48)O3-xBaTiO3 ceramics[J]. Materials Science and Engineering B, 2006, 132(3):300-306.
    [98] L.N. Gao, J.W. Zhai, Y.W. Zhang, X. Yao. Influence of rare-earth addition on dielectric properties and relaxor behavior of barium zirconium titanate thin films[J]. Journal of Applied Physics, 2010, 107(6): 064105.
    [99] T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, T.P. Sinha, E. Longo. Structural and dielectric relaxor properties of yttrium-doped Ba(Zr0.25Ti0.75)O3 ceramics[J]. Materials Chemistry and Physics, 2010, 121(1-2): 147-153.
    [100] S. Mahajan, O.P. Thakur, K. Sreenivas, C. Prakash. Effect of Nd doping on structural, dielectric and ferroelectric properties of Ba(Zr0.05Ti0.95)O3 ceramic[J]. IntegratedFerroelectrics, 2010, 122(1): 83-89.
    [101] S. B. Reddy, K. P. Rao, M.S. R. Rao. Influence of A-site Gd doping on the microstructure and dielectric properties of Ba(Zr0.1Ti0.9)O3 ceramics[J]. Journal of Alloys and Compounds, 2011, 509(4): 1266-1270.
    [102]黄新友,高春华. ZnO对Ba(Ti,Zr)O3基电容器陶瓷性能和结构的影响[J].江苏大学学报(自然科学版), 2002, 23(3): 76-79.
    [103] A. Simon, J. Ravez, M. Maglione. Relaxor properties of Ba0.9Bi0.067(Ti1-xZrx)O3 ceramics[J]. Solid State Science, 2005, 7(8):925-930.
    [104] S. Mahajan, O.P. Thakur, D.K. Bhattacharya, K. Sreenivas. Ferroelectric relaxor behaviour and impedance spectroscopy of Bi2O3-doped barium zirconium titanate ceramics[J]. Journal of Physics D: Applied Physics, 2009, 42(6): 065413.
    [105] X. Diez-Betriu, J.E. Garcia, C. Ostos, A.U. Boya, D.A. Ochoa, L. Mestres, R. Perez. Phase transition characteristics and dielectric properties of rare-earth (La, Pr, Nd, Gd) doped Ba(Zr0.09Ti0.91)O3 ceramics[J]. Materials Chemistry and Physics, 2011, 125(3): 493-499.
    [106]齐建全,桂治轮,王永力,李琦,李龙土. Yb2O3的掺杂方式对Ba(Ti1-yZry)O3陶瓷介电性能的影响[J].无机材料学报, 2001, 16(5): 989-992.
    [107]那文菊,丁士华,宋天秀,王久石,王岩. (Ba1-xCax)(Ti0.82Zr0.18)O3陶瓷结构与介电性能研究[J].无机材料学报, 2011, 26(6): 655-658.
    [108]丁士华,王久石,宋天秀,那文菊,王岩. Ba1-xBix(Ti0.9Zr0.1)O3陶瓷的介电弛豫特征[J].西华大学学报(自然科学版), 2011, 30(3): 38-42.
    [109] A. Aoujgal, W.A. Gharbi, A. Outzourhit, H. Ahamdane, A. Ammar, A. Tachafine, J.C. Carru. Relaxor behavior in (Ba1-3x/2Bix)(ZryTi1-y)O3 ceramics[J]. Ceramics International, 2011, 37(7): 2069-2074.
    [110]冯萍,杨丽,曹万强. Ca掺杂Ba(Zr0.25Ti0.75)O3陶瓷介电性能的研究[J].湖北大学学报(自然科学版), 2008, 30(2): 173-175.
    [111] W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang. Piezoelectric and dielectric properties of (Ba1-xCax)(Ti0.95Zr0.05)O3 lead-free ceramics[J]. Journal of American Ceramic Society, 2010, 93(10): 2942-2944.
    [112]宋天秀,丁士华,陈涛,杨秀玲. Li-Mo共掺杂Ba(Ti0.91Zr0.09)O3陶瓷的介电弛豫[J].电子元件与材料, 2008, 27(12): 19-21.
    [113] A. Kerfah, Ta?bi, A. Guehria-Laidoudi, A. Simon, J. Ravez. Ferroelectric relaxor behaviour of Ba1-xAx(Ti0.7Zr0.3)O3 and Ba 1-x A '2x /3 x /3 (Ti 0.7 Zr0 .3 )O3compositions (A=Ca, Sr; A '=Y, La, Bi)[J]. Solid State Sciences, 2006, 8(6): 613-618.
    [114] W. Q. Cao, J. W. Xiong, J. P. Sun. Dielectric behavior of Nb-doped Ba(ZrxTi1-x)O3[J].Materials Chemistry and Physics, 2007, 106(2-3): 338-342.
    [115] X. J. Chou, J. W. Zhai, X. Yao. Relaxor Behavior and dielectric of MgTiO3-doped BaZr0.35Ti0.65O3 composite ceramics for tunable applications[J]. Journal of American Ceramic Society, 2007, 90(9):2799-2801.
    [116] W. J. Jie, J. Zhu, W. F. Qin, X. H. Wei, J. Xiong, Y. Zhang, A. Bhalla, Y. R. Li. Enhanced dielectric characteristics of preferential (111)-oriented BZT thin films by manganese doping[J]. Journal of Physics D: Applied Physics, 2007, 40(9):2854-2857.
    [117]丁士华,刘剑林,宋天秀. Co2O3掺杂Ba(Ti0.91Zr0.09)O3陶瓷介电性能研究[J].西华大学学报(自然科学版), 2010, 29(2): 73-77.
    [118]陈涛,丁士华,张红霞,宋天秀. CuO掺杂对Ba(Ti0.91Zr0.09)O3陶瓷介电性能的影响[J].压电与声光, 2008, 30(6): 721-723.
    [119] P. Zheng, J. L. Zhang, S. F. Shao, Y. Q. Tan, C. L. Wang. Piezoelectric properties and stabilities of CuO-modified Ba(Ti,Zr)O3ceramics[J]. Applied Physics Letters, 2009, 94(3): 032902.
    [120]刘剑林,丁士华,宋天秀. Sb2O3掺杂Ba(Ti0.91Zr0.09)O3陶瓷的结构与性能[J].电子元件与材料, 2010, 29(4): 12-15.
    [121] F. Moura, A. Z. Sim?es, E. C. Aguiar, I. C. Nogueira, M. A. Zaghete, J. A. Varela, E. Longo. Dielectric investigations of vanadium modified barium zirconium titanate ceramics obtained from mixed oxide method [J]. Journal of Alloys and Compounds, 2009, 479(1-2): 280-283.
    [122] F. Moura, A. Z. Sim?es, C. A. Paskocimas, M. A. Zaghete, J. A. Varela, E. Longo. Temperature dependence on the electrical properties of Ba(Ti0.90Zr0.10)O3:2V ceramics[J]. Materials Chemistry and Physics, 2010, 123(2-3): 772-775.
    [123] D. Shan, Y. F. Qu, J. J. Song. Dielectric properties and substitution preference of yttrium doped barium zirconium titanate ceramics[J]. Solid State Communications, 2007, 141(2):65-68.
    [124] Y. L. Wang, L. T. Li, J. Q. Qi, Z. L. Gui. Ferroelectric characteristics of ytterbium-doped barium zirconium titanate ceramics[J]. Ceramics International, 2002, 28(6): 657-661.
    [125] S.B. Reddy, M.S.R. Rao. Observation of high permittivity in Ho substituted BaZr0.1Ti0.9O3 ceramics[J]. Applied Physics Letters, 2007, 91(2):022917.
    [126] S.B. Reddy, K.P. Rao, M.S.R Rao. Nanocrystalline barium zirconate titanate synthesized at low temperature by an aqueous co-precipitantion technique[J]. Scripta Materialia, 2007, 57(7): 591-594.
    [127] X.J. Chou, J.W. Zhai, X. Yao. Relaxor behavior and dielectric properties of La2O3-doped barium zirconium titanate ceramics for tunable device applications[J]. Materials Chemistryand Physics, 2008, 109(1): 125-130.
    [128] Z. Yu, R.Y. Guo, A.S. Bhalla. Orientation dependence of the ferroelectric and piezoelectric behavior of Ba(Ti1-xZrx)O3 single crystals[J]. Applied Physics Letters, 2000, 77(10): 1535-1537.
    [129] A. Dixit, S.B. Majumder, A. Savvinov, R.S. Katiyar, R. Guo, A.S. Bhalla. Investigations on the sol-gel-derived barium zirconium titanate thin films[J]. Material Letters, 2002, 56(6): 933-940.
    [130] J.W. Zhai, X. Yao, H. Chen. Structural and dielectric properties of Ba0.85Sr0.15(Zr0.18Ti0.85)O3 thin films grown by a sol-gel process[J]. Ceramics International, 2004, 30(7): 1237-1240.
    [131] X.G. Tang, K.H. Chew, J. Wang, H.L.W. Chan. Dielectric tunability of (Ba0.90Ca0.10) (Ti0.75Zr0.25)O3 ceramics[J]. Applied Physics Letters, 2004, 85(6): 991-993.
    [132]孙小华,周生刚,李修能,吴敏. Mg掺杂Ba(Zr0.25Ti0.75)O3薄膜的介电调谐性能[J].三峡大学学报(自然科学版), 2010, 32(4): 91-94.
    [133] X.G. Tang, Q.X. Liu, Y.P. Jiang, R.K. Zheng, H.L.W. Chan. Enhanced dielectric properties of highly (100)-oriented Ba(Zr,Ti)O3 thin films grown on La0.7Sr0.3MnO3 bottom layer[J]. Journal of Applied Physics, 2006, 100(11): 114105.
    [134] X.P. Jiang, M. Zeng, H.L.W. Chan, C.L. Choy. Relaxor behaviors and tunability in BaZr(0.35)Ti(0.65)O3 ceramics[J]. Materials Science and Engineering A, 2006, 438-440:198-201.
    [135] Y. Zhi, A. Chen, P.M. Vilarinho, P.Q. Mantas, J.L. Baptista. Dielectric relaxation behavior of Bi:SrTiO3: I. The low temperature permittivity peak[J]. Journal of the European Ceramic Society, 1998, 18(11):1613-1621.
    [136] O. Bidault, E. Husson, P. Gaucher. Substitution effects on the relaxor properties of lead magnesium niobate ceramics[J]. Philosophical Magazine B, 1999, 79(3): 435-448.
    [137] S. M. Ke, H. Q. Fan, H. T. Huang, H. L. W. Chan. Dielectric dispersion behavior of Ba(ZrxTi1-x)O3 solid solutions with a quasiferroelectric state[J]. Journal of Applied Physics, 2008, 104(3): 034108.
    [138] S. M. Ke, H. Q. Fan, H. T. Huang, H. L. W. Chan. Lorentz-type relationship of the temperature dependent dielectric permittivity in ferroelectrics with diffuse phase transition[J]. Applied Physics Letters, 2008, 93(11): 112906.
    [139] A. A. Bokov, Z. G. Ye. Phenomenological description of dielectric permittivity peak in relaxor ferroelectrics[J]. Solid State Communications, 2000, 116(2): 105-108.
    [140] A. A. Bokov, M. Maglione, A. Simon, Z. G. Ye. Dielectric behavior of Ba(Ti1-xZrx)O3 Solid Solution[J]. Ferroelectrics, 2006, 337: 169-178.
    [141]石随林,张灵振,黄红军. NiO/BaTiO3陶瓷复合材料制备与介电性能研究[J].稀有金属材料与工程, 2007, 36(suppl.1): 428-430.
    [142] A. Jana, T.K. Kundu. Microstructure and dielectric characteristics of Ni ion doped BaTiO3 nanoparticles[J]. Materials Letters, 2007, 61(7): 1544-1548.
    [143] L. Wu, Y.C. Chen, C.L. Huang, Y.P. Chou, Y.T. Tsai. Direct-current field dependence of dielectric properties in alumina-doped barium strontium titanate[J]. Journal of the American Ceramic Society, 2000, 83(7): 1713-1719.
    [144] X.F. Liang, W.B. Wu, Z.Y. Meng. Dielectric and tunable characteristics of barium strontium titanate modified with Al2O3 addition[J]. Materials Science and Engineering B, 99(1-3): 366-369.
    [145] J.G. Fisher, S.Y. Choi, S.J.L. Kang. Abnormal grain growth in barium titanate doped with alumina[J]. Journal of the American Ceramic Society, 2006, 89(7): 2206-2212.
    [146]梁晓峰,吴文彪,孟中岩.顺电态下掺铝钛酸锶钡陶瓷微结构和介电调谐性能[J].无机材料学报, 2003, 18(6): 1240-1244.
    [147] S. Halder, P. Gerber, T. Schneller, R. Waser. Structural, dielectric and electromechanical study of Hf-substituted BaTiO3 thin films fabricated by CSD[J]. Applied Physics A, 2006, 83(2): 285-288.
    [148] J.F. Ihledeld, W.J. Borland, J.P. Maria. Dielectric and microstructural properties of barium titanate hafnate thin films[J ]. Thin Solid Films, 2008, 516(10): 3162-3166.
    [149] S. Anwar, P.R. Sagdeo, N.P. Lalla. Ferroelectric relaxor behavior in hafnium doped barium-titanate ceramic[J]. Solid State Communications, 2006, 138(7): 331-336.
    [150] K.H. H?rdtl, R. Wernicke. Lowering the Curie temperature in reduced BaTiO3[J]. Solid State Communications, 1972, 10(1): 153-157.
    [151] X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan. Effect of grain size on the dielectric properties and tunabilities of sol-gel derived Ba(Zr0.2Ti0.8)O3 ceramics[J]. Solid State Communications, 2004, 131(3-4): 163-168.
    [152] Y.C. Huang, W.H. Tuan. Solubility of Ni in BaTiO3 during co-firing[J]. Journal of Electroceramics, 2007, 18(3-4): 183-188.
    [153]田靓,崔斌.掺镍对钛酸钡陶瓷结构及介电性能的影响[J].材料科学与工程学报, 2006, 24(3): 386-409.
    [154] W.H. Tzing, W.H. Tuan, H.L. Lin. The effect of microstructure on the electrical properties of NiO-doped BaTiO3[J]. Ceramics International, 1999, 25(5): 425-430.
    [155] P. Hansen, D. Hennings, H. Schreinemacher. Dielectric properties of acceptor-doped (Ba,Ca)(Ti,Zr)O3 Ceramics[J]. Journal of Electroceramics, 1998, 2(2): 85-94.
    [156] S. Jiansirisomboon, A. Watcharapasorn. Effects of alumina nano-particulates addition on mechanical and electrical properties of barium titanate ceramics[J]. Current Applied Physics, 2008, 8(1): 48-52.
    [157] S. Halder, T. Schneller, R. Waser, S.B. Majumder. Electrical and optical properties of chemical solution deposited barium hafnate titanate thin films[J]. Thin Solid Films, 2008, 516(15): 4970-4976.
    [158] H.Y. Tian, Y. Wang, J. Miao, H.L.W. Chan, C.L. Choy. Preparation and characterization of hafnium doped barium titanate ceramics[J]. Journal of Alloys and Compounds, 2007, 431(1-2): 197-202.
    [159] J.W. Zhai, X. Yao, J. Shen, L.Y. Zhang, H. Chen. Structural and dielectric properties of Ba(ZrxTi1-x)O3 thin films grown by a sol-gel process[J]. Journal of Physics D: Applied Physics, 2004, 37(5):748-752.
    [160] Z. Yu, C. Ang, R.Y. Guo, A.S. Bhalla. Ferroelectric-relaxor behavior of Ba(Ti0.7Zr0.3)O3 ceramics[J]. Journal of Applied Physics, 2002, 92(5): 2655-2657.
    [161]唐斌,张树人,袁颖,周晓华.钛酸钡陶瓷中居里点移动规律与机理研究进展[J].真空科学与技术学报, 2007, 28(2): 120-125.
    [162] D.Y. Lu, X.Y. Sun, M. Toda. A novel high-k‘Y5V’barium titanate ceramics co-doped with lanthanum and cerium[J]. Journal of Physics and Chemistry of Solids, 2007, 68(4): 650-664.
    [163] W. Cai, C.L. Fu, J.C. Gao, X.L. Deng. Dielectric properties, microstructure and diffuse transition of Al-doped Ba(Zr0.2Ti0.8)O3 ceramics[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(8): 796-803.
    [164] F. Ponchel, J.F. Legier, C. Soyer, D. Rémiens, J. Midy, T. Lasri, G. Guéguan. Rigorous extraction tunability of Si-integrated Ba0.3Sr0.7TiO3 thin film up to 60 GHz[J]. Applied Physics Letters, 2010, 96(25): 252906.
    [165] E.A. Nenasheva, N.F. Kartenko, I.M. Gaidamaka, O.N. Trubitsyna, S.S. Redozubov, A.I.D. Dedyk, A.D. Kanareykin. Low loss microwave ferroelectric ceramics for high power tunable devices[J]. Journal of the European Ceramic Society, 2010, 30(2): 395-400.
    [166] L.B. Kong, S. Li, T.S. Zhang, J.W. Zhang, F.Y.C. Boey, J. Ma. Electrically tunable dielectric materials and strategies to improve their performances[J]. Progress in Materials Science, 2010, 55(8): 840-893.
    [167] S.G. Lu, Z.K.Xu, H. Chen. Tunability and relaxor properties of ferroelectric barium stannate titanate ceramics[J]. Applied Physics Letters, 2004, 85(22): 5319-5321.
    [168] C.L. Fu, W. Cai, H.W. Chen, S.C. Feng, F.S. Pan, C.R. Yang. Voltage tunable Ba0.6Sr0.4TiO3 thin films and coplanar phase shifters[J]. Thin Solid Films, 2008, 516(16): 5258-5261.
    [169] X.L. Wang, B. Li. Dielectric audio-frequency dispersion in Ba(Ti1-xSnx)O3 ferroelectrics[J]. Solid State Communications, 2009, 149(13-14): 537-539.
    [170] Y. Liu, R.L. Withers, X.Y. Wei, J.D.F. Gerald. Structured diffuse scattering and polar nano-regions in the Ba(Ti1-xSnx)O3 relaxor ferroelectric system[J]. Journal of Solid State Chemistry, 2007, 180(3): 858-865.
    [171] F.T. Du, B. Cui, H.L. Cheng, R.Y. Niu, Z.G. Chang. Synthesis, characterization, and dielectric properties of Ba(Ti1-xSnx)O3 nanopowders and ceramics[J]. Materials Research Bulletin, 2009, 44(9): 1930-1934.
    [172] G. Aldica, M. Cernea, P. Ganea. Dielectric Ba(Ti1-xSnx)O3 (x=0.13) ceramics, sintered by spark plasma and conventional methods[J]. Journal of Materials Science, 2010, 45(10): 2606-2610.
    [173]李远亮,段文创,曲远方,张庆军,王冉然.掺杂Sm2O3对Ba(Ti,Sn)O3的介电性能的影响[J].电子元件与材料, 2011, 30(6): 20-22,25.
    [174] S.J. Wang, T.A. Tan, M.O. Lai, L. Lu. Structural and electrical characteristics of dysprosium-doped barium stannate titanate ceramics[J]. Materials Research Bulletin, 2010, 45(3): 279-283.
    [175] N. Tawichai, T. Tunkasiri, K. Pengpat, S. Eitssayeam, G. Rujijanagul. Dielectric and ferroelectric properties of annealed B2O3 doped Ba(Ti0.9Sn0.1)O3 ceramics[J]. Ferroelectrics, 2011, 415(1): 149-156.
    [176] M. Zenkner, R. K?ferstein, S.G. Ebbinghaus, L. J?ger. The influence of BaGeO3 on the properties of Ba(Ti1-xSnx)O3 ceramics on the basis of sol-gel powders[J]. Journal of Materials Science, 2011, 46(8): 2456-2466.
    [177]付丽新,张良莹,姚熹.钛锡酸锶钡Ba1-xSrxTi0.90Sn0.10O3陶瓷的结构与介电性能[J].功能材料, 2006, 37(6): 963-965, 971.
    [178] J.W. Zhai, B. Shen, X. Yao, L.Y. Zhang, H. Chen. Dielectric properties of Ba(SnxTi1-x)O3 thin films grown by a sol-gel process[J]. Journal of the American Ceramic Society, 2004, 87(12): 2223-2227.
    [179] N. Yasuda, H. Ohwa, S. Asano. Dielectric properties and phase transitions of Ba(Ti1-xSnx)O3 solid solution[J]. Japanese Journal of Applied Physics, 1996, 35(1): 5099-5103.
    [180]é. Bévillon, A. Chesnaud, Y.Z. Wang, G. Dezanneau, G. Geneste. Theoretical and experimental study of the structural, dynamical and dielectric properties of perovskite BaSnO3[J]. Journal of Physics: Condensed Matter, 2008, 20(14): 145217.
    [181] C.L. Fu, F.S. Pan, W. Cai, X.L. Deng. Relaxor behavior of BaZr0.2Ti0.8O3 ceramics with different grains[J]. Integrated Ferroelectrics, 2008, 104(1): 1-7.
    [182] W. Cai, C.L. Fu, J.C. Gao, H.Q. Chen. Effects of grain size on domain structure and ferroelectric properties of barium zirconate titanate ceramics[J]. Journal of Alloys and Compounds, 2009, 480(2): 870-873.
    [183] M.R. Panigrahi, S. Panigrahi. Synthesis and microstructure of Ca-doped BaTiO3 ceramics prepared by high-energy ball-milling[J]. Physica B, 2009, 404(21): 4267-4272.
    [184] H.T. Langhammer, T. Müller, K.H. Felgner, H.P. Abicht. Crystal structure and related properties of manganese-doped barium titanate ceramics[J]. Journal of the American Ceramic Society, 2000, 83(3): 605-611.
    [185] S. Anwar, P.R. Sagdeo, N.P. Lalla. Study of the relaxor behavior in BaTi1-xHfxO3 (0.20≤x≤0.30) ceramics[J]. Solid State Sciences, 2007, 9(11): 1054-1060.
    [186] J.C. Chen, Y. Zhang, C.S. Deng, X.M. Dai. Crystallization kinetics and dielectric properties of barium strontium titanate based glass-ceramics[J]. Materials Chemistry and Physics, 2010, 121(1-2): 109-113.
    [187] Y.X. Li, X. Yao, X.S. Wang, Y.B. Hao. Studies of dielectric properties of rare earth (Dy,Tb,Eu) doped barium titanate sintered in pure nitrogen[J]. Ceramics International, 2011, doi: 10.1016/j.ceramint.2011.04.042.
    [188] N.A. Rejab, S. Sreekantan, K.A. Razak, Z.A. Ahmad. Structural characteristics and dielectric properties of neodymium doped barium titanate[J]. Journal of Materials Science: Materials in Electronics, 2011, 22(2): 167-173.
    [189] S.K. Jo, J.S. Park, Y.H. Han. Effects of multi-doping of rare-earth oxides on the microstructure and dielectric properties of BaTiO3[J]. Journal of Alloys and Compounds, 2010, 501(2): 259-264.
    [190] V.V. Mitic, Z.S. Nikolic, V.B. Pavlovic, V. Paunovic, M. Miljkovic, B. Jordovic, L. Zivkovic. Influence of rare-earth dopants on barium titanate ceramics microstructure and corresponding electrical properties[J]. Journal of the American Ceramic Society, 2010, 93(1): 132-137.
    [191] M. Cernea, C. Galassi, B.S. Vasile, P. Ganea, R. Radu, G. Ghita. Electrical investigations of holmium-doped BaTiO3 derived from sol-gel combustion[J]. Journal of Materials Research, 2010, 25(6): 1057-1063.
    [192] M.M. Vijatovi? Petrovi?, J.D. Bobi?, T. Ramo?ka, J. Banys, B. D. Stojanovi?. Antimony doping effect on barium titanate structure and electrical properties[J]. Ceramics International, 2011, 37(7): 2669-2677.
    [193] M.C. Ferrarelli, C.C. Tan, D.C. Sinclair. Ferroelectric, electrical, and structural properties of Dy and Sc co-doped BaTiO3[J]. Journal of Materials Chemistry, 2011, 21(17): 6292-6299.
    [194] K. Niesz, T. Ould-Ely, H. Tsukamoto, D.E. Morse. Engineering grain size and electrical properties of donor-doped barium titanate ceramics[J]. Ceramics International, 2011, 37(1): 303-311.
    [195] Y. Yuan, S.R. Zhang, X.H. Zhou, B. Tang. Effects of Nb2O5 doping on the microstructure and the dielectric temperature characteristics of barium titanate[J]. Journal of Materials Science, 2009, 44(14):3751-3757.
    [196] Y.Y. Guo, M.H. Qin, T. Wei, K.F. Wang, J.M. Liu. Kinetics controlled aging effect of ferroelectricity in Al-doped and Ga-doped BaTiO3[J]. Applied Physics Letters, 2010, 97(11):112906.
    [197] N. Kumada, H. Ogiso, K. Shiroki, S. Wada, Y. Yonesaki, T. Takei, N. Kinomura. Rising Tc in Bi and Cu co-doped BaTiO3[J]. Materials Letters, 2010, 64(3): 383-385.
    [198] H.T. Langhammer, T. Müller, R. B?ttcher, H.P Abicht. Structural and optical properties of chromium-doped hexagonal barium titanate ceramics[J]. Journal of Physics: Condensed Matter, 2008, 20(8): 085206.
    [199] M. Unruan, T. Sareein, J. Tangsritrakul, S. Prasetpalichatr, A. Ngamjarurojana, S. Anata, R. Yimnirun. Changes in dielectric and ferroelectric properties of Fe3+/Nb5+ hybrid-doped barium titanate ceramics under compressive stress[J]. Journal of Applied Physics, 2008, 104(12): 124102.
    [200] Y. Noguchi, M. Miyayama. Large remanent polarization of vanadium-doped Bi4Ti3O12[J]. Applied Physics Letters, 2001, 78(13): 1903-1905.
    [201] J.T. Zeng, Y.X. Li, Q.B. Yang, Q.R. Yin. Ferroelectric and piezoelectric properties of vanadium-doped CaBi4Ti4O15 ceramics[J]. Materials Science and Engineering B, 2005, 117(3): 241-245.
    [202] F. Moura, A.Z. Sim?es, L.S. Cavalcante, M.A. Zaghete, J.A. Varela, E. Longo. Ferroelectric and dielectric properties of vanadium-doped Ba(Ti0.90Zr0.10)O3 ceramics[J]. Journal of Alloys and Compounds, 2008, 466(1-2): L15-L18.
    [203] Y. Wu, C. Nguyen, S. Seraji, M.J. Forbess, S.J. Limmer, T. Chou, G.Z. Cao. Processing and properties of strontium bismuth vanadate niobate ferroelectric ceramics[J]. Journal of the American Ceramic Society, 2001, 84(12): 2882-2888.
    [204] S.J. Liu, V.Y. Zenou, I. Sus, T. Kotani, M.V. Schilfgaarde, N. Newman. Stucture-dielectric property relationship for vanadium- and scandium-doped barium strontium titanate[J]. Acta Materialia, 2007, 55(8): 2647-2657.
    [205] S. Bandyopadhyay, S.J. Liu, Z.Z. Tang, R.K. Singh, N. Newman. Leakage-current characteristics of vanadium- and scandium-doped barium strontium titanate ceramics over awide range of DC electric fields[J]. Acta Materialia, 2009, 57(17): 4935-4947.
    [206] S.H. Yoon, S.H. Kwon, K.H. Hur. Dielectric relaxation behavior of acceptor (Mg)-doped BaTiO3[J]. Journal of Applied Physics, 2011, 109(8): 084117.
    [207] H.Y. Miao, M. Dong, G.Q. Tan, Y.P. Pu. Doping effects of Dy and Mg on BaTiO3 ceramics prepared by hydrothermal method[J]. Journal of Electroceramics, 2006, 16(4): 297-300.
    [208] F.D. Morrison, D.C. Sinclair, A.R. West. An alternative explanation for the origin of the resistivity anomaly in La-doped BaTiO3[J]. Journal of the American Ceramic Society, 2001, 84(2): 474-476.
    [209] H.I. Yoo, S.W. Lee, C.E. Lee. P-Type Partial Conductivity of Donor(La)-Doped BaTiO3[J]. Journal of Electroceramics, 2003, 10(3): 215-219.
    [210]蒲永平,陈寿田, H.T. Langhammer.掺镧钛酸钡陶瓷晶界的再氧化[J].硅酸盐学报, 2005, 33(10): 1237-1242.
    [211] D. Man?i?, V. Paunovi?, M. Vijatovi?, B. Stojanovi?, L. ?ivkovi?. Electrical characterization and impedance response of lanthanum doped barium titanate ceramics[J]. Science of Sintering, 2008, 40(3): 283-294.
    [212] Y. Noguchi, M. Miyayama, T. Kudo. Direct evidence of A-site-deficient strontium bismuth tantalate and its enhanced ferroelectric properties[J].Physical Review B, 2001, 63(21): 4102-4106.
    [213] Y. Noguchi, I. Miwa, Y. Gosshima, M. Miyayama. Defect control for large remanent polarization in bismuth titanate ferroelectrics-doping effect of higher-valent cations-[J]. Japanese Journal of Applied Physics, 2000, 39(128): L1259-L1262.
    [214] S.H. Yoon, M.H. Hong, J.O. Hong. Effect of acceptor (Mg) concentration on the electrical resistance at room and high (200°C) temperatures of acceptor (Mg)-doped BaTiO3 ceramics[J]. Journal of Applied Physics, 2007, 102(5): 054105.
    [215] S.H. Cha, Y.H. Han. Effects of oxygen vacancies on relaxation behavior of Mg-doped BaTiO3[J]. Japanese Journal of Applied Physics, 2006, 45(10A): 7797-7800.
    [216] J. Jeong, Y.H. Han. Effects of MgO-doping on electrical properties and microstructure of BaTiO3[J]. Japanese Journal of Applied Physics, 2004, 43(8A): 5373-5377.
    [217] H.T. Martirena, J.C. Burfoot. Grain-size effects on properties of some ferroelectric ceramics[J]. Journal of Physics C: Solid State Physics, 1974, 7(17): 3182-3192.
    [218] R. K?ferstein, L. J?ger, M. Zenkner, S.G. Ebbinghaus. Phase transition and dielectric properties of BaTiO3 ceramics containing 10 mol% BaGeO3[J]. Materials Chemistry Physics, 2010, 119(1-2): 118-122.
    [219]张跃,谷景华,尚家香,马岳.计算材料学基础[M].北京:北京航空航天大学出版社,2007.
    [220]程晓农,戴起勋,赵玉涛,袁志钟.材料计算设计及研究进展[J].江苏大学学报(自然科学版), 2003, 24(1): 15-18.
    [221]严辉,杨巍,宋雪梅,吕广宏.第一原理方法在材料科学中的应用[J].北京工业大学学报, 2004, 30(2): 210-213.
    [222] P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas[J]. Physical Review B, 1964, 136(3B): B864-B871.
    [223] W. Kohn, L.J. Sham. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.
    [224] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiohais. Atoms, moleeules, solids, and surfaces: Applications of the generalized gradient approximation for exehange and correlation[J]. Physical Review B, 1992, 46(11): 6671-6687.
    [225] J.P Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
    [226]欧阳桂仓. ZnO光学性质与掺杂的第一性原理研究[D].南昌:江西师范大学, 2008.
    [227]孙源.多铁材料结构与性质的第一性原理研究[D].长春:吉林大学, 2009.
    [228] Z.X. Chen, Y. Chen, Y.S. Jiang. DFT study on ferroelectricity of BaTiO3[J]. The Journal of Physical Chemistry B, 2001, 105(24): 5766-5771.
    [229] Z. Alahmed, H.X. Fu. First-principles determination of chemical potentials and vacancy formation energies in PbTiO3 and BaTiO3[J]. Physical Review B, 2007, 76(22): 224101.
    [230] S. Lee, R.D. Levi, W.G. Qu, S.C. Lee, C.A. Randall. Band-gap nonlinearity in perovskite structured solid solutions[J]. Journal of Applied Physics, 2010, 107(2): 023523.
    [231] R.W. Godby, M. Schlüter, L.J. Sham. Trends in self-energy operators and their corresponding exchange-correlation potentials[J]. Physical Review B, 1987, 36(12): 6497-6500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700