BST薄膜非线性特性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛酸锶钡(Ba_xSr_(1-x)TiO_3,简称BST)薄膜具有非线性强、漏电流小、居里温度可调等特点,因而在介质移相器、压控滤波器等方面有着广泛的应用前景。本文对Ba_xSr_(1-x)TiO_3(x=0.45~0.9)系列陶瓷的晶体结构和介电性能、膜厚均匀性控制、BST薄膜的微结构(包括组成、晶体结构、电畴等)和电压非线性尺度效应、铁电薄膜电压非线性模型、薄膜型介质移相器的设计和制作等重要问题进行了研究,取得了以下研究结果:
     通过研究靶基中心不重合的磁控溅射系统,建立了平面磁控溅射膜厚分布的数学模型,提出了采用T=integral from n=L to (d(x,y)ds)=integral from n=O to (d(ξ(t),ψ(t))·(ξ~('2)(t)+ψ~('2)(t)·dt)~(1/2))来描述靶基中心不重合的平面磁控溅射的膜厚分布情况。在靶基距为72mm、公自转转速比为5.3的条件下,采用自行设计的射频磁控溅射设备和φ120mm靶材制备的BST薄膜膜厚均匀性偏差为2.8%。
     采用压电力显微镜(PFM)研究了BST薄膜中电畴的类型和尺寸。不仅证实BST薄膜中存在90°铁电畴,而且确定了BST薄膜由多畴转变为单畴结构的晶粒临界尺寸(单畴临界尺寸)为31nm左右。
     通过研究BST薄膜的电压非线性尺度效应,我们发现晶粒尺寸和膜厚对薄膜的电压非线性具有重要的作用。随着晶粒尺寸和膜厚的增加,BST薄膜的介电系数、介电系数变化率都逐渐增大。晶粒尺寸对单畴态薄膜的介电系数电压变化率和矫顽场强影响特别显著,而对多畴态薄膜的介电系数电压变化率和矫顽场强影响不明显。
     在上述实验研究的基础上,对铁电材料的电压非线性机理进行了研究。首先,从简单、实用的角度出发写出表征P(E)和ε(E)非线性的数学多项式,根据介电偏压特性曲线和电滞回线的特征值和连续性原理,给出边界条件和初始条件,解出表达式中的各项系数,从而建立了铁电晶体的电压非线性模型。然后,采用理想的晶粒-晶界几何模型,画出铁电陶瓷材料的等效电路,引入晶粒和晶界的大小,从而建立了铁电陶瓷的电压非线性模型。再采用理想二极管等效界面势垒,得到薄膜型平板电容器等效电路,引入膜厚和界面厚度两个尺度变量,
Barium strontium titanate (BaxSr1-xTiO3, short for BST) thin films are potential materials for the applications of microwave devices such as dielectric phase shifters and tunable filters due to their high dielectric nonlinearity, low leakage current and adjusting Curie temperature. The microstructures and dielectric properties of BaxSr1-xTiO3 (x=0.45~0.9) ceramics, film thickness uniformity, microstructures and size effect on dielectric nonlinearities of BST films, model for dielectric nonlinearity of ferroelectric films, design and fabrication of phase shifters were investigated. Moreover, there are a series of results as follows:On condition that the center of the substrate is not coincident with that of the target, the magnetron sputtering system was studied. Under the conditions of planetary movement of a substrate underneath a magnetron sputter cathode, a model on the relation between the film thickness and the parameters, such as rotation speed, revolution speed and the distance from target to substrate, was obtained. The relative film thickness distribution can be expressed by T= . It is found that the relative deviation of film thickness distribution is 2.8% within a diameter of φ 100 mm when the ratio of the rotation speed to revolution speed and the distance from target to substrate are 5.3 and 72 mm, respectively.The species and sizes of domains in BST thin films were investigated by piezoresponse force microscopy (PFM). The results show that there are 90° domains. It is found that the critical grain size from a multi-domain to a single-domain is about 31nm.The size effects on nonlinearity of BST thin films were investigated and the results show that the grain size and film thickness play an important role on nonlinearity of ferroelectric films. The dielectric constant and the tunability of BST thin films increase as the grain size and/or film thickness increase. The tunability and the coercive electric field of BST films with mono-domain configuration are
引文
1. C. L. Chen, J. Shen, S. Y. Chen, et al., Epitaxial growth of dielectric Ba_(0.6)Sr_(0.4)TiO_3 thin film on MgO for room temperature microwave phase shifters, Appl. Phys. Lett., 2001, 78(5): 652~654.
    2. W. J. Kim, W. Chang, S. B. Qadri, et al., Microwave properties of tetragonally distorted (Ba_(0.5)Sr_(0.5))TiO_3 thin films, Appl. Phys. Lett., 2000, 76(9): 1185~1187.
    3. A. Srivastava, V. Cracium, J. M. Howard, et al., Enhanced electrical properties of Ba_(0.5)Sr_(0.5)TiO_3 thin films grown by ultraviolet-assisted pulsed-laser deposition, Appi. Phys. Lett., 1999, 75(19): 3002~3004.
    4. W. J. Lee, H. G. Kim, S. G. Yoon, Microstructure dependence of electrical properties of (Ba_(0.5)Sr_(0.5))TiO_3 thin films deposited on Pt/SiO_2/Si, J. Appl. Phys., 1996, 80(10): 5891~5894.
    5. X. F. Chen, W. G. Zhu, O. K. Tan, et al., (Ba, Sr)TiO_3 thin films by RF multitarget co-sputtering and hydrogen gas sensing, Ferroelectrics, 1999, 232: 71~76.
    6. W. J. Lee, H. G. Kim, Oxygen plasma effects on electrical properties of barium strontium titanate (BST) thin films, Integrated Ferroelectrics, 1995, 7: 207~214.
    7. J. Lee, Y. C. Choi, B. S. Lee, Effect of O_2/Ar ratio and annealing on the properties of (Ba, Sr)TiO_3 films prepared by RF magnetron sputtering, Jpn. J. Appl. Phys., 1997, 36 (6A): 3644~3648.
    8. J. Im, O. Auciell, P. K. Baumann, et al., Composition-control of magnetron-sputter- deposited (Ba_xSr_(1-x))Ti_(1+y)O_(3+z) thin films for voltage tunable devices, Appl. Phys. Lett., 2000, 76(5): 625~627.
    9. W. Zhu, O. K. Tan, J. Ding, et al., Preparation, property, and mechanism studies of amorphous ferroelectric (Ba, Sr)TiO_3 thin films for novel metal-ferroelectric-metal type hydrogen gas sensors, J. Mater. Res., 2000, 15(6): 1291~1302.
    10. W. P. Kang, A. Wisitsora-at, J. L. Davidson, et al., Electron emission from silicon tips coated with sol-gel Ba_(0.67)Sr_(0.33)TiO_3 ferroelectric thin film, J. Vac. Sci. Technol. B, 2001, 19(3): 1073~1076.
    11. Y. Takeshima, K. Tanaka, Y. Skabe, Thickness dependence of characteristics for (Ba, Sr)TiO_3 thin films prepared by metalorganic chemical vapor deposition, Jpn. J. Appl. Phys., 2000, 39(9B): 5389~5392.
    12. J. H. Joo, J. B. Park, Y. Kim, et al., Low temperature chemical vapor deposition of (Ba, Sr)TiO_3 thin films for high density dynamic random access memory capacitors, Jpn. J. Appl. Phys., 1999, 38(2B): 195~198.
    13. Y. Takeshima, K. Shiratsuyu, H. Takagi, et al., Preparation and dielectric properties of the multiplayer capacitor with (Ba, Sr)TiO3 thin layers by metalorganic chemical vapor deposition, Jpn. J. Appl. Phys., 1997, 36(9B): 5870 ~ 5873.
    14. C. S. Kang, H. J. Cho, C. S. Hwang, et al., Deposition characteristics of (Ba, Sr)TiO3thin films by liquid source metal-organic chemical vapor deposition at low substrate temperatures, Jpn. J. Appl. Phys., 1997,36(11): 6946 - 6952.
    15. Y. P. Ding, C. Y. Jin, J. R. Cheng, et al., The electrical properties of Bal-xSrxTiO3 film prepared by a sol-gel method, Proceedings of the first China international conference on high-performance ceramics, 1998, October, 489 ~ 493.
    16. Y. Gim, T. Hudson, Y. Fan, et al., Microstructure and dielectric properties of Bal-xSrxTiO3 films grown on LaAlO3 substrates, Appl. Phys. Lett., 2000,76(8): 1200 - 1202.
    17. W. Chang, J. S. Horwitz, A. C. Carter, et al., The effect of annealing on the microwave properties of Ba0.5Sr0.5.TiO3 thin films, Appl. Phys. Lett., 1999,74(7): 1033 - 1035.
    18. C. L. Canedy, H. Li, S. P. Alpay, et al., Dielectric properties in heteroepitaxial Ba0.6Sr0.4TiO3 thin films: Effect of internal stresses and dislocation-type defects, Appl. Phys. Lett., 2000, 77(11): 1695-1697.
    19. L. Goux, M. Gervais, F. Gervais, et al., Pulsed laser deposition of ferroelectric BST thin films on perovskite substrates: an infrared characterization. International Journal of Inorganic Materials, 2001,3:839-842.
    20. R. Romanofsky, J. Bernhard, G Washington, et al., K-band linear phased array antenna based on Ba0.6Sr0.4TiO3 thin film phase shifters, IEEE MTT-S International Microwave Symposium Digest, 2000, 1351-1354.
    21. W. J. Lee, H. G Kim, Electrical properties of barium strontium titanate (BST) thin films deposited on various Pt-base electrodes. Integrated Ferroelectrics, 1995,11:111-119.
    22. J. M. Lee, S. Y. Kang, J. C. Shin, et al., Improvements in electrical properties of (Ba, Sr)TiO3 capacitors with chemical vapor deposited Pt top electrode using Pt hexafluoroacetonate, Appl. Phys. Lett., 1999, 74(23): 3489 ~ 3491.
    23. S. Y. Cha, S. H. Lee, H. C. Lee, Ti thickness effects in Pt/Ti bottom electrode on properties of (Ba, Sr)TiO3thin film, Integrated Ferroelectrics, 1997,16: 183 ~ 190.
    24. J. H. Joo, J. M. Seon, Y. C. Jeon, et al., Investigation of ruthenium electrodes for (Ba, Sr)TiO3 thin films, Jpn. J. Appl. Phys., 1998,37(6A): 3396 - 3401.
    25. A. M. Hermann, B. Veeraraghavan, D. Balzar, et al., Deposition and characterization of low-loss epitaxial non-linear dielectric thin films for microwave devices, Integrated ferroelectrics, 2000,28(1-4): 161-173.
    26. S. Y. Cha, B. T. Jang, H. C. Lee, Effects of Ir electrodes on the dielectric constants of Sr05TiO3 films, Jpn. J. Appl. Phys., 1999, 38(1 A/B): 49 - 51.
    27. T. Aoyama, S. Yamazaki, K. Imai, Characteristics of (Ba, Sr)TiO3 capacitors with textured Ru bottom electrode, Jpn. J. Appl. Phys., 2000, 39(11): 6348 ~ 6357.
    28. T. Aoyama, M. Kiyotoshi, S. Yamazaki, et al., Chemical vapor deposition of Ru and its application in (Ba, Sr)TiO3 capacitors for future dynamic random access memories, Jpn. J. Appl. Phys., 1999, 37(4B): 2194 - 2199.
    29. J. H. Ahn, W. Y. Choi, W. J. Lee, et al., Annealing of RuO2 and Ru bottom electrodes and its effects on the electrical properties of (Ba, Sr)TiO3 thin films, Jpn. J. Appl. Phys., 1998, 37(1): 284 ~ 289.
    30. J. H. Ahn, G P. Choi, W. J. Lee, et al., Pt/RuO2 hybrid bottom electrodes and their effects on the electrical properties of (Ba, Sr)TiO3thin films, Jpn. J. Appl. Phys., 1998, 37(3A): 958 - 962.
    31. H. J. Cho, C. S. Kang, C. S. Hwang, et al., Structural and electrical properties of Ba0.5Sr0.5TiO3 thin films on Ir and IrO2 electrodes, Jpn. J. Appl. Phys., 1997,36(7A): 874 ~ 876.
    32. S. Hong, H. Bak, I. An, et al., Microstructural and electrical properties of BaxSr1-x TiO3 thin films on various electrodes, Jpn. J. Appl. Phys., 2000, 39(4A): 1796 ~ 1800.
    33. K. Abe, N. Yanase, S. Komatsu, et al., Dielectric and ferroelectric properties of heteroepitaxial Bal-xSrxTiO3 films grown on SrRuO3/SrTiO3 substrates. IEICE Trans. Electron., 1998, E81-C(4): 505-512.
    34. T. S. Kalkur, S. Liang, Y. Lu, Electrical characteristics of MOCVD deposited Bal-xSrxTiO3/YBa2Cu3O7-x on LaAlO3 substrate, Integrated Ferroelectrics, 1995, 11: 129 ~ 136.
    35. S. Stemmer, S. K. Streiffer, N. D. Browning, et al., Accommodation of nonstoichiometry in (100) fiber-textured BaxSr1-xTi1+xO3+z thin films grown by chemical vapor deposition, Appl. Phys. Lett., 1999, 74(17): 2432 ~ 2434.
    36. S. Stemmer, S. K. Streiffer, N. D. Browning, et al., Grain boundaries in barium strontium titanate thin films: structure, chemistry and influence on electronic properties, Interface Science, 2000,8:209-221.
    37. S. Lahiry, V. Gupta, K. Sreenivas, Dielectric properties of sol-gel derived barium-strontium titanate (Ba0.4Sr0.6TiO3) thin film, IEEE, 1998, 0-7803-4959-8: 129 ~ 132.
    38. H. Paek, J. Won, K. S. Choi, et al., Electrical and microstructural degradation with decreasing thickness of (Ba, Sr)TiO3 thin films deposited by RF magnetron sputtering, Jpn. J. Appl. Phys., 1996, 35(11): 5757-5762.
    39. H. J. Gao, C. L. Chen, B. Rafferty, et al., Atomic structure of Ba0.5Sr0.5TiO3 thin films on LaAlO3, Appl. Phys. Lett., 1999, 75(17): 2542 - 2544.
    40. K. H. Lee, C. S. Hwang, B. T. Lee, et al., Variation of electrical conduction phenomena of Pt/(Ba, Sr)TiO3/Pt capacitors by different top electrode formation processes, Jpn. J. Appl. Phys., 1997, 36(9B): 5860 ~ 5865.
    41. L. J. Sinnamon, R. M. Bowman, J. M. Gregg, Investigation of dead layer thickness in SrRuO3/Ba0.5Sr0.5TiO3/Au thin film capacitors, Mat. Res. Soc. Symp. Proc, 2000, 655: 321 - 326.
    42. Y. Fukuda, K. Numata, K. Aoki, et al., Origin of dielectric relaxation observed for Ba0.5Sr0.5 TiO3 thin-film capacitor, Jpn. J. Appl. Phys., 1996,35(9B): 5178-5180.
    43. J. Sok, S. J. Park, E. H. Lee, et al., Characterization of ferroelectric BaSrTiO3 thin films using a flip-chip technique at microwave frequency ranges, Jpn. J. Appl. Phys., 2000, 39(5A): 2752 -2755.
    44. C. L. Canedy, S. Aggarwal, H. Li, et al., Structural and dielectric properties of epitaxial Ba1-xSrxTiO3/Bi4Ti3O12/ZrO2 heterostructures grown on silicon, Appl. Phys. Lett., 2000, 77(10): 1523-1525.
    45. Y. T. Kim, C. W. Lee, Advantages of RuOx bottom electrode in the dielectric and leakage characteristics of (Ba, Sr)TiO3 capacitor, Jpn. J. Appl. Phys., 1996, 35(12A): 6153-6156.
    46. C. H. Mueller, F. W. Vankeuls, R. R. Romanofsky, et al, Characterization of (Ba0.5Sr0 5)TiO3 thin films for Ku-band phase shifters. Integrated ferroelectrics, 2000,28(1-4): 139 - 149.
    47. V. Cracium, R. K. Singh, Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation, Appl. Phys. Lett., 2000, 76(14): 1932 ~ 1934.
    48. B. T. Lee, C. S. Hwang, Influences of interfacial intrinsic low-dielectric layers on the dielectric properties of sputtered (Ba, Sr)TiO3 thin films, Appl. Phys. Lett., 2000, 77(1): 124 -126.
    49. J. Im, S. K. Streiffer, O. Auciello, (BaxSr1-x)Ti1+yO3+z interface contamination and its effect on electrical properties, Appl. Phys. Lett., 2000, 77(16): 2593 - 2595.
    50. P. C. Chen, H. Miki, Y. Shimamoto, et al., Effects of post-annealing temperature and ambient atmospheres on the electrical properties of ultrathin (Ba, Sr)TiO3 capacitors, Jpn. J. Appl. Phys., 1998, 37(9B): 5112-5117.
    51. Y. Fukuda, H. Haneda, I. Sakaguchi, et al., Dielectric properties of (Ba, Sr)TiO3 thin films and their correlation with oxygen vacancy density, Jpn. J. Appl. Phys., 1997, 36(1 IB): 1514 ~ 1516.
    52. Y. Fukuda, K. Numata, K. Aoki, et al., Effects of postannealing in oxygen ambient on leakage properties of (Ba, Sr)TiO3 thin-film capacitors, Jpn. J. Appl. Phys., 1998, 37(4B): 453 ~ 455.
    53. R. Liedtke, M. Grossmann, R. Waser, Capacitance and admittance spectroscopy analysis of hydrogen-degraded Pt/(Ba, Sr)TiO3/Pt thin-film capacitors, Appl. Phys. Lett., 2000, 77(13): 2045 - 2047.
    54. T. Iizuka, K. Arita, I. Yamamoto, et al., Low temperature recovery of Ru/(Ba, Sr)TiO_3/Ru capacitors degraded by forming gas annealing, Jpn. J. Appl. Phys., 2000, 39(4B): 2063~2067.
    55. F. M. Pontes, E. R. Leite, E. Longo, et al., Effects of the postannealing atmosphere on the dielectric properties of(Ba, Sr)TiO_3 capacitors: evidence of an interfacial space charge layer, Appl. Phys. Lett., 2000, 76(17): 2433~2435.
    56. J. D. Baniecki, C. Parks, R. B. Laibowitz, et al., Low temperature hydrogen induced degradation of(Ba, Sr)TiO_3 thin film capacitors, Mat. Res. Soc. Symp. Proc., 2000, 596: 25~30.
    57. J. C. Shin, C. S. Hwang, H. J. Kim, Electrical conduction properties of sputter-grown (Ba, Sr)TiO_3 thin films having IrO_2 electrodes, Appl. Phys. Lett., 2000, 76(12): 1609~1611.
    58. J. H. Ahn, P. C. Mclntyre, L. W. Mirkarimi, et al., Deuterium-induced degradation of (Ba, Sr)TiO_3 films, Appl. Phys. Lett., 2000, 77(9): 1378~1380.
    59. O. Tikhomirov, H. Jiang, J. Levy, Direct observation of local ferroelectric phase transitions in Ba_xSr_(1-x)TiO_3 thin films, Appl. Phys. Lett., 2000, 77(13): 2048~2050.
    60. O. G. Vendik, Dielectric nonlinearity of the displacive ferroelectrics at UHF, Ferroelectrics, 1976, 12: 85~90.
    61.王培英,王欣宇,刘梅冬等.Ba_(1-x)Sr_xTiO_3薄膜的制备及特性研究.功能材料.1998,29(5):536~538.
    62. C. K. Campbell, J. D. Wyak, M. E K. Holm, et al., Relaxation effects in high-voltage barium titanate nonlinear ceramic disk capacitors, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1993, 16(4): 418~423.
    63. V. Joshi, C. P. Dacruz, J. D. Cuchiaro, et al., Analysis of C-V and J-V data of BST thin films. Integrated Ferroelectrics, 1997, 14: 133~140.
    64.杨传仁,苟富均,秦广宇等.BaTiO_3系陶瓷电压非线性特性研究.硅酸盐学报.1999,27(6):671~677.
    65. O. K. Tan, X. E Chen, W. G. Zhu, Ferroelectric (Ba, Sr)TiO_3 thin films for H_2 gas detection by sol-gel and RF sputtering, Ferroelectrics, 1999, 225: 295~302.
    66. D. S. Kil, J. B. Park, D. S. Yoon, et al., Leakage current characteristics of (Ba, Sr)TiO_3 thin films deposited on Ru electrodes prepared by metal organic chemical vapor deposition, Jpn. J. Appl. Phys., 2001, 40(5A): 3260~3265.
    67. N. Fukushima, K. Abe, M. Izuha, et al., Leakage degradation in BST dielectric capacitors with oxide and metal electrodes, Mat. Res. Soc. Symp. Proc., 1998, 493: 3~8.
    68. J. H. Joo, Y. C. Jeon, J. M. Seon, et al., Effects of post-annealing on the conduction properties of Pt/(Ba, Sr)TiO_3/Pt capacitors for dynamic random access memory applications, Jpn. J. Appl. Phys., 1997, 36(7A): 4382~4385.
    69. Y. Shimada, A. Inoue, T. Nasu, et al., Time-dependent leakage current behavior of integrated Ba0.7Sr0.3TiO3 thin film capacitors during stressing, Jpn. J. Appl. Phys., 1996, 35(9B): 4919~ 4924.
    70. S. Maruno, T. Murao, T. Kuroiwa, et al., Effects of oxygen vacancy diffusion on leakage characteristics of Pt/(Ba, Sr)TiO3/Pt capacitor, Jpn. J. Appl. Phys., 2000, 39(5A): 416 ~ 419.
    71. S. S. Kim, C. Park, Leakage current behaviors of acceptor- and donor-doped (Ba0.5Sr0.5)TiO3 thin films, Appl. Phys. Lett., 1999, 75(17): 2554 - 2556.
    72. J. F. Scott, A note on the polarization dependence of leakage current in ferroelectric thin films, Integrated Ferroelectrics, 1999, 23: 187 - 190.
    73. A. Tagantsev, Dc-electric-field-induced microwave loss in ferroelectrics and intrinsic limitation for the quality factor of a tunable component, Appl. Phys. Lett., 2000, 76(9): 1182 ~ 1184.
    74. Y. Shimada, A. Inoue, T. Nasu, et al., Temperature-dependent current-voltage characteristics of fully processed Ba0.7Sr0.3TiO3 capacitors integrated in a silicon device, Jpn. J. Appl. Phys., 1996, 35(1A): 140-143.
    75. K. Yamabe, M. Inomoto, K. Imai, Time-dependent leakage current of BaSrTiO3 film under high temperature bias stress, Jpn. J. Appl. Phys., 1998,37(10A): 1162 - 1164.
    76. S. C. Huang, H. M. Chen, S. C. Wu, et al., Time-dependent dielectric breakdown of paraelectric barium-strontium-titanate thin film capacitors for memory device applications, J. Appl. Phys., 1998, 84(9): 5155-5157.
    77. R. R. Romanofsky, F. W. Vankeuls, J. D. Warner, et al., Analysis and optimization of thin film ferroelectric phase shifters, Mat. Res. Soc. Symp. Proc, 2000,603: 3 - 14.
    78. C. M. Carlson, T. V. Rivkin, P. A. Parilla, et al., Large dielectric constant Ba0.4Sr0.6TiO3 thin films for high-performance microwave phase shifters, Appl. Phys. Lett., 2000, 76(14): 1920-1922.
    79. T. Kawakubo, S. Komatsu, K. Abe, et al., Ferroelectric properties of SrRuO3/(Ba, Sr)TiO3/SrRuO3 epitaxial capacitor, Jpn. J. Appl. Phys., 1998, 37(9B): 5108-5111.
    80. H. Zhu, M. Noda, T. Mukaigawa, et al., Application of ferroelectric BST thin film prepared by MOD for uncooled infrared sensor of dielectric bolometer mode, T. IEE Japan, 2000, 120-E (12): 554 ~ 558.
    81. H. Xu, K. Hashimoto, T. Mukaigawa, et al., Development of Si monolithic (Ba, Sr)TiO3 thin-film ferroelectric microbolometers for uncooled chopperless infrared sensing, Proc. SPIE, 2000,4130: 140-151.
    82. S. Swann, Film thickness distribution in magnetron sputtering, Vacuum, 1988, 38(8-10): 791-794.
    83. D. Briggs, M. P. Sean, Practical Surface Analysis, John Wiley & Son, New York (1983), 511-514.
    84. X. H. Zhu, J. M. Zhu, S. H. Zhou, et al., Domain structures and planar defects in SrBi2Ta209 single crystals observed by transmission electron microscopy, Appl. Phys. Lett., 2001, 78(6): 799-801.
    85. X. Q. Pan, J. C. Jiang, C. D. Theis, et al., Domain structure of epitaxial Bi4Ti3O12 thin films grown on (001) SrTiO3 substrates, Appl. Phys. Lett., 2003, 83(12): 2315-2317.
    86. T. Kiguchi, N. Wakiya, K. Shinozaki, et al., HRTEM investigation of the 90° domain structure and ferroelectric properties of multi-layered PZT thin films, Microelectronic Engineering, 2003, 66: 708-712.
    87. F. Xu, S. Trolier-Mckinstry, W. Ren, et al., Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films, J. Appl. Phys., 2001, 89(2): 1336-1348.
    88. Y. Drezner, S. Berger, Nanoferroelectric domains in ultrathin BaTiO3 films, J. Appl. Phys., 2003, 94(10): 6774-6778.
    89. C. C. Leu, C. Y. Chen, C. H. Chien, et al., Domain structure study of SrBi2Ta2O3 ferroelectric thin films by scanning capacitance microscopy, Appl. Phys. Lett., 2003, 82(20): 3493-3495.
    90. H. Odagawa, K. Matsuura, Y. Cho, Nanometer scale domain measurement of ferroelectric thin films using scanning nonlinear dielectric microscopy, Mat. Res. Soc. Symp. Proc, 2001, 655: 741-746.
    91. Y. Cho, S. Kazuta, K. Matsuura, et al., Scanning nonlinear dielectric microscopy with nanometer resolution, ISAF, 2000, 1: 279-282.
    92. J. Wang, E. Z. Luo, K. H. Wong, et al., Ferroelectric domain configuration and piezoelectric response in (001)-oriented PMN-PT films, Materials Characterization, 2002,48:215-220.
    93. A. Gruverman, M. Tanaka, Polarization retention in SrBi2Ta2O9 thin films investigated at nanoscale, J. Appl. Phys., 2001, 89(3): 1836-1843.
    94. A. Roelofs, T. Schneller, K. Szot, et al., Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity, Appl. Phys. Lett., 2002, 81(27): 5231-5233.
    95. R. Jimenez, M. L. Calzada, A. Gonzalez, et al., Nanoscale properties of ferroelectric ultrathin SBT films, Journal of the European Ceramic Society, 2004, 24: 319-323.
    96. B. Lee, C. Bae, S. H. Kim, et al., Characterization of self-assembling isolated ferroelectric domains by scanning force microscopy, Ultramicroscopy, 2004, 100: 339~346.
    97. J. H. Ferris, D. B. Li, S. V. Kalinin, et al., Nanoscale domain patterning of lead zirconate titanate materials using electron beams, Appl. Phys. Lett., 2004, 84(5): 774~776.
    98. Y. K. Kim, S. S. Kim, H. Shin, et al., Thickness effect of ferroelectric domain switching in epitaxial PbTiO_3 thin films on Pt(001)/Mg(001), Appl. Phys. Lett., 2004, 84(25): 5085~5087.
    99. Y. M. Kang, J. K. Ku, S. Baik, Crystallographic characterization of tetragonal (Pb, La)TiO_3 epitaxial thin films grown by pulsed laser deposition, J. Appl. Phys., 1995, 78(4): 2601.
    100. K. S. Lee, J. H. Choi, J. Y. Lee, et al., Domain formation in epitaxial Pb(Zr, Ti)O_3 thin films, J. Appl. Phys., 2001, 90(8): 4095~4102.
    101. S. K. Streiffer, J. A. Eastman, D. D. Fong, et al., Observation of nanoscale 180°stripe domains in ferroelectric PbTiO_3 thin films, Phys. Rev. Lett., 2002, 89(6): 67601-67604.
    102. A. L. Roytburd, S. P. Alpay, L. A. Bendersky, et al., Three-domain architecture of stress-free epitaxial ferroelectric films, J. Appl. Phys., 2001, 89(1): 553~556.
    103. S. H. Lee, H. M. Jang, S. M. Cho, et al., Polarized Raman scattering of epitaxial PbTiO_3 thin film with coexisting c and a domains, Appl. Phys. Lett., 2002, 80(17): 3165~3167.
    104. E. D. Mishina, N. E. Sherestyuk, D. R. Barskiy, et al., Domain orientation in ultrathin (Ba, Sr)TiO_3 films measured by optical second harmonic generation, J. Appl. Phys., 2003, 93(t0): 6216~6222.
    105. A. Roelofs, N. A. Pertsev, R. Waser, et al., Depolarizing-field-mediated 180° switching in ferroelectric thin films with 90° domains, Appl. Phys. Lett., 2002, 80(8): 1424~1426.
    106. H. Fan, H. E. Kim, Perovskite stabilization and electromechanical properties of polycrystalline lead zinc niobate-lead zirconate titanate, J. Appl. Phys., 2002, 91 (1): 317~322.
    107. Z. Kighelman, D. Damjanovic, M. Cantoni, et al., Properties of ferroelectric PbTiO_3 thin films, J. Appl. Phys., 2002, 91(3): 1495~1501.
    108. C. Loppacher, F. Schlaphof, S. Schneider, et al., Lamellar ferroelectric domains in PbTiO_3 grains imaged and manipulated by AFM, Surface Science, 2003, 532~535: 483~487.
    109.钟维烈,艾树涛,姜斌.钛酸钡和钛酸铅的两个临界尺寸.无机材料学报.2002,17(5):1009~1012.
    110. R. Ahluwalia, W. Cao, Size dependence of domain patterns in a constrained ferroelectric system, J. Appl. Phys., 2001, 89(12): 8105~8109.
    111. H. I. Hasiang, S. F. Yen, Effect of crystallite size on the ferroelectric domain growth of ultrafine BaTiO_3 powders, J. Am. Ceram. Soc., 1996, 79(4): 1053~1060.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700