材料微观结构和试样厚度对小冲杆试验的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小冲杆微试样试验技术由于具有使用极少量材料评估宏观块状材料力学性能的特点,近年来逐渐成为研究的热点。但是小尺寸材料和大尺寸材料在力学和物理化学性质方面均存在着一定程度的尺度效应差异,小冲杆试验得到的材料力学性能能否准确的衡量宏观在役设备材料的力学性能还没有进行深入系统的研究。本文对比分析了目前存在的小冲杆试验结果和常规拉伸试验的ReL和Rm值进行合理回归的问题,结合试验及有限元数值模拟结果详细研究了小冲杆试验中试样在不同变形阶段的受力状态;以力学性能各向异性的A350锻件为研究对象,通过对比小冲杆试验与常规拉伸试验的结果,对各向异性材料中存在的试样取样方向对应问题进行了研究;通过单向轧制和多步交叉轧制,获得具有不同织构的奥氏体不锈钢316L样品,以及通过轧制和热处理手段制备25种具有相同织构不同晶粒度不同厚度的不锈钢316L试样,并进行小冲杆试验,系统地研究试样厚度和晶粒尺寸对于小冲杆试验结果的影响。主要的研究结论和创新如下:
     (1)首次阐明了试样变形过程中的应力状态从弹性弯曲应力占主导并逐步出现薄膜应力,再转化为以薄膜应力为主导而弯曲应力不断减小的演化过程。阐明了小冲杆试验数据中屈服载荷转化为单轴拉伸试验中屈服强度值ReL的关联式中采用试样原始厚度h2参数,以及最大载荷转化为抗拉强度Rm值时采用h参数的理论依据,并极大地提高了线性回归精度。
     (2)A350锻件宏观上纵向拉伸试样呈脆性断裂,而周向拉伸试样呈韧性断裂。对应方向的小冲杆试样均为韧性断裂,表明小冲杆试样在试验中表现出比常规拉伸试验中更好的塑性。对比试验结果发现,两个方向取样的小冲杆试验结果差别不大。
     (3)小冲杆试验对于奥氏体不锈钢316L试样的厚度和晶粒度变化具有很好的敏感性。试验得到的试样屈服强度、抗拉强度和试样的厚度(h)以及厚度-晶粒度比(h/dg)都有很好的相关性。结果表明,除了试样厚度,小试样的厚度-晶粒度比会极大的影响小冲杆试验得到的材料强度。
     (4)通过数据分析,首次提出了小冲杆试验中奥氏体不锈钢316L试样的尺度效应判断准则:当奥氏体不锈钢小冲杆试样的厚度-晶粒度比值h/dg>-8,厚度h>200μm时,得到的材料屈服强度和抗拉强度趋近于定值,由小冲杆试验数据关联得到的材料的力学性能不受材料尺度效应的影响。
Small punch test (SPT) technique which is used for quantifying the properties of bulk materials with greatly reduced volume has been extensively studied recently. However, some size effects on mechanical, physical and chemical properties of material have been observed at small scale (or microscale) and macroscale. So far very few studies have been devoted to verify if the miniature specimen SPT is able to measure the mechanical properties of in-service component correctly and appropriately due to observed mechanical size effects. In this study, the existing correlation equations for correlating yield load Fp, maximum load Fm in SPT to yield strength ReL and ultimate tensile strength Rm in conventional tensile test (CTT) were compared and the rationalities of them were discussed. Evolution of stress state of specimen during SPT was analyzed through finite element model and stress linearization method. CTT and SPT were carried out on A350forging flange, which has anisotropic mechanical properties, to study specimen size effect on mechanical behavior at different scales and to study the corresponding sampling direction that is able to adopted to evaluate the properties of anisotropic material with different specimen orientation and different specimen sizes between SPT and CTT. Additionally, two kinds of316L austenitic stainless steel (ASS) SPT specimens with same thickness but distinct texture were prepared by means of unidirectional rolling and multi-step cross rolling, and25sorts of316L ASS samples with nearly the same crystallographic texture but different thickness and grain size were prepared using different thermo-mechanical process. SPT is used to evaluate the effects of specimen thickness, grain size and ratio of thickness to grain size on mechanical properties of316L ASS. The present work provided a critical ratio of thickness to grain size of SPT sample for engineering application, as well as its mechanism and a basic understanding of the size effect of specimen on SPT, based on which the reliability of SPT in relating the mechanical properties of small specimens to those of bulk counterparts was enhanced. The conclusions obtained in this study are as follows.
     (1) The evolution of stress state of deformation process of specimen in SPT was clarified. The results showed that at initial stage the elastic bending stress is predominant and then the stress state dominated by membrane stress with the decreasing of elastic bending stress and the increasing of punch displacement. The reason for introducing the specimen thickness h2to the equation for correlating Fp with ReL, and the reason for introducing h to equation for correlating Fm with Rm were provided respectively. As a result, the coefficients of determination of linear regression between Fp and ReL, as well as Fm and Rm, were improved.
     (2) The fractographic features of CTT specimens machined along different orientations of anisotropic A350forging flange are different. The CTT longitudinal specimen showed brittle fracture mode, while CTT circumferential specimen showed ductile fracture mode. The results revealed that SPT samples showed more ductile features compared with CTT samples and the SPT is not sensitive to the difference of properties between specimens along different sampling orientation in the anisotropic material.
     (3) The results of study of size effects observed in SPT specimens with different grain size and thickness showed that the SPT is sensitive not only to thickness (h), but also to the ratio of thickness to grain size (h/dg), though a size effect exists between SPT and standard-sized samples. Such an effect becomes more significant especially for the samples with relative larger grain size and smaller specimen thickness.
     (4) A size effect criteria on SPT and critical thickness-grain size-ratio and thickness for AISI316L ASS was provided through data analysis. The yield strength and ultimate tensile strength correlated from the SPT results of ASS316L showed the grain size, thickness and specimen size dependencies significantly in the SPT. When the value of h/dg is larger than~8and h≥200μm, the yield strength and ultimate tensile strength correlated with yield load and maximum load respectively in SPT tend to be constants.
引文
[1]Hu Z F, Yang Z G. An investigation of the embrittlement in X20CrMoV12.1 power plant steel after long-term service exposure at elevated temperature[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2004,383(2):224-228.
    [2]Perets S, Arbel A, Ariely S, et al. Effect of long term elevated temperature service on the properties of type P-22 steel[J]. Materials Science and Technology.2004,20(12): 1519-1524.
    [3]Paul V T, Saroja S, Vijayalakshmi M. Microstructural stability of modified 9Cr-1Mo steel during long term exposures at elevated temperatures[J]. Journal of Nuclear Materials.2008,378(3):273-281.
    [4]Dymek S, Wrobel M, Stepniowska E, et al. Microstructure stability and mechanical properties of an age-hardenable Ni-Mo-Cr alloy subjected to long-term exposure to elevated temperature[J]. Materials Characterization.2010,61(8):769-777'.
    [5]Lucon E. Material damage evaluation and residual life assessment of primary power plant components using specimens of non-standard dimensions[J]. Materials Science and Technology.2001,17(7):777-785.
    [6]Ray A K, Tiwari Y N, Chaudhuri S. Evaluation of mechanical properties and assessment of residual life of a service-exposed water wall tube[J]. Engineering Failure Analysis.2000,7(6):393-402.
    [7]Kayano H, Kurishita H, Kimura A, et al. Charpy impact testing using miniature specimens and its application to the study of irradiation behavior of low-activation ferritic steels[J]. Journal of Nuclear Materials.1991,179-181:425-428.
    [8]Kurishita H, Kayano H, Narui M, et al. Effects of V-notch dimensions on Charpy impact test results for differently sized miniature specimens of ferritic steel[J]. Materials Transactions, Jim.1993,34(11):1042-1052.
    [9]Kadoya Y, Goto T, Date S, et al. Assessment of remaining life using miniature creep rupture tests for fossil power plant parts[J]. Journal of the Society of Materials Science, Japan.1990,39(445):1373-1379.
    [10]Majumdar B S, Jaske C E, Manahan M P. Creep crack growth characterization of type 316 stainless steel using miniature specimens[J]. International Journal of Fracture. 1991,47(2):127-144.
    [11]Hongo H, Yamazaki M, Watanabe T, et al. Evaluation for creep properties of 316FR weld metal with miniature weld metal and full-thickness welded joint specimens[J]. Journal of the Society of Materials Science, Japan.2004,53(5):566-571.
    [12]Sonoya K, Kitagawa M. Evaluation of creep rupture properties with miniature test specimen [J]. Journal of the Society of Materials Science, Japan.1992,41(460): 112-118.
    [13]Kurumlu D, Payton E J, Young M L, et al. High-temperature strength and damage evolution in short fiber reinforced aluminum alloys studied by miniature creep testing and synchrotron microtomography[J]. Acta Materialia.2012,60(1):67-78.
    [14]Maelzer G, Hayes R W, Mack T, et al. Miniature specimen assessment of creep of the single-crystal superalloy LEK 94 in the 1000 degrees C temperature range [J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science. 2007,38A(2):314-327.
    [15]Hyde T H, Sun W, Williams J A. Requirements for and use of miniature test specimens to provide mechanical and creep properties of materials:a review[J]. International Materials Reviews.2007,52(4):213-255.
    [16]Qu J, Dabboussi W, Hassani F, et al. Effect of micro structure on static and dynamic mechanical property of a dual phase steel studied by shear punch testing[J]. ISIJ International.2005,45(11):1741-1746.
    [17]Elwazri A M, Varano R, Wanjara P, et al. Effect of specimen thickness and punch diameter in shear punch testing[J]. Canadian Metallurgical Quarterly.2006,45(1): 33-40.
    [18]Guduru R K, Darling K A, Kishore R, et al. Evaluation of mechanical properties using shear-punch testing[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2005,395(1-2):307-314.
    [19]Hazra S S, Pereloma E V, Gazder A A. Microstructure and mechanical properties after annealing of equal-channel angular pressed interstitial-free steel[J]. Acta Materialia. 2011,59(10):4015-4029.
    [20]Torbati-Sarraf S A, Mahmudi R. Microstructure and mechanical properties of extruded and ecaped AZ31 mg alloy, grain refined with Al-Ti-C master alloy[J]. Materials Science and Engineering:A.2010,527(15):3515-3520.
    [21]Kurtz S M, Jewett C W, Bergstr O M J S, et al. Miniature specimen shear punch test for UHMWPE used in total joint replacements[J]. Biomaterials.2002,23(9):1907-1919.
    [22]Wu F F, Zhang Z F, Shen J, et al. Shear deformation and plasticity of metallic glass under multiaxial loading[J]. Acta Materialia.2008,56(4):894-904.
    [23]Toloczko M B, Abe K, Hamilton M L, et al. The effect of specimen thickness and grainsize on mechanical properties obtained from the shear punch test[J]. ASTM Special Technical Publication.2002,1418:371-379.
    [24]Guduru R K, Nagasekhar A V, Scattergood R O, et al. Thickness and clearance effects in shear punch testing[J]. Advanced Engineering Materials.2007,9(3):157-160.
    [25]lost A, Isselin J, Golek J, et al. Assessment of the constitutive law by inverse methodology:Small punch test and hardness[J]. Journal of Nuclear Materials.2006, 352(1-3):97-106.
    [26]Campitelli E N, Spatig P, Bonade R, et al. Assessment of the constitutive properties from small ball punch test:experiment and modeling[J]. Journal of Nuclear Materials. 2004,335(3):366-378.
    [27]Xinyuan M, Tetsuo S, Takahashi H. Characterization of fracture behavior in small punch test by combined recrystallization-etch method and rigid plastic analysis[J]. Journal of Testing and Evaluation.1987,15(1):30-37.
    [28]Song M, Guan K, Qin W, et al. Comparison of mechanical properties in conventional and small punch tests of fractured anisotropic A350 alloy forging flange[J]. Nuclear Engineering and Design.2012.
    [29]Cuesta I I, Alegre J M. Determination of plastic collapse load of pre-cracked Small Punch Test specimens by means of response surfaces [J]. Engineering Failure Analysis. 2012,23:1-9.
    [30]Misawa T, Suzuki K, Saito M, et al. Determination of the minimum quantity of irradiated ferritic steel specimens for small punch DBTT testing[J]. Journal of Nuclear Materials.1991,179-181:421-424.
    [31]Mao X, Takahashi H. Development of a further-miniaturized specimen of 3 mm diameter for TEM disk (phi 3 mm) small punch tests[J]. Journal of Nuclear Materials. 1987,150(1):42-52.
    [32]Shindo Y, Narita F, Horiguchi K, et al. Electric fracture and polarization switching properties of piezoelectric ceramic PZT studied by the modified small punch test[J]. Acta Materialia.2003,51(16):4773-4782.
    [33]Nambu T, Shimizu K, Matsumoto Y, et al. Enhanced hydrogen embrittlement of Pd-coated niobium metal membrane detected by in situ small punch test under hydrogen permeation[J]. Journal of Alloys and Compounds.2007,446(SI):588-592.
    [34]Se-Hwan C, Jun-Hwa H, In-Sup K. Evaluation of irradiation effects of 16 MeV proton-irradiated 12Cr-lMoV steel by small punch (SP) tests[J]. Scripta Metallurgica Et Materialia.1994,30(12):1521-1525.
    [35]Turba K, Gulcimen B, Li Y Z, et al. Introduction of a new notched specimen geometry to determine fracture properties by small punch testing[J]. Engineering Fracture Mechanics.2011,78(16):2826-2833.
    [36]Auger T, Serre I, Lorang G, et al. Role of oxidation on LME of T91 steel studied by small punch test[J]. Journal of Nuclear Materials.2008,376(3):336-340.
    [37]Jai-Man B, Kameda J, Buck O. Small punch test evaluation of intergranular embrittlement of an alloy steel[J]. Scripta Metallurgica.1983,17(12):1443-1447.
    [38]Mao X, Saito M, Takahashi H. Small punch test to predict ductile fracture toughness JIC and brittle fracture toughness KIC[J]. Scripta Metallurgica Et Materialia.1991,25(11): 2481-2485.
    [39]Misawa T, Adachi T, Saito M, et al. Small punch tests for evaluating ductile-brittle transition behavior of irradiated ferritic steels[J]. Journal of Nuclear Materials.1987, 150(2):194-202.
    [40]Yamamoto T, Kurishita H, Matsushima T, et al. Development of innovative indentation system and its application to cyclic ball indentation test for small-sized specimens[J]. Journal of Nuclear Materials.1996,239(1-3):219-227.
    [41]Das G, Das M, Ghosh S, et al. Effect of aging on mechanical properties of 6063 Al-alloy using instrumented ball indentation technique[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2010, 527(6):1590-1594.
    [42]Das G, Das M, Sinha S, et al. Characterization of cast stainless steel weld pools by using ball indentation technique[J]. Materials Science and Engineering A-Structural Materials Properties Micro structure and Processing.2009,513-14:389-393.
    [43]Prakash R V, Shin C S. An evaluation of stress-strain property prediction by automated ball indentation (ABI) testing[J]. Journal of Testing and Evaluation.2007,35(3): 221-232.
    [44]Das G, Ghosh S, Bose S C, et al. Use of ball indentation technique to evaluate room temperature mechanical properties of a gas turbine blade[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2006, 424(1-2):326-332.
    [45]Huber N, Tyulyukovskiy E, Schneider H C, et al. An indentation system for determination of viscoplastic stress-strain behavior of small metal volumes before and after irradiation[J]. Journal of Nuclear Materials.2008,377(2):352-358.
    [46]Isselin J, lost A, Golek J, et al. Assessment of the constitutive law by inverse methodology:small punch test and hardness[J]. Journal of Nuclear Materials.2006, 352(1-3):97-106.
    [47]Byun T S, Lee E H, Hunn J D, et al. Characterization of plastic deformation in a disk bend test[J]. Journal of Nuclear Materials.2001,294(3):256-266.
    [48]Yamamoto T, Kurishita H, Matsui H. Modeling of the cyclic ball indentation test for small specimens using the finite element method[J]. Journal of Nuclear Materials.1999, 271:440-444.
    [49]Byun T S, Kim J W, Hong J H. A theoretical model for determination of fracture toughness of reactor pressure vessel steels in the transition region from automated ball indentation test[J]. Journal of Nuclear Materials.1998,252(3):187-194.
    [50]白以龙.工程结构损伤的两个重要科学问题——分布式损伤和尺度效应[J].华南理工大学学报(自然科学版).2002(11):11-14.
    [51]陈发良,余同希.结构热力响应及失效的尺度律[J].固体力学学报.1997(1):25-37.
    [52]Kendall K. The impossibility of comminuting small particles by compression[J]. Nature. 1978,272(20):710-711.
    [53]李兆霞,孙正华,郭力,等.结构损伤一致多尺度模拟和分析方法[J].东南大学学报(自然科学版).2007(2):251-260.
    [54]Wakai E, Ohtsuka H, Matsukawa S, et al. Mechanical properties of small size specimens of F82H steel[J]. Fusion Engineering and Design.2006,81(8-14): 1077-1084.
    [55]Kim M C, Lee J B, Kim M W, et al. Empirical Correlation between Parameters from Small Punch and Tensile Curves of Mn-Mo-Ni Low Alloy Steels by Using Test and FE Analysis [J]. Key Engineering Materials.2007,353:420-423.
    [56]Chen X X, Ngan A H W. Specimen size and grain size effects on tensile strength of Ag microwires[J]. Scripta Materialia.2011,64(8):717-720.
    [57]Greer J R, Oliver W C, Nix W D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients[J]. Acta Materialia.2005,53(6): 1821-1830.
    [58]Gruber P A, Solenthaler C, Arzt E, et al. Strong single-crystalline Au films tested by a new synchrotron technique[J]. Acta Materialia.2008,56(8):1876-1889.
    [59]Greer J R, Nix W D. Nanoscale gold pillars strengtnenea tnrougn aisiocation starvation[J]. Physical Review B.2006,73(24541024).
    [60]Uchic M D, Dimiduk D M, Florando J N, et al. Sample dimensions influence strength and crystal plasticity [J]. Science.2004,305(5686):986-989.
    [61]Benzerga A A, Shaver N F. Scale dependence of mechanical properties of single crystals under uniform deformation [J]. Scripta Materialia.2006,54(11):1937-1941.
    [62]Bazant Z P. Design and analysis of concrete reactor vessels:new developments, problems and trends[J]. Nuclear Engineering and Design.1984,80(2):181-202.
    [63]Carpinteri A, Chiaia B. Multifractal scaling laws in the breaking behaviour of disordered materials[J]. Chaos, Solitons and Fractals.1997,8(2):135-150.
    [64]Bazant Z P, Estenssoro L F. Surface singularity and crack propagation[J]. International Journal of Solids and Structures.1979,15(5):405-426.
    [65]Bazant Z P, Kim J, Daniel I M, et al. Size effect on compression strength of fiber composites failing by kink band propagation [J]. International Journal of Fracture.1999, 95(1-4):103-141.
    [66]Planas J, Elices M. Asymptotic analysis of a cohesive crack.2. Influence of the softening curve[J]. International Journal of Fracture.1993,64(3):221-237.
    [67]Sluys L J, de Borst R. Wave propagation and localization in a rate-dependent cracked medium-model formulation and one-dimensional examples[J]. International Journal of Solids and Structures.1992,29(23):2945-29582958.
    [68]Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2010,527(10-11):2738-2746.
    [69]Demir E, Raabe D. Mechanical and microstructural single-crystal Bauschinger effects: Observation of reversible plasticity in copper during bending[J]. Acta Materialia.2010, 58(18):6055-6063.
    [70]Demir E, Raabe D, Roters F. The mechanical size effect as a mean-field breakdown phenomenon:Example of microscale single crystal beam bending[J]. Acta Materialia. 2010,58(5):1876-1886.
    [71]Demir E, Roters F, Raabe D. Bending of single crystal microcantilever beams of cube orientation:Finite element model and experiments[J]. Journal of the Mechanics and Physics of Solids.2010,58(10):1599-1612.
    [72]Dmitrieva O, Svirina J V, Demir E, et al. Investigation of the internal substructure of microbands in a deformed copper single crystal:experiments and dislocation dynamics simulation[J]. Modelling and Simulation in Materials Science and Engineering.2010, 18(0850118).
    [73]Demir E. A method to include plastic anisotropy to orthogonal micromachining of fcc single crystals[J]. International Journal of Advanced Manufacturing Technology.2009, 43(5-6):474-481.
    [74]Demir E. A Taylor-based plasticity model for orthogonal machining of single-crystal FCC materials including frictional effects[J]. International Journal of Advanced Manufacturing Technology.2009,40(9-10):847-856.
    [75]Demir E, Raabe D, Zaafarani N, et al. Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography[J]. Acta Materialia.2009,57(2): 559-569.
    [76]Demir E. Taylor-based model for micro-machining of single crystal fee materials including frictional effects-Application to micro-milling process[J]. International Journal of Machine Tools & Manufacture.2008,48(14):1592-1598.
    [77]Britton T B, Wilkinson A J. Stress fields and geometrically necessary dislocation density distributions near the head of a blocked slip band[J]. Acta Materialia.2012, 60(16):5773-5782.
    [78]Kadkhodapour J, Schmauder S, Raabe D, et al. Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels[J]. Acta Materialia.2011,59(11):4387-4394.
    [79]Durst K, Backes B, Franke O, et al. Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations [J]. Acta Materialia.2006,54(9):2547-2555.
    [80]Gao H J, Huang Y G. Geometrically necessary dislocation and size-dependent plasticity [J]. Scripta Materialia.2003,48(PⅡ S1359-6462(02)00329-92):113-118.
    [81]Zaiser M, Aifantis E C. Geometrically necessary dislocations and strain gradient plasticity-a dislocation dynamics point of view[J]. Scripta Materialia.2003,48(02): 133-139.
    [82]Arsenlis A, Parks D M. Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density[J]. Acta Materialia.1999,47(5):1597-1611.
    [83]Cizek P, Wynne B P, Parker B A. The behaviour of incidental dislocation boundaries and geometrically necessary boundaries during warm tensile deformation of aluminium[J]. Scripta Materialia.1996,35(10):1129-1134.
    [84]徐彤,寿比南,关凯书,等.小冲杆试验方法标准化研究(一)——通用要求[J].压力容器.2010(7):37-46.
    [85]关凯书,王志文,徐彤,等.小冲杆试验方法标准化研究(二)——材料室温拉伸性能的确定[J].压力容器.2010(8):40-46.
    [86]Motz C, Schoberl T, Pippan R. Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique[J]. Acta Materialia.2005,53(15): 4269-4279.
    [87]Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plasticity:theory and experiment[J]. Acta Metallurgica Et Materialia.1994,42(2):475-487.
    [88]Volkert C A, Lilleodden E T. Size effects in the deformation of sub-micron Au columns[J]. Philosophical Magazine.2006,86(33-35):5567-5579.
    [89]Nix W D, Greer J R, Feng G, et al. Deformation at the nanometer and micrometer length scales:Effects of strain gradients and dislocation starvation [J]. Thin Solid Films. 2007,515(6):3152-3157.
    [90]Zhao M, Li J C, Jiang Q. Hall-petch relationship in nanometer size range[J]. Journal of Alloys and Compounds.2003,361(1-2):160-164.
    [91]Mao X Y, Takahashi H. Development of a further-miniaturized specimen of 3 mm diameter for tem disk (phi-3 mm) small punch tests[J]. Journal of Nuclear Materials. 1987,150(1):42-52.
    [92]Mao X, Shoji T, Takahashi H. Characterization of fracture-behavior in small punch test by combined recrystallization-etch method and rigid plastic analysis[J]. Journal of Testing and Evaluation.1987,15(1):30-37.
    [93]Byun T S, Kim S H, Lee B S, et al. Estimation of fracture toughness transition curves of RPV steels from ball indentation and tensile test data[J]. Journal of Nuclear Materials. 2000,277(2-3):263-273.
    [94]Kim B, Lim B. Local creep evaluation of p92 steel weldment by small punch creep test[J]. Acta Mechanica Solida Sinica.2008,21(4):312-317.
    [95]Lim B, Kim B, Park M, et al. Elevated temperature behavior of creep and fatigue in welded p92 steel[J]. International Journal of Modern Physics B.2003,17(8-9): 1621-1626.
    [96]Kato T, Komazaki S, Kohno Y, et al. High-temperature strength analysis of welded joint of RAFs by small punch test[J]. Journal of Nuclear Materials.2009,386:520-524.
    [97]Komazaki S, Kato T. Creep properties measurements of heat-affected zones of high cr ferritic steel by sp creep test[J]. Materials at High Temperatures.2010,27(3):205-209.
    [98]Rodriguez C, Garcia Cabezas J, Cardenas E, et al. Mechanical properties characterization of heat-affected zone using the small punch test:use of the small punch test for the mechanical characterization of small areas such as the different zones that characterize the haz showed promise[J]. Welding Journal.2009,88(9).
    [99]Petch N J. The cleavage strength of polycrystals[J]. Journal of the Iron and Steel Institute.1953,174(1):25-28.
    [100]Hall E O. The deformation and ageing of mild steel.3. Discussion of results[J]. Proceedings of the Physical Society of London Section B.1951,64(381):747-753.
    [101]Blagoeva D T, Hurst R C. Application of the CEN (european committee for standardization) small punch creep testing code of practice to a representative repair welded p91 pipe[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2009,510-11:219-223.
    [102]Stewart G R, Elwazri A M, Varano R, et al. Shear punch testing of welded pipeline steel [J]. Materials Science and Engineering:A.2006,420(1):115-121.
    [103]Das M, Pal T K, Das G. Use of Portable Automated Ball Indentation System to Evaluate Mechanical Properties of Steel Pipes[J]. Transactions of the Indian Institute of Metals.2012,65(2):197-203.
    [104]Wang L M, Wang Z B, Lu K. Grain size effects on the austenitization process in a nanostructured ferritic steel[J]. Acta Materialia.2011.
    [105]Van Der Zwaag S, Field J E. Indentation and liquid impact studies on coated germanium[J]. Philosophical Magazine a (Physics of Condensed Matter, Defects and Mechanical Properties).1983,48(5):767-777.
    [106]Ghosh S, Yadav S, Das G. Study of standard heat treatment on mechanical properties of Inconel 718 using ball indentation technique[J]. Materials Letters.2008,62(17-18): 2619-2622.
    [107]Huang F H, Hamilton M L, Wire G L. Bend testing for miniature disks[J]. Nucl. Technol.;(United States).1982,57(2).
    [108]Manahan M P, Argon A S, Harling O K. The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties of fusion material[J]. Journal of Nuclear Materials.1982,104(1-3):1545-1550.
    [109]Manahan M P. A new postirradiation mechanical behavior test-the miniaturized disk bend test[J]. Nuclear Technology.1983,63(2):295-315.
    [110]Okada A, Lucas G E, Kiritani M. Micro-bulge test and its application to neutron-irradiated metals[J]. Transactions of the Japan Institute of Metals.1988,29(2): 99-108.
    [111]Dobes F, Milicka K. Investigation of local properties of exposed construction parts by means of small punch test[C]. Advances in Mechanical Behaviour, Plasticity and Damage, Vols 1 & 2, Proceedings,2000:1475-1480.
    [112]Dobes F, Milicka K. Estimation of ductility of Fe-Al alloys by means of small punch test[J]. Intermetallics.2010,18(7):1357-1359.
    [113]Milicka K, Dobes F. Small punch testing of P91 steel[J]. International Journal of Pressure Vessels and Piping.2006,83(9):625-634.
    [114]Dobes F, Milicka K. Comparison of conventional and small punch creep tests of mechanically alloyed Al-C-0 alloys[J]. Materials Characterization.2008,59(7): 961-964.
    [115]Dymacek P, Milicka K. Creep small-punch testing and its numerical simulations[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2009,510-11(SI):444-449.
    [116]Dobes F, Milicka K. On the monkman-grant relation for small punch test data[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2002,336(1-2):245-248.
    [117]Ule B, Sustar T, Dobes F, et al. Small punch test method assessment for the determination of the residual creep life of service exposed components:outcomes from an interlaboratory exercise[J]. Nuclear Engineering and Design.1999,192(1):1-11.
    [118]Jai-Man B, Kameda J, Buck O. Small punch test evaluation of intergranular embrittlement of an alloy steel[J]. Scripta Metallurgica.1983,17(12):1443-1447.
    [119]Kato T, Komazaki S, Kohno Y, et al. High-temperature strength analysis of welded joint of RAFs by small punch test[J]. Journal of Nuclear Materials.2009,386-88: 520-524.
    [120]Nakata T, Komazaki S I, Nakajima M, et al. Evaluation of high-temperature tensile properties of reduced activation ferritic steels by small punch test[J]. Journal of the Japan Institute of Metals.2006,70(8):642-645.
    [121]Komazaki S, Kato T, Kohno Y, et al. Creep property measurements of welded joint of reduced-activation ferritic steel by the small-punch creep test[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2009, 510-11:229-233.
    [122]Kohse G, Ames M, Harling O K. Progress in developing DBTT determinations from miniature disk bend tests[J]. Journal of Nuclear Materials.1986,141-143:513-517.
    [123]Misawa T, Adachi T, Saito M, et al. Small punch tests for evaluating ductile-brittle transition behavior of irradiated ferritic steels[J]. Journal of Nuclear Materials.1987, 150(2):194-202.
    [124]Misawa T, Sugawara H, Miura R, et al. Small specimen fracture toughness tests of HT-9 steel irradiated with protons[J]. Journal of Nuclear Materials.1985,133-134: 313-316.
    [125]Suzuki M, Eto M, Nishiyama Y, et al. Small specimen test techniques for the evaluation of toughness degradation[J]. Journal of Nuclear Materials.1992,191-194:1023-1027.
    [126]Turba K, Gulcimen B, Li Y Z, et al. Introduction of a new notched specimen geometry to determine fracture properties by small punch testing[J]. Engineering Fracture Mechanics.2011,78(16):2826-2833.
    [127]Turba K, Hurst R C, Hahner P. Anisotropic mechanical properties of the MA956 ODS steel characterized by the small punch testing technique [J]. Journal of Nuclear Materials.2012,428(1-3SI):76-81.
    [128]Blagoeva D, Li Y Z, Hurst R C. Qualification of p91 welds through small punch creep testing[J]. Journal of Nuclear Materials.2011,409(2):124-130.
    [129]Foulds J, Viswanathan R. Determination of the toughness of in-service steam turbine disks using small punch testing[J]. Journal of Materials Engineering and Performance. 2001,10(5):614-619.
    [130]Matsushita T, Saucedo-Mu N Oz M L, Joo Y H, et al. DBTT Estimation of Ferritic Low Alloy Steels in Service Plant by Means of Small Punch Test[J]. Key Engineering Materials.1991,51:259-264.
    [131]Bulloch J H. Toughness losses in low alloy steels at high temperatures:an appraisal of certain factors concerning the small punch test[J]. International Journal of Pressure Vessels and Piping.1998,75(11):791-804.
    [132]Mao X, Takahashi H, Kodaira T. Use of subsized specimen for evaluating the strength and fracture-toughness of irradiated 2 1/4 CR-1 Mo steel [J]. Journal of Engineering Materials and Technology-Transactions of the ASME.1992,114(2):168-171.
    [133]Mao X, Kameda J. Small-punch technique for measurement of material degradation of irradiated ferritic alloys[J]. Journal of Materials Science.1991,26(9):2436-2440.
    [134]Mao X, Saito M, Takahashi H. Small punch test to predict ductile fracture-toughness jic and brittle-fracture toughness kic[J]. Scripta Metallurgica Et Materialia.1991,25(11): 2481-2485.
    [135]Foulds J R, Woytowitz P J, Parnell T K, et al. Fracture toughness by small punch testing[J]. Journal of Testing and Evaluation.1995,23(1):3-10.
    [136]Mao X, Shoji T, Takahashi H. Characterization of fracture behaviour in small punch test by combined recrystallization-etch method and rigid plastic analysis[J]. Journal of Testing and Evaluation.1987,15(1):30-37.
    [137]Mao X, Saito M, Takahashi H. Small punch test to predict ductile fracture toughness JIC and brittle fracture toughness KIC[J]. Scr Metall Mater.1991,25(11):2481-2485.
    [138]Foulds J, Viswanathan R. Small punch testing for determining the material toughness of low alloy steel components in service[J]. Journal of Engineering Materials and Technology;(United States).1994,116(4).
    [139]Bulloch. J H. Small punch toughness test:some dedail fractographic information. [J]. International Journal of Pressure Vessels and Piping.1995,63:177-194.
    [140]Yang Z, Wang Z W. Relationship between strain and central deflection in small punch creep specimens[J]. International Journal of Pressure Vessels and Piping.2003,80(6): 397-404.
    [141]杨镇,王志文.小冲杆蠕变试验微试样的应变分析[J].化工机械.2004(2):82-86.
    [142]Guan K S, Hua L, Wang Q Q, et al. Assessment of toughness in long term service CrMo low alloy steel by fracture toughness and small punch test[J]. Nuclear Engineering and Design.2011,241(5SI):1407-1413.
    [143]Wu F F, Zheng W, Wu S D, et al. Deformation and fracture behaviors of Ti-based metallic glass under multiaxial stress state[J]. Acta Materialia.2012,60(5):2073-2081.
    [144]Kurtz S M, Foulds J R, Jewett C W, et al. Validation of a small punch testing technique to characterize the mechanical behavior of ultra-high-molecular-weight polyethylene[J]. Biomaterials.1997,18(24):1659-1663.
    [145]Giddings V L, Kurtz S M, Jewett C W, et al. A small punch test technique for characterizing the elastic modulus and fracture behavior of PMMA bone cement used in total joint replacement [J]. Biomaterials.2001,22(13):1875-1881.
    [146]Dobes F, Milicka K, Besterci M, et al. The influence of ECAP on the small punch creep of Al-4 vol.% A14C3 composite[J]. Journal of Materials Science.2010,45(19): 5171-5176.
    [147]Lyu D Y, You H S, Jung H D, et al. Fracture strength evaluation of welded joint in steels by using small punch test[J]. Fracture and Strength 90.1991,51-2:435-440.
    [148]Blagoeva D, Li Y Z, Hurst R C. Qualification of P91 welds through small punch creep testing[J]. Journal of Nuclear Materials.2011,409(2):124-130.
    [149]de Normalisation C E. CWA 15627-2006, Small Punch Test Method for Metallic Materials[S].2006.
    [150]ASTM F2183-02, Standard Test Method for Small Punch Testing of Ultra-High Molecular Weight Polyethylene Used in Surgical Implants[S].2002.
    [151]Cerreta E, Yablinsky C A, Gray G T I, et al. The influence of grain size and texture on the mechanical response of high purity hafnium[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2007,456(1-2): 243-251.
    [152]Chao H Y, Yang Y, Wang X, et al. Effect of grain size distribution and texture on the cold extrusion behavior and mechanical properties of AZ31 Mg alloy[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2011,528(9):3428-3434.
    [153]Yuan W, Panigrahi S K, Su J Q, et al. Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy[J]. Scripta Materialia.2011,65(11):994-997.
    [154]李璞.小冲杆试验评价材料断裂性能研究[D].华东理工大学硕士学位论文,2007.
    [155]Guan K S, Song M, Huang Y C, et al. Definition of yield load on small punch test by means of double slope of elastic curve[J]. Evaluation, Inspection and Monitoring of Structural Integrity.2008:447-450.
    [156]韩浩.小冲杆试验测定金属材料常温性能的研究[D].华东理工大学硕士学位论文,2003.
    [157]Hurst R, Matocha K. The European Code of Practice for Small Punch Testing[J]. Metallurgical Journal.2010, LXIII:5-10.
    [158]杨耀乾,华东交通大学教授.平板理论[M].中国铁道出版社,1980.
    [159]Gurson A. Plastic Flow and Fracture Behavior of Ductile Materials Incorporating void Nucleastion, Growth and Interaction. [D]. Ph Dissertation of Brown University,1975.
    [160]Tvergaard V. Influence of voids on shear band instabilities under plane strain conditions[J]. Int J Fracture Mech.1981,17:389-407.
    [161]Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Mech Sinica.1984,32:157-169.
    [162]张广哲.小冲杆试样厚度尺寸对断裂影响的研究[D].华东理工大学硕士学位论文,2012.
    [163]王志文,徐宏,关凯书,等.化工设备失效原理与案例分析[M].华东理工大学,2010:434.
    [164]Tiwari G P, Bose A, Chakravartty J K, et al. A study of internal hydrogen embrittlement of steels[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2000,286(2):269-281.
    [165]Ritchie R O, Server W L, Wullaert R A. Critical fracture stress and fracture strain models for the prediction of lower and upper shelf toughness in nuclear pressure vessel steels[J]. Metallurgical Transactions a (Physical Metallurgy and Materials Science).1979,10A(10):1557-1570.
    [166]Ritchie R O, Thompson A W. On macroscopic and microscopic analyses for crack initiation and crack growth toughness in ductile alloys[J]. Metallurgical Transactions a (Physical Metallurgy and Materials Science).1985,16A(2):233-248.
    [167]Lynch S P, Moutsos S. A brief history of fractography[J]. Journal of Failure Analysis and Prevention.2006,6(6):54-69.
    [168]Wasnik D N, Kain V, Samajdar I, et al. Resistance to sensitization and intergranular corrosion through extreme randomization of grain boundaries[J]. Acta Materialia.2002, 50(18):4587-4601.
    [169]Gurao N P, Ashkar A A, Suwas S. Study of texture evolution in metastable beta-ti alloy as a function of strain path and its effect on alpha transformation texture[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2009,504(1-2):24-35.
    [170]Chino Y, Sassa K, Kamiya A, et al. Stretch formability at elevated temperature of a cross-rolled AZ31 mg alloy sheet with different rolling routes[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2008. 473(1-2):195-200.
    [171]Al-Samman T, Gottstein G. Influence of strain path change on the rolling behavior of twin roll cast magnesium alloy[J]. Scripta Materialia.2008,59(7):760-763.
    [172]Ostafin M, Pospiech J, Schwarzer R A. Microstructure and texture in copper sheets after reverse and cross rolling[J]. Texture and Anisotropy of Polycrystals Ii.2005,105: 309-314.
    [173]Suwas S, Singh A K. Role of strain path change in texture development [J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2003,356(1-2):368-371.
    [174]毛卫民编著.金属材料的晶体学织构与各向异性[M].北京:科学出版社,2002:213.
    [175]B Roebuck C P A I. A Comparison of the Linear Intercept and Equivalent Circle Methods for Grain Size Measurement in WC/Co Hardmetals2004.
    [176]Engler O, Tom E C N, Huh M Y. A study of through-thickness texture gradients in rolled sheets[J]. Metallurgical and Materials Transactions a.2000,31(9):2299-2315.
    [177]Suwas S, Gurao N P. REVIEWS--Crystallographic texture in materials[J].2008.
    [178]Maoyin W, Renlong X, Bingshu W, et al. Effect of initial texture on dynamic recrystallization of AZ31 Mg alloy during hot rolling[J]. Materials Science & Engineering:A (Structural Materials:Properties, Microstructure and Processing).2011, 528(6):2941-2951.
    [179]Xinsheng H, Suzuki K, Chino Y. Influences of initial texture on microstructure and stretch formability of Mg-3Al-lZn alloy sheet obtained by a combination of high temperature and subsequent warm rolling[J]. Scripta Materialia.2010,63(4):395-398.
    [180]Suwas S, Singh A K, Rao K N, et al. Effect of modes of rolling on evolution of texture in pure copper and some copper base alloys-part Ⅲ:yield locus anisotropy[J]. Zeitschrift Fur Metallkunde.2003,94(12):1313-1319.
    [181]Suwas S, Singh A K, Rao K N, et al. Effect of modes of rolling on evolution of the texture in pure copper and some copper-base alloys part I:rolling texture[J]. Zeitschrift Fur Metallkunde.2002,93(9):918-927.
    [182]Garg R, Gurao N P, Ranganathan S, et al. Evolution of texture and grain boundary microstructure in two-phase (alpha plus beta) brass during recrystallization[J]. Philosophical Magazine.2011,91(32):4089-4108.
    [183]Garg R, Ranganathan S, Suwas S. Effect of mode of rolling on development of texture and microstructure in two-phase (alpha plus beta) brass[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2010, 527(18-19):4582-4592.
    [184]Van Houtte P. A comprehensive mathematical formulation of an extended Taylor--Bishop--Hill model featuring relaxed constraints, the Renouard--Wintenberger theory and a strain rate sensitivity model[J]. Textures and Microstructures.1988,8-9: 313-350.
    [185]Gurao N P, Sethuraman S, Suwas S. Effect of strain path change on the evolution of texture and microstructure during rolling of copper and nickel[J]. Materials Science and Engineering:A.2011.
    [186]Chowdhury S G, Das S, De P K. Cold rolling behaviour and textural evolution in aisi 3161 austenitic stainless steel[J]. Acta Materialia.2005,53(14):3951-3959.
    [187]Chowdhury S G, Singh R. The influence of recrystallized structure and texture on the sensitization behaviour of a stable austenitic stainless steel (AISI 316L)[J]. Scripta Materialia.2008,58(12):1102-1105.
    [188]Gollerthan S, Young M L, Baruj A, et al. Fracture mechanics and microstructure in NiTi shape memory alloys[J]. Acta Materialia.2009,57(4):1015-1025.
    [189]Dey S R, Hollang L, Beausir B, et al. Shear banding during cyclic deformation of sub-microcrystalline nickel[J]. Scripta Materialia.2010,62(10):770-773.
    [190]Cao Y, Xue Z, Chen X, et al. Correlation between the flow stress and the nominal indentation hardness of soft metals[J]. Scripta Materialia.2008,59(5):518-521.
    [191]Miyahara K, Tada C, Uda T, et al. The effects of grain and specimen sizes on mechanical-properties of type-316 austenitic stainless-steel [J]. Journal of Nuclear Materials.1985,133(AUG):506-510.
    [192]Igata N M K U, Shuji. Effects of specimen thickness and grain size on the mechanical properties of types 304 and 316 austenitic stainless steel[J]. The Use of Small-Scale Specimens for Testing Irradiated Material.1986:161-170.
    [193]Ng K S, Ngan A H W. Breakdown of Schmid's law in micropillars[J]. Scripta Materialia.2008,59(7):796-799.
    [194]Karthik V, Laha K, Parameswaran P, et al. Small specimen test techniques for estimating the tensile property degradation of mod 9Cr-lMo steel on thermal aging[J]. Journal of Testing and Evaluation.2007,35(4):438-448.
    [195]Ma Y W, Yoon K B. Assessment of tensile strength using small punch test for transversely isotropic aluminum 2024 alloy produced by equal channel angular pressing[J]. Materials Science and Engineering:A.2010,527(16-17):3630-3638.
    [196]Yuan W, Panigrahi S K, Su J Q, et al. Influence of grain size and texture on Hall--Petch relationship for a magnesium alloy[J]. Scripta Materialia.2011,65(11):994-997.
    [197]Ozkan C S, Nix W D, Gao H J. Stress-driven surface evolution in heteroepitaxial thin films:Anisotropy of the two-dimensional roughening mode[J]. Journal of Materials Research.1999,14(8):3247-3256.
    [198]Greer J R, Oliver W C, Nix W D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients[J]. Acta Materialia.2005,53(6): 1821-1830.
    [199]Parthasarathy T A, Rao S I, Dimiduk D M, et al. Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples[J]. Scripta Materialia.2007,56(4):313-316.
    [200]Norfleet D M, Dimiduk D M, Polasik S J, et al. Dislocation structures and their relationship to strength in deformed nickel microcrystals[J]. Acta Materialia.2008, 56(13):2988-3001.
    [201]崔约贤,王长利.金属断口分析[M].哈尔滨工业大学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700