功率超声对Pb-Sn合金凝固行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功率超声技术是以物理、机械、电子、材料等学科为基础的高新技术,它是以超声能量使物体或物性某些状态发生变化,或者使这种改变的过程加快的一门应用技术。与常规处理技术比较,功率超声处理技术具有许多特点,它常常能大幅度地提高处理速度和处理质量,完成一般技术所不能完成的工作。因此,功率超声处理技术在现代工业、农业、国防和医药卫生、环境保护等部门得到越来越广泛地应用。在金属凝固过程中施加功率超声处理技术,是改善金属凝固组织、提高材料机械性能的最有效方法之一。
     在功率超声作用下的熔融金属凝固行为研究中,作者首先进行了超声处理实验系统的设计、计算,确定了变幅杆的材质和尺寸,分析了功率超声作用下熔体的声场特性和热效应,研究了功率超声对5%Pb-Sn合金凝固过程的影响。试验结果表明:在Pb-Sn合金凝固过程中导入功率超声,不仅显著细化了初生β相,使之均匀分布在基体上,而且细化了共晶组织(α+β)。超声功率从200W提高到600W时,细化程度明显。
     本文从金属凝固过程的热力学和动力学角度初步探讨了功率超声的细化机理。当超声导入金属熔体后,凝固条件被改变,熔体中产生的空化泡将以极高的速度闭合或崩溃,从而在熔体内部局部微小区域产生瞬时高温、高压和强烈的冲击波。强烈的冲击波会击碎初生晶体,使之成为破碎的晶核,在声流的搅拌作用下,又使其弥散地分布于熔池中,相当于增加了外来核心,因而使晶粒得到细化。空化效应产生的高温和枝晶的温升使枝晶熔断,也增加了形核率,从而增加了晶粒数目,减少了平均晶粒尺寸。
     另外,研究认为施振温度过高和过低都会明显影响超声波对凝固组织的细化作用。如果施振温度过高,一方面由于超声作用时间较长,加上媒质的吸声效应,则使熔体自身温度提高,造成细化效果减弱;另一方面,由于温度的升高,空化泡内的压力将增大,从而使空化强度减弱,细化效果不明显。如果施振温度过低,熔融合金粘度就会增大,致使声空化和声流效应发挥不了应有的作用。
Power ultrasonic is a high technology based on physics, mechanics, electronics, materials and so on, and it is an applied technology that change some aspects of objects or properties, or speed this change by ultrasonic energy. Comparing with general technologies, power ultrasonic treatment has a lot of characteristics that can greatly advance process speed and quality, and accomplish what some general technologies cannot do. So it is applied more and more in modern industry, agriculture, national defence, medicine and environment protect. Power ultrasonic treatment is one of the effective way to improve solidification structure and mechanical properties of metals in the process of metal solidification.
    Experimental system of power ultrasonic treatment is designed. The material and size of Amplitude Transformer Horn and the Sandwich Piezoelectric Transducer are calculated. Sound field characteristic and heating effect in melts under ultrasonic treatment are discussed. Then the effect of power ultrasonic on solidification process of 5%Pb-Sn alloy is studied. The results show that the transmission of power ultrasonic during solidification process of Pb-Sn alloy not only can greatly refine grains of the primary & phase and the growing dendrite, and disperse it homogeneously, but also refine eutectic (a + B ) phase. Ultrasonic power is increased from 200 W to 600 W, the effect of refining particles is significant.
    According to the results, the mechanisms of grain refining with power ultrasonic are analyzed by thermodynamics and kinetics of solidification process. After imposing power ultrasonic on metal melts, solidification condition can be changed. Cavitation in melt will close or collapse at a very high speed, then a local zone with high temperature, pressure and powerful shock wave are formed. Powerful shock wave will break down the primary crystal and the growing dendrite, making them particle crystal. With the stirring of acoustic streaming, particle crystal is dispersed in melt, as is equal to increase the number of external nucleus. So crystal grains are refined. Dendrite is molten and broken, so that it also increases the number of nucleation and reduces the average size of paticles.
    Otherwise, the higher and lower melt temperature is disadvantageous to refinement and improvement on solidification process. When melt temperature is too high, the time of ultrasonic treatment is so longer as to result obvious heating effect, which make the structure coarse due to acoustic absorption. In the other side, the pressure in cavitation bubble will increase, which reduce the intensity of cavitation. On the contrary, when melt temperature is too low, the melt viscidity becomes intensive, so cavitation and acoustic streaming are in no effect.
引文
[1] 克洛福德著,杜连耀,应崇福译.超声工程[M].北京:科学出版社,1959
    [2] 应崇福.超声学[M].北京:科学出版社,1990:8-86,456-527
    [3] 声学研究进展.中科院声学所成立30周年论文集[C].1994:154-16
    [4] W.P.Mason, Electromechanical Transducer and WaveFilters[M], VanNostrand, NewYork1948
    [5] Eiji Mori, etal.[C].Ultrasonics International 89 Conference Proceedings,256
    [6] 程存第主编.超声技术—功率超声及其应用[M].陕西:陕西师范大学出版社,1993:64-71
    [7] E.Mori,etal.[C].Ultrasonics International 1977 Conference Proceedings,262
    [8] H.Flynn, Physics of Acoustic Cavitationin Liquids, Physical Acousties, W.RMason, ed., Academic Press, NewYork 1964, 1B, 167
    [9] C.E.Nuadeand A.T.Ellis,Trans.Am.Soc.Mech.Engrs. 1961 ,D83:648
    [10] D.F.Gaitan, J.A.S.A.1992;91:3180
    [11] 汪承浩,赵哲英.声学学报,1982,7:364-371
    [12] 候立琪,林仲茂,应崇福.声学学报,1979,(4):271-278
    [13] Lin ZhongMao, et al. A Novel,high Efficiency Ultrasonic Emulsification Device and its Applications [C]. Ultrasonic Technology 1987, (Editor:KohjiToda), Toyohashi International Conferenceon Ultrasonic Technology, MYU Tokyo, 1987,309-312
    [14] 林仲茂.超声变幅杆的原理和设计[M].北京:科学出版社,1987
    [15] 戴向国,傅水根,王先逵,张桂香.新型超声变幅杆结构设计.现代制造工程,2002 (4):22-23
    [16] 林书玉,张福成.大尺寸夹心式压电换能器的设计.应用声学,1994,13(3):30-33
    [17] 林书玉.A3夹心式压电超声扭转换能器的研制.声学技术,1996,14(4):159-161
    [18] 林书玉,张福成.模式转换弯曲振动超声换能器的研究.应用声学,1994,13(1):37-39
    [19] 林书玉.扭转振动压电超声换能器的研究.声学技术,1995,14(3):135-138
    [20] 林书玉.弯曲振动压电陶瓷换能器.压电与声光,1994,16(5):27-30
    [21] 林书玉.纵-扭复合振动模式指数型复合超声变幅杆的研究.应用声学,1997,16(5):42-46
    [22] 阮世勋.扭振超声变幅杆谐振参数测定方法的研究.应用声学,1996,(2):27-33
    [23] 阮世勋.几种扭振复合超声变幅杆的研究.应用声学,1998,17(1):21-27
    [24] 林仲茂.20世纪功率超声在国内外的发展.声学技术2000,19(02):101-105
    [25] Eskin G I. Ultrasonic Treatment of Molten Aluminum. Metallurgiya, Moscow: 1965
    [26] Abramov O V, Gurevich Ya B. Fiz i Knim Obrab otki Mater, 1974, (1): 45
    [27] Dobatkin V I, Eskin G I. The Effect of High Intensity Ultrasound on the Phase Interface in Metals. Nauka, Moscow: 1986.87
    [28] Eskin G I. Izvestiya Akad Nauk SSSR. OTN. Metallurgiya i Toplivo, 1963, (1): 118
    [29] Eskin G I, Yu P, Makarov G S. Effect of Cavitation Melt Treatment on the Structure Refinement and Property Imnprovement in Cast and Deformed Hypereutectic Al-Si Alloys. Mater Sci Forum, 1997.242:65~70
    
    
    [30] 李英龙等.功率超声对A1-Si合金组织合性能的影响.中国有色金属学报,1999,9(4):719
    [31] 赵忠兴,穆光华等.超声波对铸造合金组织和性能的影响.铸造,1996,(3):21
    [32] Abramov O V. Solidification of Metals in an Ultrasonic Field. Metallurgiya Moscow,1972
    [33] Abramov O V, Milenin E N, Neymark V E. Ultrasonic Methods for improvement Manufacturing Processes. Mashinostroenie, Moscow, 1970:349
    [34] Abramov O V. Action of high Intensity Ultrasound on Solidifying Metals. Ultrasonics, 1987,25(3): 73
    [35] Taha M A, Mahallawy N A, Abdel-Rehim M. Structure Development in Solidified Alloys. Metall, 1983, 37(8): 788
    [36] Abdel-Rehim M, Reif Wpractical. Applications for Solidification of Metals and Alloys under Ultrasonic Vibrations. Metall, 1984,38(12): 1156
    [37] 潘进,杨德明,尹新方,万红.复合材料进展.北京:航空工业出版社,1994
    [38] 巫迎春,苏肇建.复合材料进展.北京:航空工业出版社,1994
    [39] 马立群,陈锋,舒光冀.用高能超声法制备微细颗粒增强金属基复合材料.材料研究学报,1995,9(4):372-375
    [40] Haruyki NaKanishi, YoshiKi TsumeKawa, Masairo Okumiy. Ultrasonic Influence in Alumina Fiber/Molten Aluminum System. Mater. Trans, 1993, 34 (1) : 62~68
    [41] 中西治通,恒川好树,奥宫正洋.生成发热反应应用粒子溶汤系超声波溶浸.日本金属学会志.1993.57(1):81~87
    [42] Sartor B. Staats H. Seemann J H. Untersachungen uber Ultraschall dispergierung Von AL-Oxid in Zinnschmelzen. Metall, 1974 (28) : 771~777
    [43] 吕毓雄,毕敬,申红伟,马宗义,高荫轩.超声液相复合工艺中超声对金属熔体与增强颗粒的作用.中国有色金属学报,1993,3(1):58~61
    [44] Polakovic A. Sebo P. Ivan J. Augustinicova Z. The Effect Ultrasound On the Wetting of Graphite by Molten Aluminium. Vltrasonics, 1978 (9) : 210~212
    [45] 中西治通,恒川好树,毛利尚武,奥宫正洋,新美格.固液界面濡性及超声波加振影响.轻金属,1993,43(1):8~13
    [46] 王俊,陈锋,张力宁,舒光冀,孙宝德,周尧利.高能超声液相复合工艺中超声寻金属熔体与增强颗粒的作用.第一届全国铸造复合材料学术会议论文集,1997
    [47] 薛群基,徐康.纳米化学.化学进展,2000,12(4):431~444
    [48] 杜仕国,施冬梅,邓辉.纳米材料的特异效应及其效应.自然杂志,2000,22(2):101~106
    [49] Suslick, Kenneth S.; Price, Gareth J. Applications of Ultrasound to Materials Chemistry. Annual Review of Materials Science, 1999, 29:295~326
    [50] Katabi, G.;Cao, X.; Gedanken, A.; Prozorov, R.; Koltypin, Yu. Sonochemical Preparation of Amorphous Nickel. Journal of Non-Crystalline Solids, 1996, 201:159~162
    [51] 林金谷,邹炳锁,王玥菊,陈国幼,徐积仁.用超声化学方法产生超细非晶态铁微粒.科学迪通报,1995,40(15):1370~1373
    [52] Shafi.V.P.M., Gedanken A., Goldfarb R. B., and Felner I. Sonochemical Preparation of Nanosized Amorphous Fe-Ni Alloys. J. Appl. Phys, 1997, 81:6901
    [53] Suslick, K.S.; Hyeon, Y.; Fang, M.; Cichowlas, A.A..Sonochemical Synthesis of Nanostructured Catalysts. Materials of Science and Engneering .A, 1995, 204: 186~192
    
    
    [54] Katoh, R.; Tasaka, Y.; Sekreta, E.; Yumura, M. Sonochemical Production of a Carbon Nanotube. Ultrasonics Sonochemistry, 1999, 12 (2): 185~187
    [55] Shafi, K.V.RM.; Wizel, S.; Prozorov, T.; Gedanken, A. The Use of Ultrasound Radiation for the Prepation of Magnetic Fhuids. Thin Solid Films. 1998. 318: 38~41
    [56] 王琪等.中国专利,CN1280993A(2000)
    [57] Pachik O, Kataky G, Mastai Y, Gedanken. A New Method for Nanofabrication of Structures Analogous to "Core-Shell" Vesides. Advanced Materials, 1999,11 (15): 1289
    [58] Buhro,W.E.;Trentler, T.J.;Suryanarayanan, R.; Sastry, S.M.L. Sonochemical Synthesis of Nanocrystalline Molybdenum Disilicide (MoSi2). Materials of Science and Engneering .A, 1995, 204: 193~196
    [59] Li, B.; Xie, Y.; Huang, J.; Qian, Y. Sonochemical Synthesis of Silver, Copper and Lead Selenides. Ultrasonics Sonochemistry, 1999, 6:217~220
    [60] 梁新义,秦永宁,齐晓周,郑为明,李健.超声共沉淀法制备LaCO_3;纳米微品的研究.化学物(?)学报,1998,11(4):375~378
    [61] 崔海宁,钟红帆,王荣,汪冬梅.化学溶液法合超声化学法制备硫化镉薄膜.材料研究学报,1999,13(4):419~422
    [62] 崔海宁,王荣等.溶液生长半导体薄膜的方法.中国专利,CN1184079A,1998
    [63] 李光,冯伟骏,李喜需,宋美丽.功率超声作用下纳米氧化铜粉体的制备.材料导报,2003,17(9):44~45
    [64] 鲍慈光等,超声乳化共沉淀法制备氧化锌压敏电阻复合粉体.中国专利,CN1186770A,1996
    [65] [日]日本机械工程学会论文集[C].1989.55(517):2481~2486
    [66] 张云电.超声加工及应用[J].北京:国防工业出版社.1995,202~208
    [67] 阮世勋.国外超声振动切削概况.工具技术,1982,1:129
    [68] K. F. Graff. Ultrasonics: Histrorical Aspenix. Ultrasonics Symposium Proceedings, Phenix,oct Oct 1997
    [69] 凌尔昌.超声冷拔钢管的研究[C].重庆第二届应用声学学术会议论文集,1984.205
    [70] 冯若主编.超声手册[M].南京:南京大学出版社.2001
    [71] S.R.Rich,Proc.Am. Electroplat.Soc., 42 (1955) 137
    [72] Y.Okahata and H.Noguchi, Chem.Lett., (1983) 1517
    [73] 范金辉,翟启杰.物理场对金属凝固组织的影响.中国有色金属学报,2002,12(5) (?)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700