疏水催化剂及氢—水液相催化交换性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢-水液相催化交换(LPCE)可用于含氚水去氚化和重水生产等,疏水催化剂制备及性能是该技术的关键要素。论文首先计算了D/H、T/D和T/H体系的交换平衡常数并进行了D/H和T/D体系分离因子的实验测量,分析了平衡常数和分离因子的关系以及浓度对分离因子的影响;其次,针对规整结构疏水催化剂进行了相关制备技术的基础研究;根据氢-水同位素交换的多相催化过程,以聚甲基丙烯酸甲酯(PMMA)为造孔剂进行了疏水催化剂的造孔研究,实现交换效率的改善(物理过程),Pt金属表面修饰少量氧化物(氧化物@Pt)实现交换活性的提高(化学过程);最后,在实验结果基础上进行了不同出口浓度的交换流程设计,并探讨了生产超轻水和重水去氚化的LPCE流程。数值模拟优化交换参数和预测交换性能,并进行了实验的验证。具体如下:
     (1)根据统计热力学和拉乌尔定律分别计算氢气分子和汽态水分子间氢同位素交换的平衡常数及汽液相转变平衡常数。以3%Pt/聚苯乙烯二乙烯基苯为疏水催化剂,实现密闭条件下H2-HDO(1)和D2-DTO(1)在不同温度的静态交换平衡,并研究不同D/H初始浓度(2at%和3.5at%)对分离因子的影响。结果表明,在低浓度下的氢-水液相催化交换,可以用平衡常数代替分离因子,最大误差D/H<8%,T/D<2%。不同的初始浓度对D/H分离因子的影响可以忽略。汽相催化交换平衡常数、汽液相转变平衡常数和液相催化交换平衡常数(分离因子)均随温度升高而降低,即表现出交换温度越低重元素越容易向液态水中转移,这是用于评价和设计交换方式的基本前提。
     (2)以炭黑为载体,乙二醇为分散剂,甲醛为还原剂进行浸渍-液相原位还原法合成Pt/C。乙二醇和水(2:1,体积比)为溶剂,Pt负载量低于20%的条件下,制备的铂纳米粒子平均粒径可以控制在2.4nm以下,且粒径分布窄,其零价态约为60%。晶粒生长易显露面为Pt(111)。不同比表面积的分散载体负载的活性金属粒径大小相差不大。氧化气氛对活性金属的表面化学状态影响显著。
     (3)采用聚四氟乙烯(PTFE)乳液对Pt/C进行疏水处理,获得了以05.5mm多孔陶瓷球为支撑和不锈钢纤维毡为支撑的0.8%Pt/C/PTFE疏水催化剂。陶瓷球载体的疏水催化剂强度高,易装填。不锈钢纤维毡负载的疏水催化剂易于制备加工成各种装填规格,疏水催化剂和支撑载体结合强度高。H2-HDO液相催化交换的总体积传质系数随活性金属负载量增加而提高,在较小气液比时存在一个优化的装填比(-30%)。氢气和汽态水分子经过扩散迁移(物理过程)后在单质铂和铂氧化物的共同作用下(化学过程)实现氢同位素最快交换。
     (4) PMMA造孔剂对疏水催化剂进行造孔研究。疏水催化剂的物性参数、微观结构分别进行了测试表征,并进行了H2-HDO液相催化交换实验。结果表明,在PTFE成型处理温度(365℃)附近,PMMA发生分解(>85wt%)并释放大量气体,适合用于疏水催化剂的造孔。造孔前后的疏水催化剂透气率由11.39×102L·min-1·m-2提高到22.44×102L·min-1·m-2,比表面积由28.5m2·g-1增加到63.2m2·g-1。氢-水催化交换的柱效率提高20%~25%。效率提高主要归因于氢气和汽态水分子的反应物和交换产物在疏水催化剂内部能快速进出活性位点,加快了扩散迁移,减少了内扩散效应(物理过程)。
     (5)纳米囊技术合成Pt3M (Fe、Cr和Ni)/C。通过XPS和XRD分析活性金属中掺杂元素存在的化学状态和相结构。Pt3M/C经疏水处理后进行了H2-HDO催化交换实验。掺杂过渡族元素进入活性金属Pt中,Ni与Pt形成了合金结构(固溶体),Cr和Fe更多以氧化物的形式存在于Pt表面,最终形成的催化剂结构为氧化物@Pt,而不是M@Pt。表面修饰成氧化物结构比掺杂金属形成合金结构的交换效率具有更明显提高,即交换效率的关系为:Pt3Cr/C/PTFE>Pt3Fe/C/PTFE>Pt3Ni/C/PTFE>Pt/C/PTFE。这主要是由于在铂表面存在少量氧化物,加速了活性氢原子与活性水分子形成水合离子,再通过质子传递方式以较快的速度实现了氢同位素的交换,并释放出氢同位素原子和水分子(化学过程)。
     (6)在气液比1.53、交换温度70℃的条件下,交换催化层的理论塔板高度(HETP=34.2cm)要稍优于国外报道的值。当交换柱出口水中氘浓度(xb)改变时,其催化层有效高度(h)将呈非线性规律变化。设计的超轻水生产和重水去氚化工艺流程可为实际应用提供一种设计参考。基于氘元素的物料平衡和装填柱内的交换反应平衡关系,开展了交换流程的数值模拟。在气液比1、交换温度20℃-75℃条件下,在层装的交换柱内进行H2-HDO催化交换实验。随交换温度升高实验值的变化趋势与数值模拟结果一致,但计算值要稍高于实验值。数值模拟结果还表明,氢-水液相催化交换存在一个优化的交换温度,且随气液比改变而发生变化。交换性能随理论塔板数增多呈非线性增加。66.5-665Pa/级的压力降对交换性能没有显著影响。
Hydrogen isotope exchange reactions between hydrogen and water over a catalyst are important in water detritiation and heavy water production. Hydrophobic catalysts are substances that repel liquid water but allow the transport of gaseous reactants and reaction products to and from catalytic active centers. Given the need to develop these catalysts, we used a statistical thermodynamic method to calculate the equilibrium constants for D/H, T/D, and T/H exchanges. The separation factors for D/H and T/D exchange reactions were measured via static exchange experiments. We analyzed the effect of hydrogen isotope concentration on the separation factor for D/H exchange and studied the ordered structures of hydrophobic catalysts. We successfully prepared foamed and cellular structures of hydrophobic catalysts by adding polymethyl methacrylate (PMMA). Pt surfaces were modified using metal oxides to improve the exchange activities of modified hydrophobic catalysts. The liquid phase catalytic exchange (LPCE) process was designed based on the results of the exchange experiment. The production of deuterium-depleted water and water detritiation by LPCE were also designed. We performed numerical simulations to determine the optimum operating parameters and to predict the exchange performance of the column. The simulation results were verified through the experiments. All the research contents and results are as follows:
     (1) According to statistical thermodynamic methods and Raoult's law, the equilibrium constants for D/H, T/D, and T/H exchange reactions between hydrogen and water vapor as well as those for water vapor-liquid water phase transition can be computed. The static exchange equilibria of H2-HDO (1) and D2-DTO (1) were obtained at different temperatures in a closed reactor. Pt/styrene divinylbenzene copolymer (Pt/SDB) was used as a hydrophobic catalyst. The results show that the theoretical equilibrium constants of H2-HDO (1) and D2-DTO (1) exchange reactions were similar to the separation factor at low concentrations of deuterium or tritium. The maximum errors of D/H and T/D were less than8%and2%, respectively. In addition, the effect of low deuterium concentrations on the separation factor could be ignored. The equilibrium constants of vapor phase catalytic exchange, water phase transition, and liquid phase catalytic exchange decreased with increased temperature. Heavy elements in the gas phase were easily transferred to the liquid phase at low exchange temperatures. The results were used to evaluate the exchange capacities.
     (2) Carbon-supported Pt catalysts were prepared in dispersant ethylene glycol via the impregnation-liquid-reduction method with formaldehyde as the reducing agent. The mean particle size was<2.4nm in the Pt/C catalyst for a Pt-loaded content of<20%. Pt0, Pt2+, and Pt4+coexisted in the catalyst, and about60%of which was Pt0. The Pt (111) crystal surface was easily exposed. The differences in particle sizes of Pt-supporting different carriers were insignificant. The oxidation of the atmosphere greatly influenced the surface chemical states of active metals.
     (3) Polytetrafluoroethylene (PTFE) was used to bind carbon-supported Pt catalysts and inert carriers as well as provide water resistance for the catalysts. Porous ceramic spheres (diameter,5.5mm; porosity,30%) and a fiber blanket (thickness,0.2mm; porosity,80%) were used as inert carriers for hydrophobic catalysts (0.8%Pt/C/PTFE). Pt/C/PTFE hydrophobic catalysts supported by porous ceramic spheres are strong and easy to fill. On the other hand, Pt/C/PTFE catalysts supported by fiber blankets exhibit a very high binding strength and a variety of loading specifications that are easy to prepare. The overall mass transfer coefficient of hydrogen isotope exchange between hydrogen and water increased with increased active metal loading. The optimal loading ratio was about30%at a low gas-liquid ratio. Hydrogen and water vapor diffused in the catalyst (physical process), and isotope exchange reactions then occurred at Pt and its oxide active sites (chemical process).
     (4) Hydrophobic catalysts with foamed and cellular structures were successfully prepared by adding PMMA to improve the characteristics of the catalysts. The physical parameters and microstructures of the hydrophobic catalysts were characterized by air permeability, specific surface area, pore volume, and scanning electron microscopy. Deuterium was separated from liquid water via liquid-phase catalytic exchange reactions. The hydrophobic treatment at365℃for15min released significant amounts of gas and resulted in>85%weight loss. Therefore, the modification of hydrophobic catalytic microstructures is satisfactory. The physico-textural characteristics of the modified hydrophobic catalysts were more improved, and their column efficiencies between hydrogen and water increased by20%to25%compared with those of conventional hydrophobic catalysts. The enhanced activities of the modified hydrophobic catalysts are attributed to micro structural factors. PMMA powder decreased the internal diffusion of water vapor and hydrogen inside the catalyst and improved the utilization of active sites (physical process).
     (5) Transition metals Fe, Ni, and Cr were added to pure Pt to prepare Pt3M/C catalysts via nanocapsule technology. The physical properties of the catalysts were characterized via X-ray photoelectron spectroscopy, transmission electron microscopy, and X-ray diffraction. The activities of hydrophobic Pt3M/C/PTFE catalysts were tested via LPCE experiments between H2and HDO. The results revealed the formation of a solid Pt-Ni alloy. Cr and Fe in oxide forms were observed on the surface of Pt (labeled M oxide@Pt). The activities of the hydrophobic catalysts during H/D isotope exchange followed the order Pt/C/PTFE     (6) For a gas-liquid ratio of1.53and an exchange temperature of70℃, the theoretical plate height of the hydrophobic catalyst (HETP=34.2cm) was slightly lower than the reported values. Changing the deuterium concentration of the exchange column outlet water (Xb) yielded a nonlinear change in the height of the packing layer (h). The configuration of deuterium-depleted potable water and the detritiation of heavy water provide references for practical applications. The separation factors for liquid-vapor phase transition and catalytic exchange depended on the temperature and concentration throughout the exchange column. The exchange performance of the column can thus be calculated by the reaction equilibrium and the material balance for deuterium. The experimental results were verified by simulations by using a gas-liquid ratio of1and exchange temperatures ranging from20℃to75℃. Increasing the temperature yielded consistency in the calculated results with the experimental values; however, the former were somewhat higher than the latter. The optimum exchange temperature decreased with increasing gas-liquid ratio. The deuterium concentration at the upper column exhibited nonlinearity for all stages. The pressure drop per stage was also determined, which induced insignificant changes in the performance of D/H exchange reaction.
引文
[1]邱励俭.聚变能及其应用[M].北京:科学出版社,2008.
    [2]罗上庚.含氚废水的处理与处置[J].辐射防护1993;13(2):158-160.
    [3]Hopwood JM. CANDU development potential [R]. CANDU Seminar,2000, PaperO7.
    [4]Sood SK, Sissingh RAP, Kveton OK. Removal and immobilization of tritium from Ontario hydro's nuclear generating stations [J]. Fusion technology 1985; 8:2478-2480.
    [5]Donnuth KW, Gillespie PA, Whiter SH. Disposal of nuclear fuel waste [M]. The royal society of chemistry.1995.
    [6]Rodrigo L. An overview of tritium activities at AECL [R].20th ANS topical meeting on the technology of fusion energy.2012.
    [7]许利华.含氚废水的处理与处置[J].核动力工程1990;11(3):86-89.
    [8]徐素珍,汪书卷,周青等.含氚废水水泥固化实验研究[J].原子能科学技术1992;26(1):15-21.
    [9]孙银峰,王学名,谢银媛.后处理厂含氚废水处理与处置的方法[J].核科技进展2005;3:136-137.
    [10]石秉仁.磁约束聚变:原理与实践[M1.北京:原子能出版社,1999.
    [11]吴宜灿,汪卫华,刘松林等.聚变发电反应堆概念设计研究[J].核科学与工程2005;25(1):76-85.
    [12]Uda T, Tanahashi S, Nishimura K, et al. Preliminary tritium safety analysis and problems with obtaining public consent to deuterium plasma experiments in the LHD [J]. Fusion Sci.Technol 2002; 41 (3):652-657.
    [13]Asakura Y, Sugiyama T, Kawano T, et al. Application of proton-conducting ceramics and polymer permeable membranes for gaseous tritium recovery [J]. J. Nucl. Sci. Technol 2004; 41(8):863-870.
    [14]Boccacccini LV. Design description document for the European helium cooled pebble bed (HCPB) test blanket module[R].2002, FZKA 6723.
    [15]Hammrli M, Leroyr RL, Butler RJP, et al. Heavy water recovery from combined electrolytic and non-electrolytic hydrogen streams [J]. Int. J. Hydrogen Energy 1981:6:167-179.
    [16]郭正谊.稳定同位素化学[M].北京:科学出版社,1984.
    [17]Rae HK. Selecting heavy water processes [C]. ACS Symposium Series, American Chemical Society 1978.68:1-26.
    [18]Keyser GM, McConnell DB, Weiss NA, et al. Heavy Water Distillation [C]. ACS Symposium Series, American Chemical Society 1978; 68:126-133.
    [19]Davidson GD. Heavy Water Processes [C]. ACS Symposium Series, American Chemical Society 1978; 68:27-39.
    [20]Lumb PB. The Canadian heavy water industry [J]. J Br. Nucl. Energy Soc 1976; 15:35-46.
    [21]桂纯,李振嵋.氨气-水之间氘交换法纯化核反应堆重水[J].核科学与工程2004;24(1):24-26.
    [22]Rae HK. Separation of Hydrogen Isotopes [C]. ACS Symposium Series, American Chemical Society 1978; 69:1-184.
    [23]Jaroslav S. Production of Heavy Water [J]. Chem. Prumysl.1956; 6(4):15-20.
    [24]Bultler JP, Rolston JH, Hartog J. Catalytically active mass for the exchange of hydrogen isotopes between streams of gaseous hydrogen and liquid water [P].1980-10-14; US, 4228034.
    [25]杨国华.稳定同位素分离[M].北京:原子能出版社,1989.
    [26]李俊华.憎水催化剂的研制及氢-水液相催化交换工艺研究[D].北京:中国原子能科学研究院,2001.6.
    [27]Villani S. Isotope Separation [M]; ANS Publications:New York.1976.
    [28]Pautrot PH, Damiani M. Operating Experience with the Tritium and Hydrogen Extraction Plant at the Laue-Langevin Institute [C]. ACS Symposium Series. American Chemical Society 1978; 68:163-170.
    [29]Pautrot PH. The Tritium Extraction Facility at the Institute LAUE-LANGEVIN Experience of Operation with Tritium [J]. Fusion Technology 1988; 14:480-483.
    [30]Davidson RB, Hatten PV, Schaub M, et al. Commissioning and First Operating Experienceat DARLINGTON Tritium Removal Facility[J]. Fusion Technology 1988; 14:472-479.
    [31]Sood SK, Sissingh RAP, Kveton OK. Removal and Immobilization of Tritium from ONTARIO HYDRO's Nuclear Generating Station [J]. Fusion Technology 1985; 8: 2479-2485.
    [32]朱正和,傅依备,孙颖等CECE法重水电解分离氚的热力学研究[J].中国工程科学2008;5:19-24.
    [33]Holtslander WJ, Harrison TE, Goyette V, et al. Recovery and Packaging of Tritium from CANADIAN Heavy Water Reactors [J]. Fusion Technology 1985; 8:2473-2477.
    [34]Ballantyne PR. The Licensing Aspects of the Tritium Extraction Plant at the CHALK RIVER Nuclear Laboratories [J]. Fusion Technology 1985; 8:2495-2501.
    [35]Holtslander WJ, Harrison TE, Gallagher JD, et al. The CHALK RIVER Tritium Extraction Plant Construction and Early Commissioning [J]. Fusion Technology 1988; 14:484-488.
    [36]Holtslander WJ, Harrison TE, Spagnolothe DA. Chalk River Tritium Extraction Plant [J]. Fusion Engineering and Design 1990; 12:357-363.
    [37]Bornea A, Zamfirache M, Stefanescu I, et al. Laboratory studies conducted for the development of a plant to concentrate the radioactive waste from tritiated water [J]. Fusion Engineering and Design 2010; 85:1970-1974.
    [38]Ana RG, Cristescub I, D(o|")rrb L, et al. Design and experimental activities in view of Water Detritiation-Isotopic Separation Systems combination in TRENTA facility [J]. Fusion Engineering and Design 2009; 84:398-403.
    [39]Bornea A, Bidica A, Petrutiu C. Hydrogen Isotope Separation Modeling and Applications. Private communication,2012.
    [40]Song KM, Sohn SH, Kang DW, et al. Installation of liquid phase catalytic exchange columns for the Wolsong tritium removal facility [J]. Fusion Engineering and Design 2007; 82:2264-2268.
    [41]Son SH, Lee SK, Kim KS. Tritium production, recovery and application in Korea [J]. Applied Radiation and Isotopes 2009; 67:1336-1340.
    [42]Anon. Tritium Breakthrough Brings India Closer to an H-bomb Arsenal. http://www.paknews.com/.1999-08-04.
    [43]孙颖,王和义,桑革等.反应堆含氚重水提氚关键技术研究进展[J].中国工程科学2007;9(5):1-6.
    [44]阮皓,胡石林,张丽等.水-氢同位素液相催化交换工艺研究[J].原子能科学技术2005;39(4):318-322.
    [45]Braet J, Bruggeman A. Development of an improved hydrophobic catalyst for liquid phase catalytic exchange[R].20th IEEE/NPSS Symposium on IEEE 2003; 264-267.
    [46]Rogers ML, Lamberger PH, Ellis RE, et al. Catalytic detritiation of water [A]. In:Rae H K Ed Separation of hydrogen isotopes[C]. ACS Symp Series 1978; 68:171.
    [47]Butler JP. Hydrogen isotope separation by catalyzed exchange process between hydrogen and liquid water [J]. Sep sci technol 1980; 15(3):371-396.
    [48]Bruggeman A, Doyen W, Leysen R, et al. In Proc tritium technol fission[C]. Fusion isotopic appl ANS natl topical meet, Dayton OH,1980 Apri129-May; 1:411.
    [49]Morishita T, Izawa H, Isomura S, et al. Tritium removal by hydrogen isotopic exchange between hydrogen gas and water on hydrophobic catalyst [A]. In:Proc ANS topical meet. Tritium technol fission, Fusion and isotopic Appl[C]. Dayton, OH,1980April 29-May 1; 415.
    [50]Kinoshita M, Naruse Y. A mathematical simulation procedure for a multistagetype water hydrogen exchange column in tritium system [J]. Nucl technol fusion 1983; 3:112-118.
    [51]Yamanishi T, Iwai Y, Kawamura Y, et al. A design study for tritium recovery system from cooling water of a fusion power plant [J]. Fusion engineering and design 2006; 81(1): 797-802.
    [52]Glugla M, Murdoch DK, Antipenkov A, et al. ITER fuel cycle R&D:Consequences for the design [J]. Fusion Engineering and Design 2006; 81 (1-7):733-744.
    [53]Cristescu I, Cristescu IR, Tamm U, et al. Investigation of separation performances of various isotope exchange catalysts for the deuterium-hydrogen system [J]. Fusion science and technology 2002; 41(2):1087-1091.
    [54]Sugiyama T, Tanaka M, Munakata K, et al. Development of an improved LPCE column for the TLK facility with the help of the channeling stage model [J]. Fusion Engineering and Design 2008; 83(10):1442-1446.
    [55]蒋国强,罗德礼,陆光达等.氚和氚的工程技术[M].北京:国防工业出版社,2007.
    [56]Hammerli M, Butler JP, Stevens WH. Peak power and heavy water production from nuclear electrolytic H2 and O2 in Canada[J]. International Journal of Hydrogen Energy 1979; 4(2): 85-99.
    [57]Stevens WH. Process and catalyst for enriching a fluid with hydrogen isotopes [P].1972; Canadian Patent No.907292.
    [58]王桂茹.催化剂与催化作用[M].大连:大连理工大学出版社,2000.
    [59]朱洪法,刘丽芝.催化剂制备及应用技术研究[M].北京:中国石化出版社,2011.
    [60]Taylor EH, in 'Production of Heavy Water" (M. G Murphy, C. H. Urey, and I. Kirschenbaum, Eds.), p.154. McGraw-Hill, New York,1955.
    [61]Bhattacharya K, Marwah UR, Sood DD. Isotopic Exchange between Hydrogen and Water over plain and hydrophobized nickel-chromia catalysts [J]. Journal of Catalysis 1992; 134:399-408.
    [62]Arginean P, Lariu A. Metal/Oxide Support Effects in the H2-H2O Deuterium Exchange Reaction Catalyzed by Nickel [J]. Journal of Catalysis 1985; 95:1-12.
    [63]Abou El-Nour FH, Belacy A. Binary Supported Nickel Catalysts for the Deuterium Exchange Reaction between Hydrogen and Water Vapor [J]. Isotopenpraxis Isotopes in Environmental and Health Studies 1982; 18:131-132.
    [64]Shiyouhei I, Toshio S, Sumio O, et al. Hydrophobic nickel-chromium oxide catalyst and its production[P].1983-07-30; JP,58128149.
    [65]Hu S, Xiong L, Ren X, et al. Pt-Ir binary hydrophobic catalysts:Effects of Ir content and particle size on catalytic performance for liquid phase catalytic exchange [J]. International Journal of Hydrogen Energy 2009; 34(20):8723-8732.
    [66]胡胜,肖成建,朱祖良等.氢水液相交换反应用高分散度Pt/C/FN疏水催化剂制备及Pt粒径效应研究[J].化学学报2007;65(22):2515-2521.
    [67]Hu S, Xiong L, Hou J, et al. The roles of metals and their oxide species in hydrophobic Pt-Ru catalysts for the interphase H/D isotope separation [J]. International Journal of Hydrogen Energy 2010; 35(19):10118-10126.
    [68]Marginean P, Hodor I. Hydrophobic bimetallic catalysts for H/D exchange reaction between hydrogen and water [J]. Isotopenpraxis Isotopes in Environmental and Health Studies 1994; 30(1):23-28.
    [69]胡胜,朱祖良,罗顺忠,等.高分散度Pt-Ir疏水催化剂制备及氢-水液相交换催化性能研究[J].无机化学学报2007;23(1):91-96.
    [70]Li J, Suppiah S, Kutchcoskie K, et al.Wetproofed catalysts for hydrogen isotope exchange [P].2004-12-09; US,20040248735.
    [71]Butler JP, Rolston JH, Stevens WH. Novel catalysts for isotopic exchange between hydrogen and liquid water[C]. Proc. Symp. on ACS Symp.1978; 68:93-109.
    [72]Staniulis MT, Crozier DE, Risch AP, et al. Noble metal exchange of hydrophobic molecular sieves[P].1991-10-07; US,5013703.
    [73]An WZ, Zhang QL, Chuang KT, et al. A Hydrophobic Pt/Fluorinated Carbon Catalyst for Reaction of NO with NH3 [J]. Ind. Eng. Chem. Res.2002; 41:27-31.
    [74]Hu S, Hou J, Xiong L, et al. Hydrophobic Pt catalysts with different carbon substrates for the interphase hydrogen isotope separation[J]. Separation and Purification Technology 2011; 77(2):214-219.
    [75]Wanke S E, Rangwala H A, Otto F D, et al. Method of manufacturing a crystalline silica/platinum catalyst structure [P].1995-08-20; US,4536488.
    [76]Kiyotaka T. Catalyst carrier [P].1987-01-10; JP,62004446.
    [77]Li W, Chen Z, Xu L, et al. A solution-phase synthesis method to highly active Pt-Co/C electrocatalysts for proton exchange membrane fuel cell [J]. Journal of Power Sources 2010; 195(9):2534-2540.
    [78]Sun S, Anders S, Thomson T, et al. Controlled synthesis and assembly of FePt nanoparticles[J]. The Journal of Physical Chemistry B 2003; 107(23):5419-5425.
    [79]de Miguel S, Scelza OA, Roman-Martinez MC, et al. States of Pt in Pt/C catalyst precursors after impregnation, drying and reduction steps [J]. Appl. Catal. A 1998; 170:93-103.
    [80]但贵萍,卢瑶章,邱永梅等.大粒径疏水催化剂的制备及氧化氖氢(HT)的性能研究[J].原子能科学技术1999;33(1):12-17.
    [81]Xie JH, Zhang QL, Chuang KT. Role of steam in partial oxidation of propylene over a Pd/SDB catalyst [J]. App. Catal. A:General 2001; 220:215-221.
    [82]钟正坤.Pt/C的表面结构及其对氢-水同位素交换的催化活性研究[D].四川绵阳:中国工程物理研究院,2005.5.
    [83]Nie R, Wang J, Wang L, et al. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes [J]. Carbon 2012; 50(2):586-596.
    [84]Song S, Liu J, Shi J, et al. The effect of microwave operation parameters on the electro-chemical performance of Pt/C catalysts [J]. Applied Catalysis B:Environmental 2011; 103(3):287-293.
    [85]Kim M, Park JN, Kim H, et al. The preparation of Pt/C catalysts using various carbon materials for the cathode of PEMFC [J]. Journal of power sources 2006; 163(1):93-97.
    [86]Shen PK, Tian Z. Performance of highly dispersed Pt/C catalysts for low temperature fuel cells [J]. Electrochimica acta 2004; 49(19):3107-3111.
    [87]Komarneni S, Li D, Newalkar B, et al. Microwave-polyol process for Pt and Ag nanoparticles [J]. Langmuir 2002; 18:5959-5962.
    [88]Xiong L, Manthiram A. Nanostructured Pt-M/C (M= Fe and Co) catalysts prepared by a microemulsion method for oxygen reduction in proton exchange membrane fuel cells [J]. Electrochimica acta 2005; 50(11):2323-2329.
    [89]Brimaud S, Coutanceau C, Garnier E, et al. Influence of surfactant removal by chemical or thermal methods on structure and electroactivity of Pt/C catalysts prepared by water-in-oil microemulsion[J]. Journal of Electroanalytical Chemistry 2007; 602(2):226-236.
    [90]Gupta NM, Belapurkar AD, Ramarao KVS, et al. PTFE dispersed hydrophobic catalysts for hydrogen-water isotopic exchange I Preparation and Characterization [J]. Applied Catalysis 1988; 43:1-13.
    [91]胡胜,朱祖良,罗顺忠,等.Pt/C催化剂制备方法对Pt/C/CN疏水催化剂催化活性的影响[J].工程材料2007;6(3):5-12.
    [92]Kumar R, Mohan S, Mahajani SM. Reactive Stripping for the Catalytic Exchange of Hydrogen Isotopes [J]. Industrial & Engineering Chemistry Research 2013; 52(32): 10935-10950.
    [93]Bruggeman A, Braet J, Vanderbiesen S, et al. Endurance test catalyst-packing mixture, proposed for water detritiation system at JET, using SCK-CEN mixture[C].2004 Annual Report of the EURATOM-MEdC Association,123-133.
    [94]王尚弟,孙俊全.催化剂工程导论[M].北京:化学工业出版社,2007.
    [95]den Hrtog J, Butler JP. Ordered bed packing module [P].1984-9-11; US,4471014.
    [96]Morishita T, Isomura S, Izawa H, et al. Tritium removal by hydrogen isotopic exchange between hydrogen gas and water on hydrophobic catalyst[C]. Tritium technology in fission, fusion, and isotopic applications. Dayton, OH, USA.29 Apr-1 May 1980.
    [97]Andreev BM, Rakov NA, Rozenkevich MB. Use of isotope separation methods for recovery and concentration of tritium in nuclear fuel cycle [J]. Radiokhimiya 1997; 39:97.
    [98]Popescu I, Ionita G, Stefanescu I, et al. Improved characteristics of hydrophobic polytetrafluoroethylene-platinum catalysts for tritium recovery from tritiated water [J]. Fusion Engineering and Design 2008; 83(10):1392-1394.
    [99]Butler JP. Process for the exchange of hydrogen isotopes between streams of gaseous hydrogen and liquid water[P].1979-3-6; USA,4143123.
    [100]Quaiattini RJ, Mcgauley MP, Burns DL. Conversion of Deuter ium Gas to Heavy Water by Catalytic Isotopic Exchange Using Wetproof Catalyst [J].Nucl. Technol.1987; 77(6):295-298.
    [101]Perevezentsev AN, Bell AC, Brennan PD, et al. Development of a water detritiation facility for JET [J]. Fusion Engineering and Design 2002; 61-62:585-589.
    [102]Asakura Y, Tsuchiya H, Yusa H, et al. Deuterium exchange between water mists and hydrogen gas in a hydrophobic catalyst bed[J]. Nuclear Science and Engineering 1981; 79: 49-53.
    [103]Rangwala HA, Szymura JA, Wanke SE, et al. Preparation and characterization of Pt/silicalite catalysts with high Pt loadings[J]. The Canadian Journal of Chemical Engineering 1988; 66(5):843-848.
    [104]Perevezentsev A N, Bell A, Andreev B M, et al. Measurement of pressure drop and HETP in columns packed with different hydrophobic catalysts for tritium isotopic exchange between waterand hydrogen [J]. Fusion Science and Technology,2002,41(3):1102-1106.
    [105]Chuang KT, Quaiattini RJ, Thatcher DRP, et al. Development of a wetproofed catalyst recombiner for removal ofairborne tritium [J]. Applied catalysis 1987; 30(2):215-224.
    [106]Vagner I, Ionita G, Varlam C, et al. Preparation of Hydrophobic Pt-Catalysts Used for Nuclear Effluents Decontamination [C]. Proceedings of the International Conference Nuclear Energy for New Europe, Portoroz, Slovenia, Sept.8-11,2008,608:1-5.
    [107]Tsutsumi Y, Fukuda Y, Matsubara K, et al. Method for rendering fine oxide powder hydrophobic [P].1981-1-27; US,4247708.
    [108]Masami S, Asashi K, Yoichi T. New proposition on performance evaluation of hydrophobic Pt catalyst packed in trickle bed [J].J Nuclear Sci.Tech. (Japan) 1983; 20(1): 36-47.
    [109]Toshio S, Sumio O, Tomild T. A new Catalyst for heavy water production and its prospect [J]. Genshiryoku Kogyo 1978; 24(2):30-34.
    [110]Toshio S. Method of Producing heavy water and new catalyst [J].Shokubai 1978; 20(2): 72-80.
    [111]Iwai Y, Sato K, Yamanishi T. Development of Pt/ASDBC catalyst for room temperature recombiner of atmosphere detritiation system [J]. Fusion Engineering and Design 2011; 86(9):2164-2167.
    [112]Paek S, Ahn DH, Choi HJ, et al. The performance of a trickle-bed reactor packed with a Pt/SDBC catalyst mixture for the CECE process [J]. Fusion Engineering and Design 2007; 82(15):2252-2258.
    [113]Fiek HJ, Romaker J, Schindewolf U. Tritium-anreicherung durch isotopen-austausch zwischen wasserstoff und wasser mittels hydrophoben katalysators f(u|")r die kernbrennstoff-wiederaufbereitung [J]. Chem ing tech 1980; 52(11):892-895.
    [114]Ionita Gh, Popescu I, Stefanescu I, et al. Use of hydrophobic Pt-catalysts in tritium removal from effluents [A]. In:8. ICSI conference Progress in Cryogenics and Isotope Separation [C], Caciulata (Romania), Oct 2002:10-11.
    [115]Ionita Gh. The study of catalyst behavior in tritiated medium [A]. In:National Physics Conference[C], Constanta (Romania), Oct 2003:13-15.
    [116]祁世伦.在并流反应床中液相水氢同位素交换反应的研究[J].高等化学学报1984;15(1):77-82.
    [117]李俊华,康艺,阮皓等Pt-SDB'憎水催化剂氢/水液相催化交换工艺研究[J].原子能科学技术2002;36(2):125-125.
    [118]罗阳明,王和义,刘俊,等.氢同位素氘从气相到液相的催化交换实验研究[J].原子能科学技术2005;39(1):49-52.
    [119]Iida I, Kato J. The Exchange Reaction between Deuterium and Water Vapor on Platinum over a Hydrophobic Support [J]. Z Physik Chem Neue Folge 1977; 107:219-230.
    [120]Bornea A, Stefan L, Stefanescu L. Review of water detritiation know-how. Private communication.2013.
    [121]Wei YZ, Shimizu M, Takeshita K, et al. Kinetics of iodine poisoning of hydrophobic Pt/SDBC catalyst for hydrogen isotopic exchange reaction [J]. The Canadian Journal of Chemical Engineering 1997; 75(3):502-508.
    [122]SatoT, Okoshi S, Takahashi T and Shimizu M. "Catalytic Process for Recovery of Heavy Water in Fresh Water from the Sea", in "Proc. of 6th Intern. Symp. on Fresh Water from the Sea"[C], A. Delyannis and E. Delyannis, Ed., Las Palmas, Sept.17-22, Athens-Amaroussion (1978),47-54.
    [123]Wong KY. "Canadian Tritium Experience", CFFTP, Ontario Hydro, Toronto, Canada,1984; 44-59.
    [124]Wei YZ, Takeshita K, Kumagai M, et al. Deactivation of hydrophobic Pt/SDBC-catalyst for H2/HTO-exchange reaction destined for tritium removal in reprocessing plant [J]. Fusion technology 1995; 28:1585-1590.
    [125]Wei YZ, Takeshita K, Shimizu M, et al. Effect of Nitric Acid on the Isotopic Exchange Reaction over a Hydrophobic Platinum Catalyst [J]. Studies Surf Sci Catal 1994; 88: 609-615.
    [126]Enoeda M, Higashijima T, Nishikawa M, et al. Recovery of tritium in inert gas by precious catalyst supported by hydrophilic substrate [J]. J Nucl Sci Tech 1986; 23:1083-1093.
    [127]宋世谟,王正烈,李文斌等.物理化学[M].北京:高等教育出版社.1993.
    [128]Gherghinescu S. Mathematical Models for D2-DTO Isotopic Exchange Process of Detritiation Systems[C].11th WSEAS International Conference on MATHEMATICS& COMPUTERS in BIOLOGY & CHEMISTRY (MCBC'10).
    [129]Rolston JH, Hartog JD and Butler JP. The Deuterium Isotope Separation Factor between Hydrogen and Liquid Water [J]. J Phys Chem 1976; 10:1064-1067.
    [130]Alexander Van Hook W. Vapor Pressures of the Isotopic Waters and Ices [J]. Journal of Physical Chemistry 1968; 72(4):1234-1244.
    [131]张伟,姚守忠.氚工艺[M].北京:原子能出版社,2012.
    [132]Prabhuram J, Wang X, Hui CL, et al. Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications[J]. The Journal of Physical Chemistry B 2003; 107(40):11057-11064.
    [133]Sugiyama T, Ushida A, Yamamoto I. Effects of the gas-liquid ratio on the optimum catalyst quantity for the CECE process with a homogeneously packed LPCE column [J]. Fusion Engineering and Design 2008; 83:1447-1450.
    [134]Cristescu I, Cristescu IR, Tamm U, et al. Simultaneous tritium and deuterium transfer in a water detritiation CECE facility at TLK[J]. Fusion engineering and design 2003; 69(1): 109-113.
    [135]Suppiah S. Porous composite materials and methods for preparing them [P].1992-06-09; U.S. Patent 5,120,600.
    [136]Butler JP, Hartog JDEN, Goodale JW, et al. Catalytically active mass for the exchange of hydrogen isotopes between streams of gaseous hydrogen and liquid water[P].1980-10-14; U.S. Patent 4,228,034.
    [137]Vincent JK, Olsen RA, Kroes GJ, Baerends EJ. Dissociative chemisorption of H2 on Pt (111):isotope effect and effects of the rotational distribution and energy dispersion [J]. Surf Sci 2004; 573(3):433-445.
    [138]Furuya N, Koide S. Hydrogen adsorption on iridium single crystal surfaces [J]. Surf Sci 1990; 226(3):221-225.
    [139]Meng S, Xu LF, Wang EG, Gao S. Vibrational recognition of hydrogen-bonded water networks on a metal surface[J]. Phys Rev Lett 2002; 89:176104.1-4.
    [140]Grecea ML, Backus EHG, Riedmuller B, et al. The interaction of water with the Pt (533) surface [J]. J Phys Chem B 2004; 108:12575-12582.
    [141]Ogasawara H, Brena B, Nordlund D, et al. Structure and bonding of water on Pt(111)[J]. Phys Rev Lett 2002; 89:276102.1-4.
    [142]Sagert NH, Pouteau ML. Hydrogen-water deuterium exchange over unsupported Group V Ⅲ noble Metals [J]. Can J Chem 1974; 52(16):2960-2967.
    [143]Suppiah S, Chuang KT, Rolston JH. Diffusional Effects in Wetproofed Catalysts for Isotopic Exchange between Hydrogen Gas and Water Vapour [J]. The Canadian Journal of Chemical Engineering 1987; 65:256-263.
    [144]Guo XF, Kim YS, Kim GJ. Fabrication of SiO2, A12O3, and TiO2 Microcapsules with Hollow Core and Mesoporous Shell Structure [J]. J Phys Chem C 2009; 113:8313-8319.
    [145]Chen YH, Liu YY, Lin RH, Yen FS. Photo catalytic degradation of p-phenylenediamine with TiO2-coated magnetic PMMA microspheres in an aqueous solution [J]. J Hazard Mater 2009; 163:973-981.
    [146]Li SL, Qu XL, Li YM. Decomposition behavior of PMMA in MIM succession thermal debinding [J]. J Cent South Nuiv Technol 2001; 32:75-77.
    [147]Sun S, Anders S. Controlled Synthesis and Assembly of FePt Nanoparticles [J]. J. Phys. Chem. B 2003; 107:5419-5425.
    [148]宋札成,赵正云,王积涛等.三乙基硼氢化锂四氢呋喃溶液的制备[J].化学试剂1986;8(2):104-105.
    [149]Li WZ, Chen ZW, Xu LB, et al. A solution-phase synthesis method to highly active Pt-Co/C electrocatalysts for proton exchange membrane fuel cell [J]. Journal of Power Sources 2010; 195(9):2534-2540.
    [150]季生福,张谦温,赵彬侠.催化剂基础及应用[M].北京:化学工业出版社,2011.
    [151]Merte LR, Peng G, Bechstein R, et al. Water-mediated proton hopping on an iron oxide surface[J]. Science 2012; 336(6083):889-893.
    [152]Wendt S. Phys. Rev. Lett.2006; 96:066107.
    [153]Li JT, Suppial H, Kutchcoskie K.Water repellent catalysts for hydrogen isotope exchange [P].2004-12-15; EP 1486457 Al.
    [154]Iwai Y, Yoshida H, Yamanishi T, et al. A design study of water detritation and hydrogen isotope separation systems for ITER [J]. Fusion engineering and design 2000; 49:847-853.
    [155]Bruggeman A, Braet J, Vanderbiesen S, et al. Water Detritiation:Better Catalysts for Liquid Phase Catalytic Exchange[C]. Proceedings of the 7th Tritium Science and Technology Conference, Germany 12-17 September 2004.
    [156]Sugiyama Y, Asakura Y, Uda T, et al. Preliminary experiments on hydrogen isotope separation by water-hydrogen chemical exchange under reduced pressure[J]. J Nucl Sci Technol 2004; 41:696-701.
    [157]Takamatsu T, Hashimoto L, Kinoshita M. A multistage water/hydrogen exchange column in Japan:new simulation procedure for tritium system [J]. J Chem Eng 1994; 17:255-262.
    [158]Fedorchenko OA, Alekseev IA, Trenin VD, et al. Computer simulation of the water and hydrogen distillation and CECE process and its experimental verification[J]. Fusion technology 1995; 28(3):1485-1490.
    [159]Mirica RE. Deuterium-depleted water in cancer therapy [J]. Environmental Engineering & Management Journal 2010; 9(11):1543-1545.
    [160]Haulica I, Peculea M, Stefanescu I, et al. Effects of heavy and deuterium-depleted water on vascular reactivity [J]. Romanian journal of physiology:physiological sciences/[Academia de Stiinte Medicale] 1997; 35(1-2):25-32.
    [161]Isomura S, Kaetsu H, Nakane R. Deuterium separation by hydrogen-water exchange in multistage exchange column[J]. J Nucl Sci Technol 1980; 17:308-311.
    [162]Kim KR, Lee MS, Paek S, et al. Operational analysis of a liquid phase catalytic exchange column for a detritiation of heavy water [J]. Sep Purif Technol 2007; 54:410-414.
    [163]Luo MY, Wang HY, Liu J. Experimental studies on hydrogen isotopic deuterium from gas to liquid phase by catalytic exchange[J]. Atomic Energy Sci Technol 2005; 39:49-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700