非中心对称晶体材料中关键功能基元对其晶格动力学行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非对称中心结构晶体材料由于其在空间对称性上的特殊性从而在宏观上呈现出一系列物理现象,例如压电效应、铁电效应、倍频效应等。为了进一步扩展该类材料的实际应用,理论和实验工作者从事了大量相关的研究以改进材料的性能。但之前的研究工作大都集中在材料的电学、磁学、光学等方面,建立了相关性能和微观基元的构效关系,而对材料应用关系密切的晶格动力学性质则研究较少,对影响晶格动力学行为的关键功能基元了解不多。晶体材料晶格动力学行为的研究对解析晶体结构,了解材料的介电、热力学性质以及材料的结构稳定性和相变问题有重要的意义,因此目前急需要相关的理论工作来探寻材料众多晶格动力学行为的发生机制。本论文的研究工作正是基于这样的出发点,研究了几种非中心对称晶体材料中的关键功能基元和相关晶格动力学行为,通过基于第一性原理的计算和分析建立了两者之间的关系。主要研究内容和成果如下:
     第一章绪论中首先介绍了本文的研究对象——非中心对称晶体材料及其相关的几类物理效应,包括压电、铁电、热释电、倍频效应等;其次详细介绍了晶体材料中几种晶格动力学相关性质,包括拉曼光谱、介电性质、热力学、相变等,从而提出了本文的科学问题:非中心对称晶体材料中微观功能基元作用于其宏观晶格动力学性质的具体机制,同时对论文的研究内容做了简单介绍。
     第二章简要介绍了本文研究工作所需要的理论方法,首先介绍了第一性原理计算所依赖的密度泛函理论的理论框架;其次介绍了两种声子谱的计算方法:密度泛函微扰理论和冻声子方法,最后介绍了计算工作中用到的软件包。
     第三章我们首先研究了非中心对称晶体材料的拉曼光谱行为,它对于鉴别晶体微观结构、组分以及自拉曼激光器的应用方面有重要的作用。我们选取了具有倍频效应的CdSiP2晶体,基于第一性原理计算了该晶体的不同几何配置下的偏振拉曼光谱,并同实验测量进行了对比。结果显示大多数拉曼峰的位置和峰强同实验有较好的一致,因此我们可以从理论上给出了每个拉曼峰所对应的振动基元的具体振动方式,包括化学键和原子的平动、拉伸运动、旋转运动等。理论计算的结果当中出现了同实验测量不一致的拉曼峰,分别是y(zz)y配置下的A1模式,频率为350.021cm-1,z(xy)z配置下的B2模式,频率为109.926cm-1以及b(aa)b配置下的B2模式,频率为481.412cm-1,我们发现这些模式主要来自P原子和Cd原子以及P-Cd键的振动,以此可以推断出该晶体中存在的缺陷类型。
     第四章我们研究了非中心对称晶体材料的晶格振动对其介电性质的影响。非中心对称晶体材料大多是电介质材料,在介电领域有较广的应用,因此它们的电子性质和介电性质对于材料的应用至关重要。在本章中我们以Ag2CdGeS4为例,研究了它的晶格动力学性质和电子性质,探讨了晶格振动对材料介电性质影响的微观机制。Ag2CdGeS4作为Ⅰ2Ⅱ-Ⅳ-Ⅵ4型四元金刚石结构半导体材料的一个代表在太阳能和热电领域有广泛的应用,其阳离子的不同排布会产生材料三种不同的相,两个相属于Pna21空间群,一个相属于Pmn21空间群。材料内部原子位置的变化会引起振动性质的改变,通过声子和电子的耦合机制来改变材料的电子性质和介电性质,从而改变材料的应用。在本章中我们基于第一性原理研究了不同阳离子排布同材料物理化学性能的联系。电子性质的计算结果显示P型和Pmn21相中相似的阳离子排布方式产生了相同的能带带隙值,1.06eV;而对于Pna21的另一种结构,S型来说,由于它拥有和其他两种结构不同的阳离子排布方式,从而产生了较大的带隙值,1.30eV。在晶格动力学的计算部分中我们详细分析了三种结构中银离子和硫离子的玻恩有效电荷。在P型中,两个离子的玻恩有效电荷相较于S型更明显的偏离了它们的名义电荷,这意味着银离子的3d轨道和硫离子的2p轨道之间有着更强的共价成键形式,因此它在能带结构中价带顶的位置较S型有所提高,形成了更小的能带带隙。根据阳离子振动极化所计算出的红外光谱显示出了它们在低频区域的差异性,这可以用来帮助实验人员区分该体系的不同结构。
     第五章研究了非中心对称晶体材料的热力学性质。晶体材料的晶格振动产生声子,它决定了材料众多热力学性质,如热容、振动熵、自由能等。但这些热力学性质都是基于声子间的简谐近似,而声子间的非谐作用则同材料的热膨胀、热导率有重要的联系。在本章工作中我们以几类具有倍频效应的红外二阶非线性光学晶体材料为研究对象,它们具有相同的四方黄铜矿晶体结构,其区别在于化学键强度的不同。我们通过计算它们的热膨胀系数和热导率,探讨了这些热力学性质相关的声子之间的非简谐行为,并建立了化学键这一功能基元影响材料热力学性质的具体机制。在第一部分工作中我们通过计算a轴和c轴的轴向格林耐森参数分别研究了CdSiP2和ZnGeP2的非简谐热力学各向异性,探讨了ABC2黄铜矿系列晶体材料中的热膨胀各向异性的产生机制。在计算轴向格林耐森参数的过程中,我们分别采用了德拜模型和晶格动力学方法,在德拜模型的计算过程中我们发现ZnGeP2晶体的剪切模量的随着晶格常数正常变化,对于CdSiP2晶体来说剪切模量的变化却表现出了异常行为,因此我们认为剪切模量对体系的非简谐各向异性行为起着关键的作用。在以声子频率为基础数据的晶格动力学的研究中,我们计算了轴向的模式格林耐森参数,不仅包括布里渊区的中心点,还涵盖了布里渊区的其他高对称波矢点。我们发现在两种化合物中存在两种软模分别在最低能量对称性为B1和B2模式中,在之前的体积模式格林耐森参数的计算中这两种软模并没有发现。在CdSiP2晶体中,软化模式的格林耐森参数的数值更大,意味着它在低温区域内存在着更强的热力学非简谐性,它在110K左右变为正值,而在ZnGeP2晶体中,格林耐森参数从负值到正值的转变温度为80K左右。在第二部分中我们通过计算声学支声子的格林耐森参数研究了CdSiP2和AgGaS2晶体中热导率差异较大的来源。结果显示,两种材料化学键强度差异造成了两者德拜温度的不同,从而会对热导率产生一定的影响,但造成两者热导率差异的主要原因是声子的非简谐作用。两个晶体声学支格林耐森参数大都为负值,说明声学支振动模式在整个布里渊区表现为软模,其中波矢量x点到r区域的格林耐森参数较小,说明体系在该区域存在更强的结构不稳定性。在两种体系声学支总格林耐森参数的对比中,CdSiP2晶体(-0.9)在绝对值上明显小于AgGaS2晶体(-2.6),由此产生了两者热导率上的巨大差异。
     在第六章中我们研究了非中心对称材料的非本征态结构,目的在于建立点缺陷同非中心对称晶体材料声子态的影响。在之前的章节中,我们研究了非中心对称晶体材料中关键功能基元对一系列晶格动力学行为的影响,但它们都有一个共同的前提,那就是理论研究的材料在结构上都是完整无缺陷的。晶体在的实际生长过程中会出现很多的缺陷和杂质,完美的晶体结构是不存在的,而这些缺陷形式会对晶体的宏观性能产生重要的影响,因此了解这些缺陷形式作用于材料性能的机制十分重要。之前的研究大多集中在缺陷或杂质对材料的电子态影响上,建立了具体的缺陷形式同能带结构、光学性质变化的联系。但对于晶体材料中缺陷体对材料声子态的研究却十分匮乏,而它们对声子态的影响往往同材料的结构相变和热力学等行为关系密切。在本章中我们建立了含有一个Bi空位的BiFeO3超晶胞结构,基于第一性原理和冻声子法分别计算了完整晶体和含缺陷晶体的声子态性质,包括声子谱、声子态密度、热容等。结果显示,在声子谱高频区域光学支声子振动强度减弱,而在低频区域的布里渊区中心附近则发现声学支声子有明显的软化。通过声子分波态密度的分析我们得知在含缺陷的BiFeO3体系中,氧原子和铋原子各自的振动贡献有明显减弱,从而造成了声子谱中振动模式的改变。其中声学支的软化较为明显,它直接影响了材料在低温附近的热力学行为。通过低温区热容的研究发现,由于铋空位的存在,热容随温度的变化出现异常,使得光学支声子更早的参与到热容的贡献之中。我们的研究结果进一步加深了对BiFeO3材料非本征态的认识,对于研究BiFeO3材料在低温附近的结构稳定性和磁性相变机制提供了理论依据。
     第七章总结了本论文研究的主要工作内容,提出了本工作的创新之处,并对相关工作进一步深入的研究做了展望。
Due to its special spatial symmetry, non-centrosymmetric crystal materials can present a series of physical phenomenon, such as piezoelectric effect, ferroelectric effect, second-harmonic generation effect, and so on. Both theoretical and experimental researches have been implemented to improve the properties in order to enlarge the application of the materials. Most of the previous works have been concentrated on the electric, optic and magnetic properties of materials, and relative relationship between microscopic functional elements and macroscopic properties has also been established, whereas there are so limited researches on lattices dynamic properties which has close relation with material application, and the understanding of key functional elements of material structure that can influence such properties is scarce. The lattice dynamic behaviors of crystal materials is of significant in crystal structure identification, comprehending the dielectric and thermodynamic properties, material structure stability, phase transition, it is thus in urgent need of correlated theoretical study to explore the mechanism of lattice dynamic behaviors. To meet the requirement, the present thesis research several microscopic functional elements of non-centrosymmetric crystal materials and relative lattices dynamic behavior, and establish their relationship based on first-principal calculation and analysis. The main content and results are as follows:
     The first chapter firstly introduces our object of present study—non-centrosymmetric crystal materials and several physical effect including piezoelectricity, ferroelectricity, pyroelectricity and second-harmonic generation. Lattices dynamic properties of crystal materials are then introduced such as Raman spectroscopy, dielectric property, thermodynamic property, phase transition. Finally, we put forward our scientific problem:the specific mechanism of effect between microscopic functional elements and macroscopic lattice dynamic properties, and a brief introduction of the whole thesis is also made.
     In the second chapter, we introduce the main theoretical method used in present article. We give the frame of density functional theory which is the precondition of first-principle calculation, and introduce the two measures to calculated phonon dispersion:density functional perturbation theory and frozen phonon method. The software packages we employed in present research is also introduced.
     In the third chapter, we start to study the first lattice dynamic properties of non-centrosymmetric crystal materials—Raman spectroscopy which has important role in distinguishing crystal structure, constituent and self-Raman laser application. We choose CdSiP2single crystal material with second-harmonic generation, and calculate the the polarized Raman spectroscopy under different geometry configuration. The comparison between our theoretical and experimental work is given. The location and intensity of most Raman peak are accordance with the experiment results, thus we can give the specific vibrational pattern for each Raman-peak related vibrational group from theoretical point including the translation, stretching, rotation of chemical bonds and atomics. Our results also demonstrate several anomaly modes as A1mode with frequency350.021cm-1under y(zz)y,B2mode with109.926cm-1under z(xy)z, as well as B2mode with481.412cm-1under b(aa)b. We find that all the exceptional modes are related with the vibration of P, Cd atom and P-Cd bond, which can be a useful tool for us to deduce the specific defect patterns in CdSiP2single crystal material.
     In the fourth chapter we research the dielectric properties of non-centrosymmetric crystal material influenced by lattice vibration. Most of the non-centrosymmetric crystal materials are dielectric substance, and the electronic and dielectric properties are essential to their application. In this chapter we choose Ag2CdGeS4as our object, and study the electronic and lattice dynamic properties to explore the microscopic mechanism of dielectric properties influenced by lattice vibration. As a representation of I2-II-IV-VI4type quaternary diamonds-like semiconductor material, Ag2CdGeS4has shown itself a widespread application in the area of solar-cell and thermoelectric material. There are three phase in this material due to different cation arrangement, two phase in Pna21(S type and P type) and one phase in Pmn21. The vibrational properties can be altered as the atomic position changes, thus it can change the application of material by changing its electric and dielectric properties by electron-phonon coupling. In present work, we study the relationship of physicochemical property and cation ordering. The results of electronic property show that the similar cation ordering in P type and Pmn21phase produce similar band gap,1.06eV. For another phase of Pna21, the S type, it demonstrates larger band gap,1.30eV due to different cation arrangement. In the section of lattice dynamic calculation we detail edly analyze the Born effective charge of silver and sulfur atom in three phase. In P type, the Born effective charges of the two atom more seriously deviate from their nominal charge compare to S type, which means that it exists stronger covalent bonding type between3d orbital of silver atom and2p orbital of sulfur resulting in higher position of valence-band maximum in P type, and the narrower band gap is formed. The infrared spectroscopy calculated by the vibrational polarization of cation demonstrate themselves the discrepancy in the low frequency region, which can help experimenter to distinguish the microscopic crystal structure from different phase.
     In the fifth chapter we research the thermodynamic properties of non-centrosymmetric crystal material. The lattice vibration can produce phonon which determines many thermodynamic properties such as heat capacity, vibrational entropy, and free energy. All of the properties are calculated based on the harmonic approximation among phonons, however phonon anharmonic interaction is the foundation of material thermal expansion and thermal conductivity. In present work, we study several infrared nonlinear optical crystal materials with second-harmonic generation effect. They are ABC2type ternary tetragonal chalcopyrite structure material, and the chemical bonding is the main functional group among these materials. We discuss the anharmonic behavior among phonons by calculating thermal expansion coefficient and thermal conductivity, and the specific mechanism of thermal properties influenced by chemical bonding has been established. In the first part, we research the anisotropic behavior of anharmonic thermal properties, and discuss the mechanism of anisotropy of thermal expansivity among ABC2type chalcopyrite crystal materials by calculating a-and c-axial gruneisen constant of CdSiP2and ZnGeP2. We adopt the Debye model and lattice dynamic method in calculating axial gruneisen constant. In the process of Debye model calculation, we find that the change of shear modulus reveals normal variation for ZnGeP2and abnormal behavior for CdSiP2. The role of shear modulus is thus considered of importance in anharmonic anisotropic behavior. In the section of lattice dynamic research based on phonon, we calculate the axial gruneisen parameter include not only the center point, but also other high-symmetric wave vector points of the first Brillouin zone. The results show two new soft modes as B1and B2with the lowest energy, which demonstrate as normal modes in previous study of volume-dependent mode gruneisen constant. For CdSiP2, the gruneisen constant of soft modes manifest larger magnitude than ZnGeP2meaning it exists stronger thermal anharmonicity in low temperature range. The values of soft-mode gruneisen constant turn positive at11OK for CdSiP2, and at80K for ZnGeP2. In the second part we research the source of thermal conductivity of CdSiP2and AgGaS2single crystal by calculating the gruneisen parameter of acoustic phonon. The results show that the main mechanism of thermal conductivity stem from the phonon anharmonicity, although the different Debye temperature aroused by different chemical bond type can also affect thermal conductivity. Both gruneisen constants of acoustic phonon of two materials are negative stating the soft modes of acoustic phonon in the whole Brillouin zone, and the value of gruneisen constants exhibit lower magnitude from X to Γ meaning that materials would demonstrate unstable structure in this area. For the two compounds, the magnitude of CdSiP2(-0.9) is obviously smaller than that of AgGaS2(-2.6), which give rise of the wide difference of thermal conductivity of the two materials.
     In the sixth chapter, the non-eigenstate structure of non-centrosymmetric crystal materials was researched to establish the relationship of point defect and the phonon state of non-centrosymmetric crystal materials. All of our study in the previous chapters is based on the perfect crystal structure; however there are different types of defects and impurities in the process of crystal growth, and they can produce sever influence on the macroscopic properties of crystal. Most of previous researches were concentrated on the electronic state of materials influenced by the defect and impurity, and the relationship between different types of defect and electronic and optic properties has been found. The knowledge of phonon state influenced by the defect is essential to thermodynamic and phase transition of crystal materials, nevertheless the relative research is still scarce. In this chapter we build the supercell crystal structure of BiFeO3with one Bi vacancy, and calculate the phonon properties including phonon dispersion, phonon density of state, heat capacity of both perfect crystal and crystal with defect on account of first principle theory and frozen phonon method. Our study reveals that the vibrational intensity of optical phonon branch weakens in high phonon frequency region, and the acoustic phonon branch apparently soften in the low-frequency region near the center of Brillouin zone. The oxygen and bismuth atomic vibration of defect system is observed weaken by the analysis of phonon density of state causing the change of the phonon dispersion. The soft of acoustic phonon is apparent, which can directly influence the thermodynamic behavior in the low temperature region. Due to the Bi vacancy the heat capacity reveals abnormal behavior followed with temperature resulting that the optical phonon is earlierly participated in the contribution to heat capacity. Our research deepens the understanding of non-eigenstate of BiFeO3, and provides the theoretical foundation to study the structural stability and magnetic phase transition in low temperature area.
     The seventh chapter summarizes the main content of present article, and proposes the innovation. The further research of this scholar field is also expected.
引文
[1]J. F. Nye, Physical Properties of Crystal (Oxford University Press, Oxford, 1957).
    [2]P. S. Halasyamani and K. R Poeppelmeier, "Noncentrosymmetric Oxides" Chem. Mater.10,2753(1998).
    [3]K. M. Ok, E. O. Chi, and P. S. Halasyamani, "Bulk characterization methods for non-centrosymmetric materials:second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity" Chem. Soc. Rev.35,710 (2006).
    [4]T. Maiman, "Optical and microwave-optical experiments in ruby" Phys. Rev. Lett. 4,564 (1960).
    [5]P. A. Franken, A. E. Hill, C. W. Peters, and G Wienrich, "Generation of optical harmonics" Phys.Rev. Lett.7,118 (1961).
    [6]K. T. Zawilski, S. D. Setzler, P. G Schunemann, and T. M. Pollak, "Increasing the laser-induced damage threshold of single-crystal ZnGeP2" J. Opt. Soc. Am. B 23, 2310(2006).
    [7]S. N. Rashkeev, S. Limpijumnong, and W. R. L. Lambrecht, "Second-harmonic generation and birefringence of some ternary pnictide semiconductors" Phys. Rev. B 59,2737 (1999).
    [8]S. N. Rashkeev and W. R L. Lambrecht, "Second-harmonic generation of Ⅰ-Ⅲ-Ⅵ2 chalcopyrite semiconductors Effects of chemical substitutions" Phys. Rev. B 63,165212 (2000).
    [9]A. H. Romero, M. Cardona, R. K. Kremer, R Lauck, G Siegle, C. Hoch, A. Munoz, and A. Schindler, "Electronic and phononic properties of the chalcopyrite CuGaS2" Phys. Rev. B 83,195208 (2011).
    [10]C. Rincon, I. Villareal, and H. Galindo, "Microhardness-bulk modulus scaling and pressure-induced phase transformations in AⅠB2C2Ⅵ chalcopyrite compounds" J. Appl. Phys.86,2355 (1999).
    [11]B. B. Karki, S. J. Clark, M. C. Warren, H. C. Hsueh, G J. Ackland, and J. Crain, "Ab initio elasticity and lattice dynamics of AgGaSe2" J. Phys.Condens.Matter 9, 375 (1997).
    [12]P. Kistaiaht and K. S. Murthy, "Anisotropic thermal expansivity of the chalcopyrite AgInTe2" J. Phys. D:Appl. Phys 18,861 (1985).
    [13]P. DEUS, H.NEUMANN, GKUHN, and B.HINZE, "Low-Temperature Thermal Expansion in CuInSe2" Physica Status Solidi A 80,205 (1983).
    [14]G Zhang, H. Ruan, X. Zhang, S. Wang, and X. Tao, "Vertical Bridgman growth and optical properties of CdSiP2 crystals" CrystEngComm 15,4255 (2013).
    [15]Z.-L. Lv, Y. Cheng, X.-R. Chen, and G-F. Ji, "First principles study of electronic, bonding, elastic properties and intrinsic hardness of CdSiP2" Comp. Mater. Sci. 77,114(2013).
    [16]Z. He, B. Zhao, S. Zhu, B. Chen, H. Hou, Y. Yu, and L. Xie, "Theoretical investigation of electronic structure, elastic and thermodynamic properties of chalcopyrite CdSiP2" Comp. Mater. Sci.72,26 (2013).
    [17]G Zhang, X. Tao, H. Ruan, S. Wang, and Q. Shi, "Growth of CdSiP2 single crystals by self-seeding vertical Bridgman method" J. Cryst. Growth 340,197 (2012).
    [18]K. T. Zawilski, P. G Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. Kenneth Hopkins, "Growth and characterization of large CdSiP2 single crystals" J. Cryst. Growth 312,1127 (2010).
    [19]G A. Medvedkin and V. G Voevodin, "Magnetic and optical phenomena in nonlinear optical crystals ZnGeP2 and CdGeP2" J. Opt. Soc. Am. B 22,1884 (2005).
    [20]S. Shirakata, "Raman scattering and its hydrostatic pressure dependence in ZnGeP2 crystal" J. Appl. Phys.85,3294 (1999).
    [21]A. Sodeika, Z. Silevicius, Z. Januskevicius, and A. Sakalas, "The influence of intrinsic defects on the electrical properties of single crystals of CdSiP2 and ZnGeP2" Physica Status Solidi A 69,491 (1982).
    [22]A. V. Kopytov and A. S. Poplavnoi, "Crystal lattice dynamics of ZnGeP2 and AgGaS2 in hard ion model" Soviet Physics Journal 23,353 (1980).
    [23]M. BETTINI, W.BAUHOFER, M.CARDONA, and R.NITSCHE, "Optical Phonons in CdSiP2" Physica Status Solidi B 63,641 (1974).
    [24]S. ISOMURA and K. MASUMOTO, "Preparation and Some Optical Properties of ZnGeP2, and CdSiP2" Physica Status Solidi A 13,223 (1972).
    [25]C. T. Chen, Y. C. Wu, A. D. Jiang, B. C. Wu, and G M. You, "New nonlinear-optical crystal:LiB3O5" JOSAB 6,616 (1989).
    [26]C. T. Chen, Y B. Wang, B. C. Wu, K. C. Wu, W. L. Zeng, and L. H. Yu, "Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7" Nature 373,322 (1995).
    [27]Z. S. Lin, L. Kang, T. Zheng, R. He, H. Huang, and C. T. Chen, "Strategy for the optical property studies in ultraviolet nonlinear optical crystals from density functional theory" Comp. Mater. Sci.60,99 (2012).
    [28]A. Banerjee, T. K. Ghanty, A. Chakrabarti, and C. Kamal, "Nonlinear Optical Properties of Au19M (M=Li, Na, K, Rb, Cs, Cu, Ag) Clusters" The Journal of Physical Chemistry C 116,193 (2012).
    [29]T. K. Bera, J. I. Jang, J.-H. Song, C. D. Malliakas, A. J. Freeman, J. B. Ketterson, and M. G Kanatzidis, "Soluble Semiconductors AAsSe2 with a Direct-Band-Gap and Strong Second Harmonic Generation:A combined Experimental and Theoretical Study" J. Am. Chem. Soc.132,3484 (2010).
    [30]J.-H. Song, A. Freeman, T. Bera, I. Chung, and M. Kanatzidis, "First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides" Phys. Rev. B 79,245203 (2009).
    [31]J. Liu and L. H. Liu, "First-principles study of temperature-dependent optical properties of semiconductors from ultraviolet to infrared regions" J. Appl. Phys. 111,083508 (2012).
    [32]F. Chiker, Z. Kebbab, R Miloua, and N. Benramdane, "Birefringence of optically uni-axial ternary semiconductors" Solid State Commun.151,1568 (2011).
    [33]S. Kamran, K. Chen, L. Chen, and L. Zhao, "Electronic origin of anomalously high shear modulus and intrinsic brittleness of fcc Ir" Journal of Physics: Condensed Matter 20,085221 (2008).
    [34]R. John, "Investigation on some of the salient features of Ⅱ-Ⅳ-Ⅴ2 pnictides using band structure calculations as a tool" Comp. Mater. Sci.44,106 (2008).
    [35]X. J. Gu, S. J. Poon, G J. Shiflet, and M. Widom, "Ductility improvement of amorphous steels:Roles of shear modulus and electronic structure" Acta Mater. 56,88 (2008).
    [36]T. Nakau, H. Nimura, Y Ozaki, S. Kamada, and T. Hisamatsu, "Bonds in CdSiP2 studied by thermal expansion coefficients" Jpn. J. Appl. Phys.17,1677 (1978).
    [37]J. Curie and P. Curie, "Development by pressure of polar electricity in hemihedral crystals with inclined faces" Bull. Soc. Min de France 3,90 (1880).
    [38]V. G.Voigt, Lehrbuch der Kristallphysik B. G Teubner, Leipzig (1910).
    [39]F. Yu, S. Zhang, X. Cheng, X. Duan, T. Ma, and X. Zhao, "Crystal growth, structure and thermal properties of noncentrosymmetric single crystals PrCa4O(BO3)3" CrystEngComm (2013).
    [40]F. Yu, S. Zhang, X. Zhao, S. Guo, X. Duan, D. Yuan, and T. R. Shrout, "Investigation of the dielectric and piezoelectric properties of ReCa4O(BO3)3 crystals" Journal of Physics D:Applied Physics 44,135405 (2011).
    [41]G Barros, E. N. Silva, A. P. Ayala, I. Guedes, C. K. Loong, J. Wang, X. Hu, and H. Zhang, "Raman spectroscopic characterization of RECa4O(BO3)3 (RE=La and Gd) crystals" Vib. Spectrosc.46,100 (2008).
    [42]G Dominiak-Dzik, W. Ryba-Romanowski, S. Goiab, M. Baba, and A. Pajaczkowska, "Vibrational structure in optical spectra of the Ca4GdO(BO3)3 (GdCOB) single crystal doped with Re3+(Eu, Tb, Yb)" J. Mol. Struct.614,195 (2002).
    [43]Y Liu, L. Wei, F. Yu, Z. Wang, Y. Zhao, S. Han, X. Zhao, and X. Xu, "Crystal growth and efficient second-harmonic-generation of the monoclinic LaCa4O(BO3)3 crystal" CrystEngComm 15,6035 (2013).
    [44]S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, "Phonons and related crystal properties from density-functional perturbation theory" Rev. Mod. Phys. 73,515(2001).
    [45]N. Zein, "Density Functional Calculations Of Crystal Elastic Modula And Phonon-Spectra" FIZIKA TVERDOGO TELA 26,3028 (1984).
    [46]S. Baroni, P. Giannozzi, and A. Testa, "Green's-function approach to linear response in solids" Phys. Rev. Lett.58,1861 (1987).
    [47]X. Gonze, "Adiabatic density-functional perturbation theory" Phys. Rev. A 52, 1096(1995).
    [48]X. Gonze, P. Ghosez, and R. Godby, "Density-polarization functional theory of the response of a periodic insulating solid to an electric field" Phys. Rev. Lett.74, 4035 (1995).
    [49]X. Gonze, "Perturbation expansion of variational principles at arbitrary order" Phys. Rev. A 52,1086 (1995).
    [50]R. D. King-Smith and D. Vanderbilt, "Theory of polarization of crystalline solids" Phys. Rev. B 47,1651 (1993).
    [51]L. F. Wan, T. Nishimatsu, and S. P. Beckman, "The structural, dielectric, elastic, and piezoelectric properties of KNbO3 from first-principles methods" J. Appl. Phys.111,104107(2012).
    [52]C.-Y. Chung, R. Yaokawa, H. Mizuseki, and Y. Kawazoe, "Atomistic configurational effects on piezoelectric properties of La3Ta0.5Ga5.5O14 and a new piezoelectric crystal design" Acta Mater.59,6473 (2011).
    [53]J. Xin, Y. Zheng, H. Kong, and E. Shi, "From ab initio forecast of piezoelectric properties to growth of piezoelectric single crystals" Appl. Phys. Lett.93,252901 (2008).
    [54]J. Chen, Y. Zheng, H. Kong, and E. Shi, "Piezoelectricity of A3BC3D2O14 structure crystals" Appl. Phys. Lett.89,012901 (2006).
    [55]F. Bernardini and V. Fiorentini, "First-principles calculation of the piezoelectric tensor d of Ⅲ-Ⅴ nitrides" Appl. Phys. Lett.80,4145 (2002).
    [56]S. B. Lang, "Pyroelectricity:from ancient curiosity to modern imaging tool" Phys. Today 58,31(2005).
    [57]S. B. Lang, Sourcebook of pyroelectricity, Vol.2 (Taylor & Francis,1974).
    [58]Y Ta, "Action of radiations on pyroelectric crystals" Compt. Rend 207,1042 (1938).
    [59]J. Valasek, "Piezo-Electric and Allied Phenomena in Rochelle Salt" Phys. Rev.17, 475 (1921).
    [60]G Busch and P. Scherrer, "Eine neue seignette-elektrische Substanz" Naturwissenschaften 23,737 (1935).
    [61]Y. Wang, J. E. Saal, P. Wu, J. Wang, S. Shang, Z.-K. Liu, and L.-Q. Chen, "First-principles lattice dynamics and heat capacity of BiFeO3" Acta Mater.59, 4229(2011).
    [62]X. Marti, P. Ferrer, J. Herrero-Albillos, J. Narvaez, V. Holy, N. Barrett, M Alexe, and G Catalan, "Skin Layer of BiFeO3 Single Crystals" Phys. Rev. Lett.106, 236101 (2011).
    [63]M. Guennou, P. Bouvier, R. Haumont, G Garbarino, and J. Kreisel, "High-pressure phase transitions in BiFeO3:hydrostatic versus non-hydrostatic conditions" Phase. Transit.84,474 (2011).
    [64]Z. Zhang, P. Wu, L. Chen, and J. Wang, "Density functional theory plus U study of vacancy formations in bismuth ferrite" Appl. Phys. Lett.96,232906 (2010).
    [65]A. A. Porporati, K. Tsuji, M. Valant, A.-K. Axelsson, and G Pezzotti, "Raman tensor elements for multiferroic BiFeO3 with rhombohedral R3c symmetry" J. Raman. Spectrosc.41,84 (2010).
    [66]R. Palai, H. Schmid, J. F. Scott, and R. S. Katiyar, "Raman spectroscopy of single-domain multiferroic BiFeO3" Phys. Rev. B 81,064110 (2010).
    [67]J. Lu, A. Gunther, F. Schrettle, F. Mayr, S. Krohns, P. Lunkenheimer, A. Pimenov, V. D. Travkin, A. A. Mukhin, and A. Loidl, "On the room temperature multiferroic BiFeO3:magnetic, dielectric and thermal properties" The European Physical Journal B 75,451 (2010).
    [68]V. I. Zinenko and M. S. Pavlovskii, "Lattice dynamics of BiFeO3 under hydrostatic pressure" Phys. Solid State+.51,1404 (2009).
    [69]L. Zhu, K. L. Yao, Z. L. Liu, and D. H. Zhang, "Stability and electronic structure of BiFeO3 (111) polar surfaces by first-principle calculations" Phys. Lett. A 373, 2374 (2009).
    [70]Y. Yang, J. Y. Sun, K. Zhu, Y. L. Liu, J. Chen, and X. R. Xing, "Raman study of BiFeO3 with different excitation wavelengths" Physica B:Condensed Matter 404, 171 (2009).
    [71]Y Yang, L. G Bai, K. Zhu, Y. L. Liu, S. Jiang, J. Liu, J. Chen, and X. R. Xing, "High pressure Raman investigations of multiferroic BiFeO3" J Phys Condens Matter 21,385901 (2009).
    [72]C. H. Yang, J. Seidel, S. Y Kim, P. B. Rossen, P. Yu, M. Gajek, Y. H. Chu, L. W. Martin, M. B. Holcomb, Q. He, P. Maksymovych, N. Balke, S. V. Kalinin, A. P. Baddorf, S. R. Basu, M. L. Scullin, and R. Ramesh, "Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films" Nat Mater 8,485 (2009).
    [73]S. Shang, G. Sheng, Y. Wang, L. Chen, and Z. Liu, "Elastic properties of cubic and rhombohedral BiFeO3 from first-principles calculations" Phys. Rev. B 80, 052102 (2009).
    [74]O. Gonzalez-Vazquez and J. Iniguez, "Pressure-induced structural, electronic, and magnetic effects in BiFeO3" Phys. Rev. B 79,064102 (2009).
    [75]S. J. Clark and J. Robertson, "Energy levels of oxygen vacancies in BiFeO3 by screened exchange" Appl. Phys. Lett.94,022902 (2009).
    [76]Q. Li, D.-H. Huang, Q.-L. Cao, and F.-H. Wang, "Phase transition and thermodynamic properties of BiFeO3 from first-principles calculations" Chinese Physics B 22,037101 (2013).
    [77]B. Elena, G Marco, B. Alexei, R. Pauline, C. Maximilien, C. Dorothee, G Philippe, and K. Michael, "Lattice dynamics of multiferroic BiFeO3 studied by inelastic x-ray scattering" Journal of Physics:Condensed Matter 25,102201 (2013).
    [78]O. Dieguez, P. Aguado-Puente, J. Junquera, and J. Iniguez, "Domain walls in a perovskite oxide with two primary structural order parameters:First-principles study of BiFeO3" Phys. Rev. B 87,024102 (2013).
    [79]M. Zbiri, H. Schober, N. Choudhury, R. Mttal, S. L. Chaplot, S. J. Patwe, S. N. Achary, and A. K. Tyagi, "High-temperature phonon spectra of multiferroic BiFeO3 from inelastic neutron spectroscopy" Appl. Phys. Lett.100,142901 (2012).
    [80]P. Kumar, A. Bera, D. V. Muthu, S. Shirodkar, R Saha, A. Shireen, A. Sundaresan, U. Waghmare, A. Sood, and C. N. Rao, "Coupled phonons, magnetic excitations, and ferroelectricity in AlFeO3:Raman and first-principles studies" Phys. Rev. B 85,134449 (2012).
    [81]G Burns, "Comment on the low temperature specific heat of ferroelectrics antiferroelectrics and related materials" Solid State Conmiunications 35,811 (1980).
    [82]K. H. Weyrich, ""Frozen" phonon calculations:Lattice dynamics and-Instabilities" Ferroelectrics 104,183 (1990).
    [83]M. Drulis and K. Konieczny, "Low-temperature heat capacity of NaNbO3 compound" Materials Science and Engineering:B 72,19 (2000).
    [84]P. Baettig, C. Ederer, and N. Spaldin, "First principles study of the multiferroics BiFeO3, Bi2FeCrO6, and BiCrO3:Structure, polarization, and magnetic ordering temperature" Phys. Rev. B 72,21405 (2005).
    [85]A. M. Ritzmann, A. B. Munoz-Garcia, M. Pavone, J. A. Keith, and E. A. Carter, "Ab Initio DFT+U Analysis of Oxygen Vacancy Formation and Migration in La1-xSrxFeO3-δ(x=0,0.25,0.50)" Chem. Mater.25,3011 (2013).
    [86]D. Gryaznov, E. Blokhin, A. Sorokine, E. A. Kotomin, R A. Evarestov, A. Bussmann-Holder, and J. Maier, "A Comparative Ab InitioThermodynamic Study of Oxygen Vacancies in ZnO and SrTiO3:Emphasis on Phonon Contribution" The Journal of Physical Chemistry C 117,13776 (2013).
    [87]T. R Paudel, S. S. Jaswal, and E. Y. Tsymbal, "Intrinsic defects in multiferroic BiFeO3 and their effect on magnetism" Phys. Rev. B 85,104409 (2012).
    [88]X.-Y Chen, L.-J. Chen, X.-B. Yang, Y.-J. Zhao, H.-C. Ding, and C.-G Duan, "Tuning the polarization and magnetism in BiCo03 by strain and oxygen vacancy effect:A first-principle study" J. Appl. Phys. 111,013901 (2012).
    [89]S. Ju and T.-Y Cai, "First-principles studies of the effect of oxygen vacancies on the electronic structure and linear optical response of multiferroic BiFeOs" Appl. Phys. Lett.95,231906 (2009).
    [90]C. Ederer and N. Spaldin, "Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite" Phys. Rev. B 71, 224103 (2005).
    [91]C. Chen, Y Wu, A. Jiang, B. Wu, G You, R Li, and S. Lin, "New nonlinear-optical crystal. LiB3O5" JOSA B 6,616 (1989).
    [92]C. Chen, Y. Wang, B. Wu, K Wu, W. Zeng, and L. Yu, "Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7" Nature 373,322 (1995).
    [93]C. Chen, J. Lu, T. Togashi, T. Suganuma, T. Sekikawa, S. Watanabe, Z. Xu, and J. Wang, "Second-harmonic generation from a KBe2BO3F2 crystal in the deep ultraviolet" Opt. Lett.27,637 (2002).
    [94]E. K. Salje, "Ferroelastic phase transitions and mesoscopic structures" Ferroelectrics 221,1 (1999).
    [95]M. Born, K. Huang, G Physicist, and G Britain, Dynamical theory of crystal lattices,Vol 188 (Clarendon Press Oxford,1954).
    [96]R. M. Pick, M. H. Cohen, and R M. Martin, "Microscopic Theory of Force Constants in the Adiabatic Approximation" Phys. Rev. B 1,910 (1970).
    [97]P. D. DeCicco and F. A. Johnson, "The Quantum Theory of Lattice Dynamics. IV" Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 310,111(1969).
    [98]W. Kohn and L. J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects" Physical Review 140, A1133 (1965).
    [99]P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas" Physical Review 136, B864 (1964).
    [100]S. Baroni, P. Giannozzi, and A. Testa, "Green's-function approach to linear response in solids" Phys. Rev. Lett.58,1861 (1987).
    [101]J. W L. Pang, W J. L. Buyers, A. Chernatynskiy, M. D. Lumsden, B. C. Larson, and S. R. Phillpot, "Phonon Lifetime Investigation of Anharmonicity and Thermal Conductivity of UO2by Neutron Scattering and Theory" Phys. Rev. Lett. 110,157401 (2013).
    [102]N. Li, J. Ren, L. Wang, G Zhang, P. Hanggi, and B. Li, "Colloquium:Phononics: Manipulating heat flow with electronic analogs and beyond" Rev. Mod. Phys.84, 1045 (2012).
    [103]S. Kim, K. Kim, C.-J. Kang, and B. I. Min, "Pressure-induced phonon softenings and the structural and magnetic transitions in CrO2" Phys. Rev. B 85,094106 (2012).
    [104]T. Basak, M. N. Rao, M. K. Gupta, and S. L. Chaplot, "Vibrational properties and phase transitions in Ⅱ-Ⅵ materials:lattice dynamics,ab initiostudies and inelastic neutron scattering measurements" Journal of Physics:Condensed Matter 24,115401(2012).
    [105]K. Valset, J. Taft(?), L. Wu, and Y. Zhu, " Anharmonic thermal motion of atoms in thermoelectric Mg2Si studied via convergent-beam electron diffraction" Phys. Rev. B 84,220301 (2011).
    [106]J. L. Niedziela, D. Parshall, K. A. Lokshin, A. S. Sefat, A. Alatas, and T. Egami, "Phonon softening near the structural transition in BaFe2As2 observed by inelastic x-ray scattering" Phys. Rev. B 84,224305 (2011).
    [107]D. A. Huseinova, F. M. Hashimzade, G S. Orudzhev, M. A. Nizametdinova, and K. R Allakhverdiev, "Ab initio Lattice Dynamics and Gruneisen Parameters of TlGaSe2" Jpn. J. Appl. Phys.50,2 (2011).
    [108]L. Hromadova and R. Martonak, "Pressure-induced structural transitions in BN from ab initio metadynamics" Phys. Rev. B 84,224108 (2011).
    [109]S. Bhattacharjee, K. Taji, C. Moriyoshi, Y. Kuroiwa, and D. Pandey, "Temperature-induced isostructural phase transition, associated large negative volume expansion, and the existence of a critical point in the phase diagram of the multiferroic (1-x)BiFe03-xPbTiO3 solid solution system" Phys. Rev. B 84, 104116(2011).
    [110]Z.-Y. Zeng, C.-E. Hu, L.-C. Cai, X.-R. Chen, and F.-Q. Jing, "Lattice Dynamics and Thermodynamics of Molybdenum from First-Principles Calculations" The Journal of Physical Chemistry B 114,298 (2009).
    [111]U. D. Wdowik and K. Parlinski, "Lattice dynamics of Fe-doped CoO from first principles" J Phys Condens Matter 21,125601 (2009).
    [112]T. Slezak, J. Lazewski, S. Stankov, K. Parlinski, R. Reitinger, M. Rennhofer, R Ruffer, B. Sepiol, M.Slezak, N. Spiridis, M. ZajaC, A. Chumakov, and J. Korecki, "Phonons at the Fe(110) Surface" Phys. Rev. Lett.99,066103 (2007).
    [113]S. Q. Wang, "First-principles study of the anisotropic thermal expansion of wurtzite ZnS" Appl. Phys. Lett.88,061902 (2006).
    [114]K. Parlinski, "Ab initio calculations of surface phonons from a direct method with a filling slab approach:MgO(001) and Li/MgO(001) surfaces" Phys. Rev. B 74,184309(2006).
    [115]A. Kuwabara, T. Tohei, T. Yamamoto, and I. Tanaka, "Ab initio lattice dynamics and phase transformations of ZrO2" Phys. Rev. B 71,064301 (2005).
    [116]F. W. Ohrendorf and H. Haeuseler, "Lattice dynamics of chalcopyrite type compounds Part IV. Calculations of TO phonon modes in a reduced rigid ion model" Cryst. Res. Technol.35,569 (2000).
    [117]K. Parlinski, Z. Q. Li, and Y. Kawazoe, "First-Principles Determination of the Soft Mode in Cubic ZrO2" Phys. Rev. Lett.78,4063 (1997).
    [118]X. Gonze and C. Lee, "Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory" Phys. Rev. B 55,10355 (1997).
    [119]W. Moller, G Kuhn, and H. Neumann, "Heat capacity and lattice anhamonicity in CdBⅣC2Ⅴ chalcopyrite compounds" Cryst. Res. Technol.22,533 (1987).
    [120]G Burns, "Comment on the low temperature specific heat of ferroelectrics, antiferroelectrics, and related materials" Solid State Commun.35,811 (1980).
    [121]M. M. Beg and S. M. Shapiro, "Study of phonon dispersion relations in cuprous oxide by inelastic neutron scattering" Phys. Rev. B 13,1728 (1976).
    [122]Z.-G Li, C.-G Piao, X. Pan, Y.-K. Wei, Y. Cheng, and G-F. Ji, "First-principles investigations on elastic, phonon and thermodynamic properties of SrB6 under pressure" Physica B:Condensed Matter 407,361 (2012).
    [123]H.-J. Hou, S.-F. Zhu, B.-J. Zhao, Y Yu, S.-R. Zhang, and L.-H. Xie, "The structural,elastic and thermodynamical properties of zinc-blend structure InN from first principles" Physica. B 407,408 (2012).
    [124]T. Paudel and W. Lambrecht, "First-principles calculation of the zone center phonons in ZnSiN2:Comparison with infrared data" Phys. Rev. B 76,115205 (2007).
    [125]J. Lazewski, J. Korecki, and K. Parlinski, "Phonons of (100) and (110) iron surfaces from first-principles calculations" Phys. Rev. B 75,054303 (2007).
    [126]X. Zhao and D. Vanderbilt, "Phonons and lattice dielectric properties of zirconia" Phys. Rev. B 65,075105 (2002).
    [127]J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple" Phys. Rev. Lett.77,3865 (1996).
    [128]F. Favot and A. Dal Corso, "Phonon dispersions:Performance of the generalized gradient approximation" Phys. Rev. B 60,11427 (1999).
    [129]A. Dal Corso and S. de Gironcoli, "Ab initio phonon dispersions of Fe and Ni" Phys. Rev. B 62,273 (2000).
    [130]R. H. Lyddane, R. G Sachs, and E. Teller, "On the Polar Vibrations of Alkali Halides" Physical Review 59,673 (1941).
    [131]Y Cai, C. Zhang, and Y. P. Feng, "Dielectric properties and lattice dynamics of α-PbO2-type TiO2:The role of soft phonon modes in pressure-induced phase transition to baddeleyite-type TiO2" Phys. Rev. B 84,094107 (2011).
    [132]Y. Cai, L. Zhang, Q. Zeng, L. Cheng, and Y. Xu, "First-principles study of vibrational and dielectric properties of β-Si3N4" Phys. Rev. B 74,174301 (2006).
    [133]W. Cochran and R. A. Cowley, "Dielectric constants and lattice vibrations" J. Phys. Chem. Solids 23,447 (1962).
    [134]L. Wei, W. Fan, Y. Li, X. Zhao, and L. Yang, "Effect of cation ordering on the electronic and lattice dynamic properties of Ag2CdGeS4 polytypes: First-principle calculation" J. Solid State Chem.201,48 (2013).
    [135]Y. Wang, J. J. Wang, W. Y. Wang, Z. G. Mei, S. L. Shang, L. Q. Chen, and Z. K. Liu, "A mixed-space approach to first-principles calculations of phonon frequencies for polar materials" J Phys Condens Matter 22,202201 (2010).
    [136]Y Cai, L. Zhang, Q. Zeng, L. Cheng, and Y Xu, "Infrared reflectance spectrum of BN calculated from first principles" Solid State Commun.141,262 (2007).
    [137]H. M. J. Smith, "The Theory of the Vibrations and the Raman Spectrum of the Diamond Lattice" Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 241,105 (1948).
    [138]R. Lobo, R Moreira, D. Lebeugle, and D. Colson, "Infrared phonon dynamics of a multiferroic BiFeO3 single crystal" Phys. Rev. B 76,172105 (2007).
    [139]Z. Gao, S. Liu, S. Zhang, W. Zhang, J. He, and X. Tao, "High efficient external resonator Raman laser based on the monoclinic single crystal BaTeMo2O9" Appl. Phys. Lett.100,261905 (2012).
    [140]A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni, and E. S. Aydil, "Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments" J. Appl. Phys. 111,083707 (2012).
    [141]P. Hermet, M. Goffinet, J. Kreisel, and P. Ghosez, "Raman and infrared spectra of multiferroic bismuth ferrite from first principles" Phys. Rev. B 75,220102 (2007).
    [142]M. Singh, S. Ryu, and H. Jang, "Polarized Raman scattering of multiferroic BiFeO3 thin films with pseudo-tetragonal symmetry" Phys. Rev. B 72,132101 (2005).
    [143]N. E. Zein, V. I. Zinenko, and A. S. Fedorov, "Ab initio calculations of phonon frequencies and dielectric constants in A4B6 compounds" Phys. Lett. A 164,115 (1992).
    [144]R. Haumont, J. Kreisel, P. Bouvier, and F. Hippert, "Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeOs" Phys. Rev. B 73,13201 (2006).
    [145]L. Yang, W. Fan, Y Li, H. Sun, L. Wei, X. Cheng, and X. Zhao, "Theoretical insight into the structural stability of KZnB3O6 polymorphs with different BOX polyhedral networks" Inorg. Chem.51,6762 (2012).
    [146]G Q. Huang and J. Yang, "Surface lattice dynamics and electron-phonon interaction in ultrathin Bi(111) film" J Phys Condens Matter 25,175004 (2013).
    [147]Z. Schlesinger, J. Rosen, J. Hancock, and A. Ramirez, "Soft Manifold Dynamics behind Negative Thermal Expansion" Phys. Rev. Lett.101,015501 (2008).
    [148]G Kresse and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method" Phys. Rev. B 59,1758 (1999).
    [149]A. A. Belik, H. Yusa, N. Hirao, Y. Ohishi, and E. Takayama-Muromachi, "Structural Properties of Multiferroic BiFeO3 under Hydrostatic Pressure" Chem. Mater.21,3400 (2009).
    [150]A. Fleszar and X. Gonze, "First-principles thermodynamical properties of semiconductors" Phys. Rev. Lett.64,2961 (1990).
    [151]L. Wei, G Zhang, W. Fan, Y. Li, L. Yang, and X. Zhao, "Anisotropic thermal anharmonicity of CdSiP2 and ZnGeP2:Ab initio calculations" J. Appl. Phys.114, 233501 (2013).
    [152]P. Kistaiah, C. V Reddy, V. P. Kumar, P. V Reddy, and S. Venkanna, "Temperature behaviour of thermal expansion anisotropy and Gruneisen parameters of chalcopyrite silver thiogallate" J. Alloy. Compd.397,192 (2005).
    [153]K. Wang and R. R. Reeber, "Mode Grunheisen parameters and negative thermal expansion of cubic ZrW208 and ZrMo2O8" Appl. Phys. Lett.76,2203 (2000).
    [154]H. Neumann and E. Nowak, "High temperature heat capacity and Gruneisen functions in AgGaS2" Journal of the Less Common Metals 146, L7 (1989).
    [155]M. Bettini and W. B. Holzapfel, "Gruneisen parameters of Gamma phonons in CdSiP2 CuAlS2 and CuGaS2" Solid State Commun.16,27 (1975).
    [156]S. Ganesan, "Temperature variation of the gruneisen parameter in magnesium oxide" Philosophical Magazine 7,197 (1962).
    [1]X. Gonze, "Adiabatic density-functional perturbation theory" Phys. Rev. A 52, 1096 (1995).
    [2]R. Sternheimer, "Electronic polarizabilities of ions from the Hartree-Fock wave functions" Physical Review 96,951 (1954).
    [3]P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas" Physical Review 136, B864 (1964).
    [4]W. Kohn and L. Sham, "Quantum density oscillations in an inhomogeneous electron gas" Physical Review 137, A1697 (1965).
    [5]L. Sham, "Density Functional Theory and Computational Materials Physics" KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE,13 (1996).
    [6]W. Yang, "Direct calculation of electron density in density-functional theory" Phys. Rev. Lett.66,1438 (1991).
    [7]A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior" Phys. Rev. A 38,3098 (1988).
    [8]D. M. Ceperley and B. J. Alder, "Exchange-correlation potential and energy for density-functional calculation" Phys. Rev. Lett 45,567 (1980).
    [9]J. P. Perdew and A. Zunger, "Self-interaction correction to density-functional approximations for many-electron systems" Phys. Rev. B 23,5048 (1981).
    [10]G Ortiz and P. Ballone, "Correlation energy, structure factor, radial distribution function, and momentum distribution of the spin-polarized uniform electron gas" Phys. Rev. B 50,1391 (1994).
    [11]R. O. Jones and O. Gunnarsson, "The density functional formalism, its applications and prospects" Rev. Mod. Phys.61,689 (1989).
    [12]J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, "Accurate density functional with correct formal properties:A step beyond the generalized gradient approximation" Phys. Rev. Lett.82,2544 (1999).
    [13]J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple" Phys. Rev. Lett.77,3865 (1996).
    [14]X. Gonze and J.-P. Vigneron, "Density-functional approach to nonlinear-response coefficients of solids" Phys. Rev. B 39,13120 (1989).
    [15]X. Gonze, "Perturbation expansion of variational principles at arbitrary order" Phys. Rev. A 52,1086 (1995).
    [16]P. Giannozzi, S. De Gironcoli, P. Pavone, and S. Baroni, "Ab initio calculation of phonon dispersions in semiconductors" Phys. Rev. B 43,7231 (1991).
    [17]X. Gonze and C. Lee, "Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory" Phys. Rev. B 55,10355 (1997).
    [18]S. Baroni and R. Resta, "Ab initio calculation of the macroscopic dielectric constant in silicon" Phys. Rev. B 33,7017 (1986).
    [19]A. Debemardi, "Anharmonic effects in the phonons of Ⅲ-Ⅴ semiconductors: first principles calculations" Solid State Commun.113,1 (1999).
    [20]R. D. King-Smith and D. Vanderbilt, "Theory of polarization of crystalline solids" Phys. Rev. B 47,1651 (1993).
    [21]R. Resta, "Macroscopic polarization in crystalline dielectrics:the geometric phase approach" Rev. Mod. Phys.66,899 (1994).
    [22]K. Parlinski, Z. Li, and Y Kawazoe, "Parlinski, Li, and Kawazoe Reply" Phys. Rev. Lett.81,3298(1998).
    [23]K. Parlinski, Z. Li, and Y. Kawazoe, "Ab initio calculations of phonons in LiNbO3" Phys. Rev. B 61,272 (2000).
    [1]A. Rockett and R W. Birkmire, "CuInSe2 for photovoltaic applications" J. Appl. Phys.70,R81(1991).
    [2]S. ISOMURA and K. MASUMOTO, "Preparation and Some Optical Properties of ZnGeP2, and CdSiP2" Physica Status Solidi A13,223 (1972).
    [3]V. Shaposhnikov, A. Krivosheeva, V Borisenko, J. L. Lazzari, and F. d'Avitaya, "Ab initio modeling of the structural, electronic, and optical properties of AⅡBⅣC2Ⅴ semiconductors" Phys. Rev. B 85,205201 (2012).
    [4]G A. Medvedkin and V. G Voevodin, "Magnetic and optical phenomena in nonlinear optical crystals ZnGeP2 and CdGeP2" J. Opt. Soc. Am. B 22,1884 (2005).
    [5]W. Lambrecht and X. Jiang, "Noncritically phase-matched second-harmonic-generation chalcopyrites based on CdSiAs2 and CdSiP2" Phys. Rev. B 70,045204 (2004).
    [6]G Marchev, A. Tyazhev, V. Petrov, P. G Schunemann, K. T. Zawilski, G Stoppler, and M. Eichhorn, "Optical parametric generation in CdSiP2 at 6.125 μm pumped by 8 ns long pulses at 1064 nm" Opt. Lett.37,740 (2012).
    [7]A. Peremans, D. Lis, F. Cecchet, P. G Schunemann, K. T. Zawilski, and V. Petrov, "Noncritical singly resonant synchronously pumped OPO for generation of picosecond pulses in the mid-infrared near 6.4 μm" Opt. Lett.34,3053 (2009).
    [8]K. T. Zawilski, P. G Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. Kenneth Hopkins, "Growth and characterization of large CdSiP2 single crystals" J. Cryst. Growth 312,1127 (2010).
    [9]D. J. Lockwood and H. Montgomery, "Raman spectrum of AgGaS2" Journal of Physics C:Solid State Phys.8,3241 (1975).
    [10]S. Shirakata, "Raman scattering and its hydrostatic pressure dependence in ZnGeP2 crystal" J. Appl. Phys.85,3294 (1999).
    [11]S. Shirakata, "Hydrostatic Pressure Dependence of Raman Spectra in CdSiP2 Crystal" Jpn. J. Appl. Phys.27,2113 (1988).
    [12]I. S. Gorban, V. A. Gorynya, V. I. Lugovoi, N. P. Krasnolob, G I. Salivon, and I.I. Tychina, "One- and two-phonon Raman scattering in ternary phosphides ZnSiP2, ZnGeP2, CdSiP2" Physica Status Solidi B 93,531 (1979).
    [13]G Kresse and J. Furthmuller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set" Phys. Rev. B 54,11169 (1996).
    [14]P. A. F. Se'rgio Filipe Sousa, and Maria Joa-o Ramos, "General Performance of Density Functionals" J. Phys. Chem. A 111,10439 (2007).
    [15]S. H. Vosko, L. Wilk, and M. Nusair, "Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis" Can. J. Phys.58,1200 (1980).
    [16]G Kresse and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method" Phys. Rev. B 59,1758 (1999).
    [17]K. Parlinski, Z. Q. Li, and Y. Kawazoe, "First-Principles Determination of the Soft Mode in Cubic ZrO2" Phys. Rev. Lett.78,4063 (1997).
    [18]H. J. Monkhorst and J. D. Pack, "Special points for Brillouin-zone integrations" Phys. Rev. B 13,5188 (1976).
    [19]P. Kornilovitch, "Polaron action for multimode dispersive phonon systems" Phys. Rev. B 73,094305 (2006).
    [20]P. Umari, A. Pasquarello, and A. Dal Corso, "Raman scattering intensities in a-quartz:A first-principles investigation" Phys. Rev. B 63,094305 (2001).
    [21]S. Shapiro and J. Axe, "Raman Scattering from Polar Phonons" Phys. Rev. B 6, 2420 (1972).
    [22]J. Scott and S. Porto, "Longitudinal and Transverse Optical Lattice Vibrations in Quartz" Physical Review 161,903 (1967).
    [23]J. Jaffe and A. Zunger, "Electronic structure of the ternary pnictide semiconductors ZnSiP2, ZnGeP2, ZnSnP2, ZnSiAs2, and MgSiP2" Phys. Rev. B 30,741 (1984).
    [24]R. Loudon, "The Raman effect in crystals" Adv. Phys.13,423 (1964).
    [25]I. P. Kaminow, E. Buehler, and J. H. Wernick, "Vibrational Modes in ZnSiP2" Phys. Rev. B 2,960 (1970).
    [26]G. D. Holah, J. S. Webb, and H. Montgomery, "Lattice dynamics of AgGaS2" Journal of Physics C:Solid State Physics 7,3875 (1974).
    [27]S. A. Lopez-Rivera, H. Galindo, B. Fontal, and M. Briceno, "Characterization of tellurium impurities in crystalline ZnSiP2 using polarized Raman scattering" Phys. Rev. B 30,7097 (1984).
    [28]G D. Holah, "Optical phonons and polaritons in ZnSiP2" Journal of Physics C: Solid State Physics 5,1893(1972).
    [1]E. Parthe, Crystal chemistry of tetrahedral structures (CRC Press,1964).
    [2]N. A. Goryunova and J. C. Anderson, The chemistry of diamond-like semiconductors (Chapman and Hall London,1965).
    [3]X. Y. Shi, F. Q. Huang, M. L. Liu, and L. D. Chen, "Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1-xInxSe4" Appl. Phys. Lett 94,122103 (2009).
    [4]I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, "Novel Stannite-type Complex Sulfide Photocatalysts A2Ⅰ-Zn-AⅣ-S4 (AⅠ= Cu and Ag; AⅣ= Sn and Ge) for Hydrogen Evolution under Visible-Light Irradiation" Chem. Mater 22,1402(2010).
    [5]C. H. L. Goodman, "The prediction of semiconducting properties in inorganic compounds" J. Phys. Chem. Solids 6,305 (1958).
    [6]H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, "Development of CZTS-based thin film solar cells" Thin Solid Films 517,2455 (2009).
    [7]J. L. Shay and J. H. Wernick, Ternary Chalcopyrite Semiconductors:Growth, Electronic Properties, and Applications (Pergamon, New York,1975).
    [8]J. W. Lekse, M. A. Moreau, K. L. McNerny, J. Yeon, P. S. Halasyamani, and J. A. Aitken, "Second-Harmonic Generation and Crystal Structure of the Diamond-like Semiconductors Li2CdGeS4 and Li2CdSnS4" Inorg. Chem 48,7516 (2009).
    [9]T. Maeda, S. Nakamura, and T. Wada, "First principles calculations of defect formation in In-free photovoltaic semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4" Jpn. J. Appl. Phys 50,05FF01 (2011).
    [10]G M. Ford, Q. Guo, R. Agrawal, and H. W. Hillhouse, "Earth Abundant Element Cu2Zn (Sn1-x Gex)S4 Nanocrystals for Tunable Band Gap Solar Cells:6.8% Efficient Device Fabrication" Chem. Mater 23,2626 (2011).
    [11]Q. Guo, G M. Ford, W. C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, and R. Agrawal, "Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals" J. Am. Chem. Soc 132,17384 (2010).
    [12]E. Honig, H. Shen, G Yao, K. Doverspike, R. Kershaw, K. Dwight, and A. Wold, "Preparation and characterization of Cu2Zn1-xMnxGeS4" Mater. Res. Bull.23, 307(1988).
    [13]G H. McCabe, T. Fries, M. T. Liu, Y. Shapira, L. R. Ram-Mohan, R. Kershaw, A. Wold, C. Fau, M. Averous, and E. J. McNiff, "Bound magnetic polarons in p-type Cu2Mn0.9Zn0.1SnS4" Phys. Rev. B 56,6673 (1997).
    [14]L. Pauling, "The principles determining the structure of complex ionic crystals" J. Am. Chem. Soc 51,1010 (1929).
    [15]E. Parthe, K. Yvon, and R. H. Deitch, "The crystal structure of Cu2CdGeS4 and other quaternary normal tetrahedral structure compounds" Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry 25,1164 (1969).
    [16]O. V. Parasyuk, L. V. Piskach, I. D. Olekseyuk, and V. I. Pekhnyo, "The quasi-ternary system Ag2S-CdS-GeS2 and the crystal structure of Ag2CdGeS4" J. Alloys Compd 397,95 (2005).
    [17]O. V. Parasyuk, I. D. Olekseyuk, L. V. Piskach, S. V. Volkov, and V. I. Pekhnyo, "Phase relations in the Ag2S-CdS-SnS2 system and the crystal structure of the compounds" J. Alloys Compd 399,173 (2005).
    [18]O. V. Parasyuk and L. V Piskach, "The Ag2SnS3-CdS System" Polish J. Chem 72, 966 (1998).
    [19]M. Bohm, G Huber, A. MacKinnon, O. Madelung, A. Schar-mann, and E.-G. Scharmer, Physics of Ternary Compounds (Springer, New York,1985).
    [20]S. Chen, A. Walsh, Y. Luo, J.-H. Yang, X. Gong, and S.-H. Wei, "Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors" Phys. Rev. B 82 (2010).
    [21]C. D. Brunetta, W. C. Minsterman, C. H. Lake, and J. A. Aitken, "Cation ordering and physicochemical characterization of the quaternary diamond-like semiconductor Ag2CdGeS4" J. Solid State Chem.187,177 (2012).
    [22]S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K Refson, and M. C. Payne, "First principles methods using CASTEP" Z. Kristallogr.220, 567 (2005).
    [23]D. R Hamann, M. Schluter, and C. Chiang, "Norm-conserving pseudopotentials" Phys. Rev. Lett 43,1494 (1979).
    [24]D. M. Ceperley and B. J. Alder, "Exchange-correlation potential and energy for density-functional calculation" Phys. Rev. Lett 45,567 (1980).
    [25]H. J. Monkhorst and J. D. Pack, "Special points for Brillouin-zone integrations" Phys. Rev. B 13,5188 (1976).
    [26]X. Gonze, "First-principles responses of solids to atomic displacements and homogeneous electric fields:Implementation of a conjugate-gradient algorithm" Phys. Rev. B 55,10337 (1997).
    [27]S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, "Phonons and related crystal properties from density-functional perturbation theory" Rev. Mod. Phys. 73,515(2001).
    [28]W. Cochran and R A. Cowley, "Dielectric constants and lattice vibrations" J. Phys. Chem. Solids 23,447 (1962).
    [29]J. Hernandez-Trujillo and R. F. W. Bader, "Properties of atoms in molecules: atoms forming molecules" J. Phys. Chem. A104,1779 (2000).
    [30]A. Garcia and M. L. Cohen, "First-principles ionicity scales, n. Structural coordinates from atomic calculations" Phys. Rev. B 47,4221 (1993).
    [31]A. Garcia and M. L. Cohen, "First-principles ionicity scales. I. Charge asymmetry in the solid state" Phys. Rev. B 47,4215 (1993).
    [32]S. Chen, X. G Gong, A. Walsh, and S. H. Wei, "Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of Ⅱ-Ⅵ and Ⅰ-Ⅲ-Ⅵ2 compounds" Phys. Rev. B 79,165211 (2009).
    [1]A. Rockett and R. W. Birkmire, "CuInSe2 for photovoltaic applications" J. Appl. Phys.70,R81 (1991).
    [2]V. Shaposhnikov, A. Krivosheeva, V. Borisenko, J. L. Lazzari, and F. d'Avitaya, "Ab initio modeling of the structural, electronic, and optical properties of AⅡBⅣC2Ⅴ semiconductors" Phys. Rev. B 85,205201 (2012).
    [3]K. T. Zawilski, P. G Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. Kenneth Hopkins, "Growth and characterization of large CdSiP2 single crystals" J. Cryst. Growth 312,1127 (2010).
    [4]A. H. Romero, M. Cardona, R. K. Kremer, R. Lauck, G Siegle, C. Hoch, A. Munoz, and A. Schindler, "Electronic and phononic properties of the chalcopyrite CuGaS2" Phys. Rev. B 83,195208 (2011).
    [5]G Kiihn, H. Neumann, and E. Nowak, "Trends in the high-temperature heat capacities of ternary chalcopyrite semiconductors" Journal of Thermal Analysis 33,197(1988).
    [6]A. Miller, R. G Humphreys, and B. Chapman, "HIGH TEMPERATURE LATTICE PARAMETERS OF ZnSiP2, ZnGeP2 AND CdGeP2" J. Phys. Colloq. 36, C3 (1975).
    [7]T. Nakau, H. Nimura, Y. Ozaki, S. Kamada, and T. Hisamatsu, "Bonds in CdSiP2 studied by thermal expansion coefficients" Jpn. J. Appl. Phys.17,1677 (1978).
    [8]O. V. Parasyuk, L. V. Piskach, I. D. Olekseyuk, and V. I. Pekhnyo, "The quasi-ternary system Ag2S-CdS-GeS2 and the crystal structure of Ag2CdGeS4" J. Alloys Compd 397,95 (2005).
    [9]P. Kistaiaht and K. S. Murthy, "Anisotropic thermal expansivity of the chalcopyrite AgInTe2" J. Phys. D:Appl. Phys 18,861 (1985).
    [10]P. Kistaiah, Y. C. Venudhar, K. S. Murthy, L. Iyengar, and K. V. K. Rao, "Anomalous Thermal Expansion of Silver Gallium Telluride" J. Appl. Cryst.14, 281 (1981).
    [11]S. Shirakata, "Hydrostatic Pressure Dependence of Raman Spectra in CdSiP2 Crystal" Jpn. J. Appl. Phys.27,2113 (1988).
    [12]M. Bettini and W. B. Holzapfel, "Gruneisen parameters of Gamma phonons in CdSiP2 CuAlS2and CuGaS2" Solid State Commun.16,27 (1975).
    [13]Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, and J. Meng, "Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles" Phys. Rev. B 76,054115(2007).
    [14]Y. N. Makurin, I. R Shein, M. A. Gorbunova, V. S. Kiiko, and A.Ivanovskii, "FIRST-PRINCIPLE QUANTUM-CHEMICAL CALCULATIONS OF SEVERAL THERMOMECHANICAL PARAMETERS OF BERYLLIUM CERAMICS" Refract. Ind. Ceram+.47,38 (2006).
    [15]G Kresse and J. Furthmuller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set" Phys. Rev. B 54,11169 (1996).
    [16]W. Kohn and L. J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects" Physical Review 140, A1133 (1965).
    [17]S. H. Vosko, L. Wilk, and M. Nusair, "Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis" Can. J. Phys.58,1200(1980).
    [18]G Kresse and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method" Phys. Rev. B 59,1758 (1999).
    [19]H. J. Monkhorst and J. D. Pack, "Special points for Brillouin-zone integrations" Phys. Rev. B 13,5188 (1976).
    [20]K. Parlinski, Z. Q. Li, and Y. Kawazoe, "First-Principles Determination of the Soft Mode in Cubic ZrO2" Phys. Rev. Lett.78,4063 (1997).
    [21]X. Gonze, "First-principles responses of solids to atomic displacements and homogeneous electric fields:Implementation of a conjugate-gradient algorithm" Phys. Rev. B 55,10337 (1997).
    [22]M. M. Beg and S. M. Shapiro, "Study of phonon dispersion relations in cuprous oxide by inelastic neutron scattering" Phys. Rev. B 13,1728 (1976).
    [23]J. Laz ewski and K. Parlinski, "Lattice dynamics and elasticity of silver thiogallate AgGaS2 from ab initio calculations" The Journal of Chemical Physics 114,6734 (2001).
    [24]G Zhang, X. Tao, H. Ruan, S. Wang, and Q. Shi, "Growth of CdSiP2 single crystals by self-seeding vertical Bridgman method" J. Cryst. Growth 340,197 (2012).
    [25]H. NEUMANN, "Trends in the Thermal Expansion Coefficients of the AⅠBⅢC2Ⅵ and AⅡBⅣC2Ⅴv Chalcopyrite Compounds" Cryst. Res. Technol.15, 849(1980).
    [26]S. M. Wasim, "Thermal conductivity of ternary Compounds" phys. stat. sol. (a) 51, K35 (1979).
    [27]B. B. Karki, S. J. Clark, M. C. Warren, H. C. Hsueh, G J. Ackland, and J. Crain, "Ab initio elasticity and lattice dynamics of AgGaSe2" J. Phys:Condens.Matter 9, 375 (1997).
    [28]M. BETTINI, W.BAUHOFER, M.CARDONA, and R.NITSCHE, "Optical Phonons in CdSiP2" Physica Status Solidi B 63,641 (1974).
    [29]S. Shirakata, "Raman scattering and its hydrostatic pressure dependence in ZnGeP2 crystal" J. Appl. Phys.85,3294 (1999).
    [30]C. Carlone, D. Olego, A. Jayaraman, and M. Cardona, "Pressure dependence of the Raman modes and pressure-induced phase changes in CuGaS2 and AgGaS2" Phys. Rev. B 22,3877 (1980).
    [31]H. NEUMANN, "Thermal Expansion Anisotropy and Individual Bond Expansion Coefficients in Ternary Chalcopyrite Compounds" Cryst. Res. Technol.22,723 (1987).
    [32]N. C. Giles, L. E. Halliburton, S. Yang, X. Yang, A. T. Brant, N. C. Fernelius, P. G Schunemann, and K. T. Zawilski, "Optical and EPR study of point defects in CdSiP2 crystals" J. Cryst. Growth 312,1133 (2010).
    [33]A. S. Verma and S. R. Bhardwaj, "Correlation between ionic charge and the mechanical properties of complex structured solids" J. Phys-condens. Mat.19 (2007).
    [34]P. Zapol, R. Pandey, M Seel, J. M. Recio, and M. C. Ohme, "Density functional study of the structure, thermodynamics and electronic properties of CdGeAs2" J. Phys.:Condens. Matter 11,4517 (1999).
    [35]P. Deus, U.Voland, and H. Neumann, "Low Temperature Thermal Expansion of ZnSiAs2" phys. stat. sol. (a) 108,225 (1988).
    [36]A. Sodeika, Z. Silevicius, Z. Januskevicius, and A. Sakalas, "The influence of intrinsic defects on the electrical properties of single crystals of CdSiP2 and ZnGeP2" Physica Status Solidi A 69,491 (1982).
    [37]G Marchev, A. Tyazhev, V. Petrov, P. G Schunemann, K. T. Zawilski, G Stoppler, and M. Eichhorn, "Optical parametric generation in CdSiP2 at 6.125μm pumped by 8 ns long pulses at 1064 nm" Opt. Lett.37,740 (2012).
    [38]L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V. Petrov, J. J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin, and J. Smirnova, "Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR" Cryst. Res. Technol.38,379 (2003).
    [39]A. S. Verma, B. K Sarkar, S. Sharma, R Bhandari, and V. K. Jindal, "Models for lattice thermal expansion and thermal conductivity for ternary (ANB2+NC27-N) tetrahedral semiconductors" Mater. Chem. Phys.127,74 (2011).
    [40]J. L. Shay and J. H. Wernick, Ternary Chalcopyrite Semiconductors:Growth, Electronic Properties, and Applications (Pergamon, New York,1975).
    [41]G A. Medvedkin and V. G Voevodin, "Magnetic and optical phenomena in nonlinear optical crystals ZnGeP2 and CdGeP2" J. Opt. Soc. Am. B 22,1884 (2005).
    [42]S. ISOMURA and K. MASUMOTO, "Preparation and Some Optical Properties of ZnGeP2, and CdSiP2" Physica Status Solidi A13,223 (1972).
    [43]L. Wei, G Zhang, W. Fan, Y. Li, L. Yang, and X. Zhao, "Anisotropic thermal anharmonicity of CdSiP2 and ZnGeP2:Ab initio calculations" J. Appl. Phys.114, 233501 (2013).
    [44]L. K. SAMANTA, D. K. GHOSH, and G C. BHAR, "Band-state interpretation of lattice thermal conductivity and microhardness of ternary chalcopyrite semiconductors" Chem. Phys.79,361 (1983).
    [45]P. J. W. Debye, W. Nernst, M. Smoluchowski, A. Sommerfeld, and H. A. Lorentz, Vortrdge uber die kinetische Theorie der Materie und der Elektrizitdt, Vol.6 (BG Teubner,1914).
    [46]G A. Slack, "The Thermal Conductivity of Nonmetallic Crystals" SOLID STATE PHYSICS 34,1 (1979).
    [47]G A. Slack, "NONMETALLIC CRYSTALS WITH HIGH THERMAL CONDUCTIVITY" J. Phys. Chem. Solids 34,321 (1973).
    [48]T. Shiga, J. Shiomi, J. Ma, O. Delaire, T. Radzynski, A. Lusakowski, K. Esfarjani, and G Chen, "Microscopic mechanism of low thermal conductivity in lead telluride" Phys. Rev. B 85 (2012).
    [49]Y. Zhang, X. Ke, C. Chen, J. Yang, and P. Kent, "Thermodynamic properties of PbTe, PbSe, and PbS:First-principles study" Phys. Rev. B 80,024304 (2009).
    [50]A. Ward, D. Broido, D. Stewart, and G Deinzer, "Ab initio theory of the lattice thermal conductivity in diamond" Phys. Rev. B 80,125203 (2009).
    [51]D. A. Broido, M. Malomy, G Birner, N. Mingo, and D. A. Stewart, "Intrinsic lattice thermal conductivity of semiconductors from first principles" Appl. Phys. Lett.91,231922 (2007).
    [52]D. T. Morelli and J. P. Heremans, "Thermal conductivity of germanium, silicon, and carbon nitrides" Appl. Phys. Lett.81,5126 (2002).
    [53]G DOLLING and R. A. COWLEY, "The thermodynamic and optical properties of germanium, silicon, diamond and gallium" PROC. PHYS. SOC.88,463 (1966).
    [1]A. M. Ritzmann, A. B. Munoz-Garcia, M. Pavone, J. A. Keith, and E. A. Carter, "Ab Initio DFT+U Analysis of Oxygen Vacancy Formation and Migration in La1-xSrxFeO3-δ(x= 0,0.25,0.50)" Chem. Mater.25,3011 (2013).
    [2]U. D. Wdowik, "Ab initio study of point defects in the strongly correlated system CoO" Phys. Rev. B 84,064111 (2011).
    [3]U. Wdowik and K. Parlinski, "Electronic structure of cation-deficient CoO from first principles" Phys. Rev. B 77,115110 (2008).
    [4]N. C. Giles, L. E. Halliburton, S. Yang, X. Yang, A. T. Brant, N. C. Fernelius, P. G Schunemann, and K. T. Zawilski, "Optical and EPR study of point defects in CdSiP2 crystals" J. Cryst. Growth 312,1133 (2010).
    [5]U. D. Wdowik, P. Piekarz, K. Parlinski, A. M. O. s, and J. Korecki, "Strong effects of cation vacancies on the electronic and dynamical properties of FeO" Phys. Rev. B 87,121106 (2013).
    [6]U. Wdowik and K. Parlinski, "Lattice dynamics of CoO from first principles" Phys. Rev. B 75,104306 (2007).
    [7]U. D. Wdowik and K. Parlinski, "Lattice dynamics of Fe-doped CoO from first principles" J Phys Condens Matter 21,125601 (2009).
    [8]W. Prellier, M. P. Singh, and P. Murugavel, "The single-phase multiferroic oxides: from bulk to thin film" Journal of Physics:Condensed Matter 17, R803 (2005).
    [9]C. Ederer and N. Spaldin, "Effect of Epitaxial Strain on the Spontaneous Polarization of Thin Film Ferroelectrics" Phys. Rev. Lett.95,257601 (2005).
    [10]M. Dawber, K. M. Rabe, and J. F. Scott, "Physics of thin-film ferroelectric oxides.pdf" Rev. Mod. Phys.77,1083 (2005).
    [11]P. Baettig, C. Ederer, and N. Spaldin, "First principles study of the multiferroics BiFeO3, Bi2FeCrO6, and BiCrO3:Structure, polarization, and magnetic ordering temperature" Phys. Rev. B 72,21405 (2005).
    [12]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G Schlom, U. V. Waghmare, N. A. Spaldin, K. M Rabe, M. Wuttig, and R Ramesh, "Epitaxial BiFeO3 multiferroic thin film heterostructures" Science 299,1719 (2003).
    [13]S. Shang, G Sheng, Y. Wang, L. Chen, and Z. Liu, "Elastic properties of cubic and rhombohedral BiFeO3 from first-principles calculations" Phys. Rev. B 80, 052102 (2009).
    [14]G Catalan and J. F. Scott, "Physics and Applications of Bismuth Ferrite" Adv. Mater.21,2463 (2009).
    [15]D. Arnold, K. Knight, F. Morrison, and P. Lightfoot, "Ferroelectric-Paraelectric Transition in BiFeO3:Crystal Structure of the Orthorhombic β Phase" Phys. Rev. Lett.102,027602 (2009).
    [16]V. I. Zinenko and M. S. Pavlovskii, "Lattice dynamics of BiFeO3:The untypical behavior of the ferroelectric instability under hydrostatic pressure" Jetp Lett+.87, 288 (2008).
    [17]M. O. Ramirez, M. Krishnamurthi, S. Denev, A. Kumar, S.-Y Yang, Y-H. Chu, E. Saiz, J. Seidel, A. P. Pyatakov, A. Bush, D. Viehland, J. Orenstein, R. Ramesh, and V. Gopalan, "Two-phonon coupling to the antiferromagnetic phase transition in multiferroic BiFeO3" Appl. Phys. Lett.92,022511 (2008).
    [18]I. A. Kornev, S. Lisenkov, R. Haumont, B. Dkhil, and L. Bellaiche, "Finite-Temperature Properties of Multiferroic BiFeO3" Phys. Rev. Lett.99, 227602 (2007).
    [19]S. T. Zhang, M. H. Lu, D. Wu, Y. F. Chen, and N. B. Ming, "Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure" Appl. Phys. Lett.87,262907 (2005).
    [20]W. Ren, Y Yang, O. Dieguez, J. Iniguez, N. Choudhury, and L. Bellaiche, "Ferroelectric Domains in Multiferroic BiFeO3 Films under Epitaxial Strains" Phys. Rev. Lett.110,187601 (2013).
    [21]L. Y Zou, R. P. Yang, Y B. Lin, M. H. Qin, X. S. Gao, M. Zeng, and J. M Liu, "Dielectric and magnetic properties of BiFe1-4x/3TixO3 ceramics with iron vacancies:Experimental and first-principles studies" J. Appl. Phys.114,034105 (2013).
    [22]Q. Zhang, X. Zhu, Y. Xu, H. Gao, Y. Xiao, D. Liang, J. Zhu, J. Zhu, and D. Xiao, "Effect of La3+ substitution on the phase transitions, microstructure and electrical properties of Bi1-xLaxFeO3 ceramics" J. Alloy. Compd.546,57 (2013).
    [23]D. Varshney, A. Kumar, and K. Verma, "Effect of A site and B site doping on structural, thermal, and dielectric properties of BiFeO3 ceramics" J. Alloy. Compd.509,8421 (2011).
    [24]J. Neaton, C. Ederer, U. Waghmare, N. Spaldin, and K. Rabe, "First-principles study of spontaneous polarization in multiferroic BiFeO3" Phys. Rev. B 71 (2005).
    [25]S. V. Kiselev, R. P. Ozerov, and R P. Ozerov, "Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction" Sov. Phys. Dokl.7,742 (1963).
    [26]P. Hermet, M. Goffinet, J. Kreisel, and P. Ghosez, "Raman and infrared spectra of multiferroic bismuth ferrite from first principles" Phys. Rev. B 75,220102 (2007).
    [27]V. V. Shvartsman, W. Kleemann, R Haumont, and J. Kreisel, " Large bulk polarization and regular domain structure in ceramic BiFeO3" Appl. Phys. Lett. 90,172115 (2007).
    [28]T. R Paudel, S. S. Jaswal, and E. Y. Tsymbal, "Intrinsic defects in multiferroic BiFeO3 and their effect on magnetism" Phys. Rev. B 85,104409 (2012).
    [29]H. Ke, W. Wang, Y. Wang, H. Zhang, D. Jia, Y. Zhou, X. Lu, and P. Withers, "Dependence of dielectric behavior in BiFeO3 ceramics on intrinsic defects" J. Alloy. Compd.541,94 (2012).
    [30]Z. Zhang, P. Wu, L. Chen, and J. Wang, "Density functional theory plus U study of vacancy formations in bismuth ferrite" Appl. Phys. Lett.96,232906 (2010).
    [31]S. Ju and T.-Y. Cai, "First-principles studies of the effect of oxygen vacancies on the electronic structure and linear optical response of multiferroic BiFeO3" Appl. Phys. Lett.95,231906 (2009).
    [32]C. Ederer and N. Spaldin, "Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite" Phys. Rev. B 71, 224103 (2005).
    [33]G Kresse and J. Furthmuller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set" Phys. Rev. B 54,11169 (1996).
    [34]G Kresse and J. Hafner, "Ab initio molecular dynamics for liquid metals" Phys. Rev. B 47,558 (1993).
    [35]P. Blochl, "Projector augmented-wave method" Phys. Rev. B 50,17953 (1994).
    [36]G Kresse and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method" Phys. Rev. B 59,1758 (1999).
    [37]P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas" Physical Review 136, B864 (1964).
    [38]W. Kohn and L. J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects" Physical Review 140, A1133 (1965).
    [39]V. I. Anisimov, F. Aryasetiawan, and A. I. Liechtenstein, "First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method" J. Phys.:Condens. Matter 9,767 (1997).
    [40]S. L. Dudarev, G A. Botton, S. Y Savrasov, C. J. Humphreys, and A. P. Sutton, "Electron-energy-loss spectra and the structural stability of nickel oxide:An LSDA+U study" Phys. Rev. B 57,1505 (1998).
    [41]J. P. Perdew, K Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple" Phys. Rev. Lett.77,3865 (1996).
    [42]J. P. Perdew, J. A. Chevary, S. H. Vosko, K A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, "Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation" Phys. Rev. B 46,6671 (1992).
    [43]P. K, Software PHONON (Cracow, Poland,2008).
    [44]K. Parlinski, Z. Q. Li, and Y Kawazoe, "First-Principles Determination of the Soft Mode in Cubic ZrO2" Phys. Rev. Lett.78,4063 (1997).
    [45]Y. Wang, J. E. Saal, P. Wu, J. Wang, S. Shang, Z.-K. Liu, and L.-Q. Chen, "First-principles lattice dynamics and heat capacity of BiFeO3" Acta Mater.59, 4229(2011).
    [46]S. Kamba, D. Nuzhnyy, M. Savinov, J. Sebek, J. Petzelt, J. Prokleska, R. Haumont, and J. Kreisel, "Infrared and terahertz studies of polar phonons and magnetodielectric effect in multiferroic BiFeO3 ceramics" Phys. Rev. B 75, 024403 (2007).
    [47]A. Sjolander, "Multi-phonon processes in slow neutron scattering by crystals" Arkiv Fysik 14,315(1958).
    [48]U. D. Wdowik and K. Parlinski, "Lattice dynamics of cobalt-deficient CoO from first principles" Phys. Rev. B 78,224114 (2008).
    [49]M. Drulis and K. Konieczny, "Low-temperature heat capacity of NaNbO3 compound" Materials Science and Engineering:B 72,19 (2000).
    [50]C. Kittel and P. McEuen, Introduction to solid state physics, Vol.8 (Wiley New York,1986).
    [51]G Burns, "Comment on the low temperature specific heat of ferroelectrics antiferroelectrics and related materials" Solid State Conmiunications 35,811 (1980).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700