无线传感器网络及其在电力系统应用的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算机技术、传感器技术、微机电技术和现代无线通信技术的飞速发展,推动了无线传感器网络技术的产生和发展。无线传感器网络提供了一种新的感知世界、信息处理的平台。无线传感器网络由大量的集成数据采集、处理,并且能够自组织的进行协调和通信的节点组成,提供了一种全新的数据获取和处理的方法,广泛应用于军事国防、工农业控制、城市管理、生物医疗、抢险救灾、危险区域远程控制、生产制造等诸多领域。本文结合国家自然科学基金项目(基金号:50677024),以当代电力系统网络化、信息化技术高速发展的现状为前提,开展较大规模的无线传感器网络在电力系统中应用的相关理论和基础研究。
     本文在以下几个方面进行了基础性研究,为电力系统网络提供另一种可靠、优质的通信平台打下前期的理论基础:
     (1)基于对QoS(可靠性、延时等)的需求,用于电力系统中无线传感器网络的性能必须得到实验验证。到目前为止,网络系统性能的验证都是通过仿真软件来实现,比如说NS、OPNeT等等。通过仿真软件来验证,有许多实际的因为无法得到考虑,例如:障碍物、电磁干扰对性能的影响等等。本文首先应用NDIS(Network Driver Interface Specification)技术和Passthru框架,构建了一个无线自组网络实验平台,给出了平台的特征和应用前景。通过该平台,可以利用PC、移动PC构建一个无线自组网络,在现场环境下实验网络的性能。
     (2)无线传感器网络拓扑控制技术是无线传感器网络的关键技术之一。无线传感器网络拓扑控制控制的主要目标是降低网络的能量损耗,增加网络的生存周期,减少节点间的通信干扰,为路由提供基础。本文提出了一种基于局部信息的离散分布式拓扑控制算法(A Localized Discrete Distribution Topology-control Algorithm,LDDTA)。LDDTA可以大大地减少无线传感器网络的冗余链接。其基本思想是:首先,将无线传感器网络离散成许多分离网络子单元,称为孤立网络单元(Isolated Network Island, ISI)。这些ISI都具有有限节点度,且具有最佳的连接质量。然后,通过优化算法将各个ISI连接起来,形成一个完成的拓扑结构。仿真结果显示,该算法具有良好的性能。
     (3)能量约束是无线传感器网络在实际应用中面临的关键挑战之一。实际应用中的无线传感器网络节点的供电有两种方式:电池供电或者从周围环境中取得能量。通过光电池、振动或者磁感应线圈等装置可以从环境中取得能量。无论是电池供电还是从环境中取得供应能量,由于无线传感器节点尺寸的限制,节点的平均供应功率是十分有限的。通过分析用于电力系统中的传感器节点的工作模式,建立了一种无线传感器节点的能量耗费模型,基于一种混合式遗传算法,对节点能量耗费进行了优化,从而为应用于电力系统中的无线传感器网络的工作模式提供了一种有效的参考。同时分析了基于GA的无线传感器网络最优化能量任务分配。
     (4)在电力系统故障检测和定位方面,给出了一种用于电力系统故障检测的无线传感器网络体系结构、安装和配置方案。分析了基于无线传感器网络的电力系统故障检测机制、定位方法和节点的采样机制,研究分析了用于电力系统故障检测和定位的无线传感器网络可靠性。提出了一种面向事务的可靠性机制。
     (5)无线传感器网络是一个分布式网络系统,时间同步是分布式系统协同工作的重要基础。本文基于应用于电力系统故障检测的无线传感器网络系统,给出一种新的时间同步方案。当电力系统在发生故障时,在线路上会产生向线路两端传播的行波。利用故障时的行波信号,设计了一种新的无线传感器网络时间同步方案。仿真实验结果表明,该时间同步方案能满足电力系统故障检测对时间同步性的要求。
     (6)协同问题是无线传感器网络在实际应用中的关键问题之一,根据无线传感器网络自身的特点,结合多智能体理论,研究了无线传感器网络的协同方法。同时,给出了用于电网故障诊断的无线传感器网络组织结构,基于无线传感器网络分布式决策和协同,给出了利用无线传感器网络进行电网故障诊断的方法。
The fast evolution of computer technology, sensor technology, MEMS and modern wireless communication technology has impelled development of wireless sensor networks. Wireless sensor networks provide a new platform to sense the world, process the data. It is widely applied in lots of fields, such as military defense, industry control, agriculture control, city management, biomedicine, rushing to deal with an emergency, rescue, remote control to danger zone, manufacture et al. Wireless sensor networks are consist of a large number of nodes which can be capable of communicating, computing and cooperation in ad hoc model. Combined with national natural science foundation of China and based on the status quo of the power system informationization , some basis research of large-scale wireless sensor networks applied in power system are carried through..
     In this dissertation, the following topics are investigated for providing a new reliable, high quality communication platform:
     (a) For the requirement of QoS (Reliability, delay etc) in power system, performance of wireless sensor networks should be testified by experiments. Till recently, performance of communication networks are mostly tested by simulation software, such as NS, OPNET etc. But a lot of practical factors can’t be taken into account in simulation software. For examples: obstacles, electromagnetic interferences, and so on. Utilized NDIS(Network Driver Interface Specification) intermediate driver and Passthru architecture, a simulation testing platform of wireless ad hoc networks is constructed. The characteristic and application prospects of the platform are introduced. By the platform, the performance of a wireless ad hoc network can be validated only adopting PC or portable computer.
     (b) Topology control is one of key problem of a wireless sensor network. The primary aim of the topology control is to reduced the energy consumption, increase the lifetime, decrease the communication interference of the network, and provide groundwork for routing protocols. A localized discrete distribution topology-control algorithm (LDDTA) of wireless sensor networks is presented. The LDDTA strongly decreased the redundancy links of wireless sensor networks. Firstly, the topology links of the wireless sensor networks is discreted and formed a number of isolated network island topologies, which are called isolated network island (ISI). These network island have the bounded node degree and the best link qualities for each node. Then, all isolated network islands are linked by intersubgraph algorithm which minimizes the power energy consumption between the isolated network islands. Simulation results show advantages of the algorithm.
     (c) Energy constraint of wireless sensor network is also one of the most demanding challenges in actual applications. Generally, there are two ways to supply the power of wireless sensor network: supply by batteries or obtain energy from surroundings. Energy can be obtained from the surroundings by photovoltaic cells, vibration, or an iron core winding which surrounds a line conductor. For the constraint of node’s size, the average supplying power of nodes is very limited. By analyzing the working model of sensor nodes in power system, an energy consumption model is constructed and a hybrid genetic algorithm is used to optimize the energy consumption. The model provides an effective reference of working pattern for wireless sensor networks in power system. At the same time, optimal energy method for task allocation is analyzed by GA.
     (d) An architecture, installation and deployment scheme of wireless sensor network applied in power system is presented for power fault detection and location. Fault detection, location and sampling mechanism of wireless sensor networks are investigated in power system. The reliability of wireless sensor networks in power system is studies and a reliability scheme oriented to transactions is presented. (e) Time synchronization is an important infrastructure for coordinated work to a wireless sensor network because it is a distribution system. Aimed at the wireless sensor network applied in power system fault detection, a new time synchronization scheme is presented. When a fault occurs in the distribution power system, traveling-waves will come into being which spread along the power lines. The new time synchronization scheme is based on the traveling-waves. Performance analyses and simulation results demonstrate that the proposed scheme meet the requirements in power system.
     (f) Collaboration is one of the key problem for a wireless sensor network in practice. Based on the characteristic of the wireless sensor network and multi-agents theory, collaboration technique is studied. Utilized organization of the wireless sensor network and based on distribution decision-making, a new power system fault diagnostic scheme is presented.
引文
[1]殷志良,刘万顺,杨奇逊等.基于IEC61850标准的采样值传输模型的构建映射实现.电力系统自动化,2004,21(10):38-42.
    [2]张保会,刘海涛,陈长德.电话、电视、电力网《四网合一》的概念与关键技术.中国电机工程学报,2001,21(2):61-65.
    [3] V. C. Gungor, F. C. Lambert. A Survey on Communication Networks for Electric System Automation. Computer Networks , 2006, (50):877-897.
    [4]宋晓萍,廖明夫.基于Internet的风电场SCADA系统框架设计.电力系统自动化,2006, 30(17): 89-93.
    [5]朱永利,黄敏,邸剑.基于广域网的电力远动系统的研究.中国电机工程学报,2005,25(7): 119-124.
    [6]张淑娥,孔英会,高强编著.电力系统通信技术,北京:中国电力出版社,2005.
    [7] N. Pavlidon,A.J.H. Vinck,J. Yazdani et al. Power Line Communications:state of the art and future trends. IEEE Communications Magazine,2003,(41):34-40.
    [8] F. Goodman et al. Technical and system requirements for advanced distribution automation. US:Electric Power Research Institute,2004.
    [9]刘晓胜,周岩,戚佳金.电力线载波通信的自动路由方法研究.中国电机工程学报,2006,26(21):76-81.
    [10] G. E. Ziegler. Protection and substation automation. Electra,2003,(206):14-23.
    [11]李忻等. MIMO无线传输技术综述.无线电工程,2006,36(8):42-47.
    [12]赵景宏,李英凡,许纯信. ZigBee技术简介.电力系统通信,2006,27(165):54-56.
    [13] Masanori Takata, Katsushiro Nagashima, Takashi Watanabe. A directional antennas-based dual mode MAC protocol for Ad hoc networks. 2004,IEEE:579-584.
    [14] Ram Ramanathan, Jason Redi, Cesar Santivanez et al. Ad hoc networking with directional antennas. A Complete System Solution, WCNC 2004/IEEE Communications Society: 375-380.
    [15] Yu Wang, J. J. Garcia-Luna-Aceves. Spatial reuse and collision avoidance in Adhoc networks with directional antennas. 2002:112-116.
    [16] Tassos Dimitrion, Antonis Kalis. Efficient delivery of information in sensor networks using smart antennas. http://www.ait.gr/faculty/T_ Dimitriou_ files/smart. pdf.
    [17] Gesbert D, Shafi M, Shiu D et al. From theory to pratice: an overview of MIMO space-time coded wireless system. IEEE J. Selected Areas in Communication. 2003, 21(3):281-302.
    [18] Li(Erran) Li, Joseph Y. Halpern, Paramvir Bahl et al. A cone-based distributed topology-control algorithm for wireless multi-hop networks. IEEE/ACM Transactions on networking, 2005, 13(1):147-159.
    [19] Liang Xiao, Ming Xiao. A new energy-efficient MIMO-Sensor network architecture M-SENMA. ?IEEE, 2004, 2941-2945.
    [20] Shuguang Cui, Andrea J. Goldsmith, Ahmad Bahai. Energy-efficient of MIMO and cooperative MIMO techniques in sensor network. IEEE Journal on Selected Area in Communications, 2004, 22(6):1089-1098.
    [21] Wenyu Liu, Xiaohua(Edward) Li, Mo Chen. Energy efficiency of MIMO transmissions in wireless sensor networks with diversity and multiplexing gains. ICASSP 2005, IV-897-IV-900.
    [22] Patrick Mitran, Hideki Ochiai, Vahid Tarokh. Space-time diversity enhancements using collaborative communications. IEEE Transactions on Information Theory, 2005, 51(6): 2041-2057.
    [23] Georgios Elissaios, Athanassios Manikas. Multi-carrier CDMA MIMO in arrayed wireless sensor networks. ?IEEE, 2005: 483-487.
    [24] Bretta A. Warneke, Kristofer S. J. Pister. MEMS for distributed wireless sensor networks. ?IEEE, 2002, 291-294.
    [25] Govinda R., Hellerstein J., Hong W. et al. The sensor network as a database technical report 02-771. Computer Science Department, University of Southern California, 2002.
    [26] D. Richard Brown, Jeremy A. Slater, Alexander E. Emanuel. A wireless differential protection system for air-core inductor. IEEE Transactions on Power Delivery. 2005, 20(2): 579-587.
    [27]孙利民,李建中,陈渝等.无线传感器网络.北京:清华大学出版社,2005,9-11.
    [28] Nishimura C E, Conlou D M. IUSS dual use: monitoring whales and earthquake using SOSUS. Marine Technology Society Journal. 1994, 27(4): 12-21.
    [29] Lacoss R, Walton R. Strawman design of a DSN to detect and track low flying aircraft. Proceedings of the distributed sensor nets workshop. 1978, Pittsburgh, PA, USA:41-52.
    [30] Sproull R F, Cohen D. High-level protocols. Proceedings of the IEEE, 1978, 66(11): 1371-1386.
    [31] Rashid R, Robertson G. Accent: A communication oriented network operating system kernel. Proceedings of 8th Symposium on Operating System Principles. 1981, Pacific Grove, CA, USA, New York, USA: ACM Press, 1981: 64-75.
    [32] Myers C, Oppenheim A, Davis R et al. Knowledge based speech analysis and enhancement. Proceedings of International Conference on Acoustics, Speech and Signal Proceeding: Vol. 3, Mar. 19-21, 1984, San Diego, CA, USA. New York, NY, USA: IEEE, 1984: 39A4.1-39A4.2.
    [33] Distributed sensor networks. Lexingtong, MA, USA: MIT Lincoln Laboratory, ESD-TR-88-175.1986.
    [34] Rlesser V, Corkill D D. The distributed vehicle monitoring test bed: a tool for investigating distributed problem solving networks. AI Magazine. 1983, 4(3): 15-33.
    [35]于宏毅.无线移动自组网.北京:人民邮电出版社,2005.
    [36] Garbrirel L C, Ovidiu L P. Integrating power quality sensors in a wireless network. Proceedings of 27th International Spring Seminar on Electronics Technology: Vol.1, May 13-16, 2004, Sofia Bulgaria. Piscataway, NJ, USA: IEEE, 2004: 153-157.
    [37] Warneke B, Last M, Liebowitz B et al. Smart dust: Communicating with a cube millimeter computer. IEEE Computer Magazine. 2001, 34(1): 44-51.
    [38]刘翔宇,王文成.基于GPRS网络的新型环网柜终端.继电器,2005,33(17):66-69.
    [39]刘勇.新型分布式母线保护的研制.保定:华北电力大学,1999.
    [40] ILAR M, RELMANN B. REB500-decentralized numerical busbar protection with extend functionality. ABB Review, 1997(5).
    [41] EVANS J J. Wireless sensor networks in electrical manufacturing Expo. Oct. 23-26,2005, Indianapolis, IN, USA:460-465.
    [42] Parno B, Perrig A, Gligor V. Distributed detection of node replication attacks in sensor networks. Proceeding of the 2005 IEEE Symposium on Security and Privacy, May 8-11, 2005, Oakland, CA, USA. New York, NY, USA: IEEE, 2005: 49-63.
    [43] D.Alberts, J. Garstka, F. Stein. Network Centric Warfare. 1999. http://www.dodccrp.org/publications/pdf/Alberts_NCW.pdf.
    [44] WINS Project. http://janet.ucla.edu/WINS/.
    [45] Smart Dust Project. http://robotics.eecs.berkeley.edu/~pister/SmartDust.
    [46] NEST Project. http://webs.cs.berkeley.edu/nest-index.html.
    [47] The Cooperative Engagement Capability. Johns Hopkins APL Technical Digest, 1995, 16(4): 377-396. http://techdigest.jhuapl.edu/td1604/APLteam.pdf.
    [48] Y. Carts-Powell. Unattended Ground Sensors Stop and Analyze and Roses. OE Report, 2000. http://www.spie.org/web/oer/april/apr00/cover2.html.
    [49] SensoNet Project. http://www.ece.gatech.edu/research/labs/bwn/sensor/.
    [50] Broadband & Wireless Networking Laboratory. http://www.ece.gatech. edu/ research/labs/bwn.
    [51] Cougar Project. http://www.cs.cornell.edu/database/cougar/index.html.
    [52] Nordman M. An architecture for wireless sensors in distributed management of electrical distribution systems[D]. Hilsinki, Finland: Hilsinki University of Technology, 2004.
    [53] Ulema, M. Wireless sensornetworks: architecture, protocols, and management. Network Operation and Management Symposium. IEEE/IFIP, 2004, Vol.1, 9919-23.
    [54] IF Akyildiz, W Su, Y Sankarasubramaniam et al. A survey on sensor networks. IEEE Communications Magazine, August 2002, 40:102-114.
    [55] Timothy K. Forde, Linda E. Doyle, and Donal O’Mahony. Ad Hoc Innovation: Distributed Decision Making in Ad Hoc Networks. IEEE Communications Magazine, April 2006.
    [56]靳希,齐晓曼,何胜.变电站蓝牙化的建设方案设计及研究.全国高校电力系统及其自动化专业学术年会论文,2002,89-94.
    [57]颜俊,刘沛,苗世洪.无线自组网络在变电站自动化中的应用.电力自动化设备,2005,No.4,72-74.
    [58] K.L. Godrich. wireless integrated network sensors implementation in substation. power engineering society general meeting, 2004, IEEE, Vo1. 1043.
    [59] LECT Chindris Gabriel, Lect.Pop Ovidiu. Integrating power quality sensors in a wireless network. 27th Int’l Spring Seminar on Electronics Technology.
    [60] Jeffrey J. Evans. Wireless sensor networks in electrical manufacturing. Electrical Insulation Conference and Electrical Manufacturing Expo. 2005, 460-465.
    [61] Mikael Nordman. An architecture for wireless sensors in distributed management of electrical distribution systems. ISBN 951-22-7298-9.
    [62] Mikael M. Nordman and Taneli Korhonen. Design of a concept and a wireless ASIC sensor for locating earth faults in unearthed electrical distribution networks. IEEE Transactions on Power Delivery, Vol.21, No.3, July 2006, 1074-1082.
    [63] NDIS reference. www.NIDS.com
    [64] Tanenbaum A S.熊桂喜,等译. Computer networks(Third Edition).北京:清华大学出版社. 1998,272-273.
    [65] Jacquet P, Muhlethaler P, Clausen T. Optimized link state routing protocol for ad hoc networks. IEEE International 28-30 Dec.2001, 62-68.
    [66] A. Oayyun, L. Viennot, and A. Laouiti. Multipoint relaying: an efficient technique for flooding in mobile wireless networks. Technical Report RR-3898, INRIA, February 2000.
    [67] Bao l, Garcia-Luna-Acceves J J. Topology management in ad hoc networks. In: Proc 4th ACM Int’l Symp on Mobile Ad hoc Networking & Computing, Annapolis, Maryland. 2003, 129-14.
    [68]张学,陆桑璐,陈贵海等.无线传感器网络的拓扑控制.软件学报,April 2007. 18(4): 943-954.
    [69] Narayanaswamy S,Kawadia V,Screenvias R S et al. Power control in ad-hoc networks:theory,architecture and implement of COMPOW protocol. In:Proc European Wireless Conf,Florence Italy,2002. 156-162.
    [70] Kawadia V, Kumar PR. Power control and clustering in ad hoc networks. In: Mitchell, ed. Proc. Of the IEEE Conf. on Computer Communications(INFOCOM). New York: IEEE Press, 2003. 459-469.
    [71] Kubisch M, Karl H, Wolisz A et al. Distributed algorithm for transmission power control in wireless sensor networks. IEEE WCNC 2003, New Orleans, Louisiana,March 16-20, 2003.
    [72] Li L, Halpen JY, Bahl P, Wang YM et al. A cone-based distributed topology control algorithm for wireless multi-hop networks. IEEE/ACM Trans. On Networking, 2005, 13(1): 147-159.
    [73] Bahramgiri M, Hajiaghayi MT, Mirrokni VS. Fault-tolerant and 3-dimensional distributed topology control algorithms in wireless multi-hop networks. In: Proc. Of the IEEE Int’l on computer Communications and Networks(ICCCN). 2002, 392-397.
    [74] Li N, Hou JC. Topology control in heterogeneous wireless networks: Problem and solutions. In: Proc. Of the IEEE Conf. on Computer Communications (INFOCOM). New York: IEEE Press, 2004. 232-243.
    [75] Jaromczyk J W, Toussaint G T. Relative neighborhood graphs and their relatives. Proc. IEEE, 1992, 80(9): 1502-1517.
    [76] Kumar S, Lai TH, Balogh J. On k-coverage in a mostly sleeping sensor network. In: Haas ZJ, ed. Proc. Of the ACM Int’l Conf. on Mobile Computing and Networking (MobiCom). New York: ACM Press, 2004. 144-158.
    [77] Berman P, Calinescu G, Shah C et al. Efficient energy management in sensor networks. In: Xiao Y, Pan Y, eds. Proc. Of the ad hoc and sensor networks, Series on Wireless Networks and Mobile Computing. New York: Nova Science Publishers, 2005.
    [78] Wu K, Gao Y, Li F et al. Lightweight deployment-aware scheduling for wireless sensor networks. ACM/Klumer Mobile Networks and Applications (MONET), 2005, 10(6): 825-835.
    [79] Cerpa A, Estrin D. ASCENT: Adaptive self-configuring sensor networks topologies. In: Proc 11th Joint Conf. on IEEE Computer and Communications Societies, New York, June, 2007. 1278-1287.
    [80] Ye F, Zhong G, Lu S et al. PEAS: A robust energy conserving protocol for long-lived sensor networks. In: Stankovic J, Zhao W, eds. Proc. Of the Int’l Conf. on Distributed Computing Systems (ICDCS). Providence: IEEE Press, 2003. 28-37.
    [81] Gui C, Mohapatra P. Power conservation and quality of surveillance in target tracking sensor networks. In: Haas ZJ, ed. Proc. Of the ACM Int’l on MobileComputing and Networking. New York: ACM Press, 2004. 129-143.
    [82] Heinzelman W R, Chandrakasan A, Balakrishnan H. An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 2002, 1(4): 660-670.
    [83] Younis O, Fshmy S. Distributed clustering in ad-hoc sensor networks: A hybrid, energy-efficient approach. In: Proc 13th Joint Conf on IEEE Computer and Communications Societies, March 2004, 3(4):660-669.
    [84] Ye M, Li CF, Chen GH et al. EECS: An energy efficient clustering scheme in wireless sensor networks. In: Dahlberg T, Oliver R, Sen A, Xue GL, eds. Proc. Of the IEEE Int’l Workshop on Strategies for Energy Efficiency in Ad Hoc and Sensor Networks. New York: IEEE Press, 2005. 535-540.
    [85] Xu Y, Heidemann J, Estrin D. Geography-informed energy conservation for ad hoc routing. In: Rose C, ed. Proc. Of the ACM Int’l Conf. on Mobile Computing and Networking (MobiCom). New York: ACM Press, 2001. 70-84.
    [86] Zhang B, Mouftah H. Efficient grid-based routing in wireless multi-hop networks. In: Proc. Of the IEEE Symp. On Computers and Communications (ISCC). Cartagena: IEEE Press, 2005. 367-372.
    [87] Deb B, Bhatnagar S, Nath B. A topology discovery algorithm for sensor networks with applications to network management. Technical Report, DCS-TR-441, Rutgers University, 2001.
    [88] Bao L, Garcia-luna-Aceves J J. Topology management in ad hoc networks. In: Proc 4th ACM Int’l Symp on Mobile Ad Hoc Networking & Computing (MobiHoc 2003), Annapolis, Maryland. 2003. 129-140.
    [89] L. Jia, R. Rajaraman, and C. Ssheideler. On local algorithms for topology control and routing in ad hoc networks. In Proc. SPAA, 2003, 220-229.
    [90] R. Hahn and H. Reichl. Batteries and power supplies for wearable and ubiquitous computing. In Proc. 3rd Int. Symp. Wearable Computers, 1999.
    [91] Schurgers C, Tsiatsis V, Ganeriwal S et al. Topology management for sensor networks: Exploiting latency and density. In Proc. 3rd ACM Int’l Symp on Mobile Ad hoc Networking & Computing, Lausanne, Switzerland. June 9-11, 2002. 135-145.
    [92] Szu-chi Wang, David S.L. Wei, Sy-Yen Kuo. A topology control algorithm forconstruction power efficient wireless ad hoc networks. GLOBECOM 2003. 1290-1295.
    [93] R. Ramanathan and R. Hain. Topology control of multihop wireless networks using transmit power adjustment. In Proceedings of INFOCOM 2006, Tel-Aviv, Israel, March 2000.404-413.
    [94] Shah R C, Rabaey J M. Energy aware routing for low energy ad hoc sensor networks. In: Proc IEEE Wireless Communications and Networking Conference, IEEE, 2002, (1): 17-21.
    [95] Neseong Park, Daeyoung Kim et al. An optimal and lightweight routing for minimum energy consumption in wireless sensor networks. Proceedings of the 11th IEEE International Conference on Embedded and Real-time Computing Systems and Application, 2005.
    [96] V. Rodoplu and T. H. Meng. Minimum energy mobile wireless networks. IEEE Journal Selected Areas in Communications, 1999. 17(8): 1333-1344.
    [97] J. E. Wieselthier, G. D. Nguyen, and A Ephremides. On the construction of energy efficient broadcast and multicast trees in wireless networks. In Proceedings of INFOCOM 2000, Tel-aviv, Israel, March 2000. 585-594.
    [98] S. Singh and C. S. Raghavendra. Pamas: Power aware multi-access protocol with signaling for ad hoc networks. ACM Computer Communication Review, July 1998, 28(3): 5-26.
    [99] P. Berman, G. Calinescu, C. Shah et al. Power efficient monitoring management in sensor networks. WCNC 2004/IEEE Communications Society. 2329-2334.
    [100] Ren C. Luo, Liang Chao Tu, Ogst Chen. An efficient dynamic power management policy on sensor network. Proceedings of the 19th International Conference on Advanced Information Networking and Applications, 2005. 1-4.
    [101] Goldberg D E. Genetic algorithm in search optimization. And Machine Learning. Reading, MA, Addison-Wisely, 1989.
    [102] F. Glover and M. Languna. Tabu Search. Kluwer academic publisher, 1997.
    [103]徐宗本,高勇.遗传算法过早收敛现象的特征分析及其预防.中国科学:E辑,1996,26(4):364-375.
    [104]王凌.智能优化算法及其应用.北京:清华大学出版社,2001.
    [105] F. Glover, J. P. Kelly and M. Laguna. Genetic algorithm and Tabu search: hybridfor optimization. Computers Ops Res, 1995. 22(1): 111-134.
    [106] A. H. Sue. A hybrid heuristic for the uncapacitated hub location problem. European Journal of Operational Research, 1998. (106): 489-499.
    [107] K. Handa and S. Kuga. Pollcell placement for analog LSI chip designs by genetic algorithm and Tabu search.
    [108] Gross. D, Harris. C. Fundamentals of queuing theory. New York:Wiley,1998.
    [109] IEC61850 Communication networks and systems in substation, part 5: Communication requirements for functional conference and device models, 2003.
    [110] Chuan Lin, Yanxiang He, Naixue Xiong et al. Improved dynamic power management in wireless sensor networks. J. Ma et al. (Eds.): UIC 2006, LNCS 4159. 447-456.
    [111]朱敬华,高宏.无线传感器网络中能源高效的任务分配算法.软件学报,2007,18(5):1198-1207.
    [112] Adam TL, Chandy KM, Dickson. A comparison of list schedules for parallel processing systems. Communications of the ACM, 1974, 17(2):685-689.
    [113]杜晓丽,蒋昌俊,徐国荣等.一种基于模糊聚类的网格DAG任务图调度算法.软件学报,2006,17(11):2277-2288.
    [114] Mikael Nordman. An architecture for wireless sensors in distributed management of electrical distribution systems. Helsinki University of Technology, 2004, ISBN 951-22-7298-9.
    [115] K. Romer, P. Blum, and L. Meier, Time Synchronization and Calibration in Wireless Sensor Networks, Wireless Sensor Networks, Ivan Stojmenovic, ed., 2005.
    [116] Elson J, Griod L, Esrein D. Fine-grained network time synchronization using reference broadcast. In: Proc 5th Symp Operating Systems Design and Implementation, Boston, MA. December 2002.
    [117] Elson J, Romer K. Wireless sensor networks: A new regime for time synchronization. In: Proc 1st Workshop on Hot Topics in Networks, Princeton, NJ. October 2002.
    [118] Ganeriwal S, Kumar R, Srivastava M B. Timing-sync protocol for sensor networks. In: Proc 1st Int’l Conf on Embeded Networked Sensor Systems, Los Angels, CA. November 5-7, 2003. 138-149.
    [119] Ganeriwal S, Kumar R, Adlakha S et al. Network-wide time synchronization in sensor networks. Networked and Embedded Systems Lab, UCLA Technical Report 01-01-2003.
    [120] Sichitiu M L, Veerarittiphan C. Simple accurate time synchronization for wireless sensor networks. Proc IEEE Wireless Communications and Networking Conference, New Orleans, LA. March 2003.
    [121] Van Greunen J,Rabaey J. Lightweight time synchronization for sensor networks. Proc 2nd ACM Int’l Conf Wireless Sensor Networks and Applications, San Diego, CA. September 19, 2003. 11~19.
    [122] Maroti M, Kusy B, Simon G et al. Flooding time synchronization in wireless sensor networks. ACM SenSys’04, November 3-5, 2004, Baltinore, Maryland.
    [123] Ping S. Delay measurement time synchronization for wireless sensor networks. Intel Research Berkley Lab, 2003.
    [124]葛耀中.新型继电保护与故障测距原理与技术.西安:西安交通大学出版社.1996,185-188.
    [125]曾祥君,尹相根,林福昌等.基于行波传感器的输出线路故障定位方法研究.中国电机工程学报,2002,22(6):42-46.
    [126] IEEE standard communication delivery time performance requirements for electric power substation automation. IEEE Power Engineering Society, New York, NY 10016-5997, USA. February 2005.
    [127]康冠林,王福豹,段渭军.无线传感器网络时间同步综述.计算机测量与控制,2005,13(10):1021-1030.
    [128] Saurabh Ganeriwal, Ram Kumar, Mani B. Srivastava. Timing-sync protocol for sensor networks. ACM, SenSys’03,November 5-7,2003,Los Angeles,California,USA.
    [129] Estrin D, Govindan R, Heidemann J et al. Next century challenges: scalable coordination in sensor networks. In Proc of MobiCOM, 1999:263-270.
    [130] Akyidiz I F, Su W et al. Wireless sensor networks: a survey. Computer Network,2002, (38): 393-422.
    [131] Chong C Y. Sensor networks: evolution, opportunities, and challenges. Proceedings of IEEE, 2003, 91(8): 1247-1256.
    [132] Weiss G. Multiagent systems: a modern approach to distributed artificialintelligence. MIT press, 1999.
    [133] Wooldridge M, Jennings N. Intelligence agents: theory and practice. The knowledge engineering review, 1995, 10(2): 114-152.
    [134] Jennings N R, Parsons S, Noriega P et al. On argumentation-based negotiation. In Proceedings of International workshop on Multi-agent systems, Boston MA, 1998.
    [135] Edmund H Durfee. Coordination of distributed problem solvers. Kluwer, 1998.
    [136] Ortiz C L, Eric H. Structured Negotiation. In ICMAS’02, 2002.
    [137] Ortiz C L, Hsu E, Jardins M et al. Incremental negotiation and coalition formation for resource-bounded agents. In Proceedings of the AAAI Fall Symposium, 2001.
    [138] Yadgar O, Kraus S, Ortiz C L. Hierarchical organization for real-time large-scale task and team environments. In Proceedings of AAMAS’02, 2002.
    [139] David C P. Iterative combinatorial auctions: achieving economic and computational efficiency. PhD thesis, University of Pennsylvania, 2001.
    [140] Charles L O. A commonsense language for reasoning about causation and rational action. Artificial intelligence, 1999, (111): 73-130.
    [141] Milind T. Towards flexible teamwork. Journal of artificial intelligence research, 1997, (7): 83-124.
    [142] Soh L K, Tsatoulis C. Real-time satisficing multiagent coalition formation. In Working Notes of AAAI Workshop on Coalition Formation in Dynamic Multiagent Environments, 2002, 7~15.
    [143] Soh L K, Tsatoulis C. Satisficing coalition formation among agents. In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems. Bologna, 2001.
    [144] Soh L K, Tsatoulis C. Reflective negotiating agents for real-time multi-sensor target tracking. In Proceedings of IJCAI’01,2001: 1121~1127.
    [145] Lesser V, Ortiz C L, Tambe M. Distributed sensor networks: a multiagent perspective. Kluwer Academic Publisher, 2003.
    [146] Horling B, Mailer R, Sims M et al. Using and maintaining organization in a large-scale distributed sensor network. Proceedings of the Workshop on Autonomy, Delegation, and Control(AAMAS03), 2003.
    [147] Lesser V, Horling B, Klassner F et al. Big: An agent for resource-bounded information gathering and decision making. Artificial Intelligence Journal, 2000,(118): 197~244.
    [148]康小强,石纯一.一种理性Agent的BDI模型.软件学报,1999,10(12):1268-1274.
    [149] Bratman M. Intentions, plans, and practical reason. Cambrdge: Harvard University Press, 1987.
    [150]毛新军.面向主体的软件开发.北京:清华大学出版社,2005.
    [151] Rao A S. Modeling rational agents within a BDI-architecture. GEORGEFF M P. 1991 2nd International Conference on Principles of Knowledge Representation and Reasoning Proceedings. Cambridge: Morgan Kaufmann Publishers, 1991. 473-484.
    [152] Linder B V et al. Formalising abilities and opportunities of agents. Fundamenta Informaticae 1998, 34(1-2):53-101.
    [153] Wooldridge M. Reasoning about rational agents. Cambridge: the MIT Press, 2000.
    [154] Wake A, Sakaguchi T. Method to determine the fault components of power system based on description of structure and function of relay system, IEE Trans. Japan, 1984, 104-B(10): 248-256.
    [155] Young Moon Park, Gwang Won Kim, Jin Man Sohn. A logic bas ed expert system(LBES) for fault diagnosis of power system. IEEE Trans. On Power Systems, 1997, 12(1): 363-369.
    [156] Huang Y C. Fault section estimation in power system using a novel decision support system. IEEE Trans. On Power Systems, 2002, 17(2): 439-444.
    [157] Chan E. Application of neural network computing in intelligent alarm processing[A]. Power Industry Computer Application Conference. Seattle, USA, 1989.
    [158]何耀华,韩守木,程尚模.基于多神经网络协同推理的故障诊断系统研制.中国电机工程学报,1999,19(12):57-60,65.
    [159]吴欣,郭创新,曹一家.基于贝叶斯网络及信息时序属性的电力系统故障诊断方法.中国电机工程学报,2005,25(13):14-18.
    [160]文福栓,韩祯祥.基于遗传优化算法和模拟退火算法的电力系统故障诊断.中国电机工程学报,1994,14(3):29-35.
    [161]汤磊,孙宏斌,张伯明,等.基于信息理论的电力系统在线故障诊断.中国电机工程学报,2003,23(7):5-11.
    [162]束洪春,孙向飞,司大军,等.基于粗糙集理论的配电网故障诊断研究.中国电机工程学报,2001,21(10):73-82.
    [163]陈玉林,陈允平,孙金莉等.电网故障诊断方法综述.中国电力,2006,39(5):27-31.
    [164]毕天姝,倪以信,杨奇逊.人工智能技术在输电网络故障诊断中的应用述评.电力系统自动化,2000,24(2):11-16.
    [165]赵伟,白晓民,丁剑等.基于协同式专家系统及多智能体技术的电网故障诊断方法.中国电机工程学报,2006,26(20):1-8.
    [166] Santi P. Silence is golden with high probability: maintaining a connected backbone in wireless sensor networks: In: 1st European Workshop on Wireless Sensor Networks, Berlin, Jan 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700