基于FPGA&NIOSⅡ的电池充电均衡系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓄电池作为混合动力汽车(HEV)和纯电动汽车(EV)的动力来源,其特性直接影响到HEV和EV的性能。在实际应用中,动力蓄电池的不均衡性会随着充放电循环次数的增加而逐渐增大,最终导致电池组中个别电池单体提前损坏和整个电池组寿命缩短。因此电池组均衡技术是提高动力蓄电池性能和寿命的关键技术,也是影响HEV和EV发展和产业化的关键技术之一。
     本论文首先提出了电池组充电均衡系统的任务和目标,然后分析了均衡系统的难点。在现有方案的基础上,根据均衡电路的任务和目标,提出了基于分布式DC/DC电路的分级均衡方案。然后对该方案从理论上进行了分析,并对该方案进行了实验验证。
     论文叙述了对动力镍氢电池的充放电性能和充电技术的研究,并根据研究结果,设计了一套基于BUCK-BOOST电路和FPGA/NIOSⅡ嵌入式系统的电池均衡系统。电池均衡系统主电路采用分级均衡结构,以降低开关器件电压应力和损耗。控制电路采用基于FPGA/NIOSⅡ的嵌入式系统,同时控制多个开关管工作来提高均衡速度。控制策略采用动态查表的方法来提高均衡速度,根据最大电压差值(单体电池电压与均值电压之差)选择不同的频率表来产生开关管驱动信号,使得均衡电路在整个均衡过程中都能产生较大的均衡电流。
     试验结果证明,本论文提出的动力蓄电池均衡系统较大程度地提高了动力镍氢电池组的均衡特性。与其它均衡系统相比,该系统具有较快的均衡速度。该系统效率高,体积小,可靠性高,具有很强的工程应用价值。同时,该设计方案使得电池均衡系统能够很容易地进一步扩展成高集成性的电池管理系统(BMS),具备高压保护、温度控制、SOC计算等更多功能,为电池管理系统的设计提供了崭新的思路。
Battery system is the power source of hybrid electric vehicles (HEV) and electric vehicles (EV). Their performance is directly dependent on the characteristics of battery system. In practical applications, the unbalance of power battery is enhanced with the increased charge-discharge cycle number, resulting in the damage of single element and the earlier failure of battery system. Therefore the balancing technique of battery system is crucial for both the performance and life improvement of power battery and the development and industrialization of HEV and EV.
     Firstly, this dissertation proposed the task and goal of the charging balancing system of battery. Then, it analyzed the difficulty of battery balancing technique. Based on the existing design methods, according to the task and goal of charging balancing system, a layered balancing design of distributed DC/DC circuit was proposed. Finally, the design was theoretically analyzed and verified by experiments.
     This dissertation describes the research into charge-discharge characteristic and charging technique of NIMH battery, according to which a battery balancing system based on buck-boost circuit and FPGA/NIOSⅡwas designed. The main circuit of the system adopted a layered balancing structure to lower the voltage stress and loss of switch components. The control circuit was based upon FPGA/NIOS II embed system and able to control multiple switch components and increase the balancing speed. The control strategy was to lookup table in order to increase the balancing speed. Based on the voltage difference (the difference between the single element voltage and the mean voltage) maximum, various frequency tables were chosen to generate switch component driving signal so that the balancing circuit was able to produce enough balancing current in the whole balancing process.
     It was verified by the experimental results that the suggested power battery balancing system by this dissertation greatly improved the balancing characteristics of the NIMH battery. Compared with other balancing systems, this system has faster balancing speed. The system is highly efficient, compact, reliable, and appropriate to practical engineering applications. The battery balancing system can be easily extended in further into highly integrated battery management system (BMS), which has more functions including high voltage protection, temperature control, SOC calculation, etc. It also brings up an innovative design method for BMS.
引文
[1]陈凯,陈丽婷.电动汽车用蓄电池现状及发展前景简述.蓄电池.2007,44(4):186-188
    [2]林成涛,王燕超,陈勇,陈全世.电动汽车用MH-Ni电池组不一致性试验与建模.电源技术.2005,29(11):750-754
    [3]王震坡,孙逢春,张承宁.电动汽车动力蓄电池组不一致性统计分析.电源技术.2003,27(5)
    [4]S.West,P.T.Krein.Equalization of valve-regulated lead-acid batteries:issues and life test results.Twenty-second International Telecommunications Energy Conference,2000:439-446
    [5]P.T.Krein,S.B.Robert.Life extension through charge equalization of lead-acid batteries,24th Annual International Telecommunications Energy Conference,2002:516-523
    [6]Zhiguo Kong,Chunbo Zhu.Comparison and Evaluation of Charge Equalization Technique for Series Connected Batteries.37th IEEE Power Electronics Specialists Conference,2006:1-6
    [7]W.S.Jwo,W.L.Chien.Design and Implementation of a Charge Equalization Using Positive/Negative Pulse Charger.42nd Annual Industry Applications Conference,2007:1076-1081
    [8]G.A.Kobzev.Switched-capacitor systems for battery equalization.Modern Techniques and Technology,2000:57-59
    [9]A.Hande,T.A.Stuart.A Selective Boost Equalizer for Series Connected NiMH Battery Packs.Power Electronics in Transportation,2004:151-157
    [10]N.H.Kutkut,H.L.N.Wiegman.Design considerations for charge equalization of an electric vehicle battery system.Industry Applications,IEEE Transactions,Vol.35,No.1,1999:28-35
    [11]Chih-Chiang Hua,Ching-Hsiang Hsu.Implementation of a Regenerative Pulse and Equalization Battery Charger Using a DSP.Power Electronics and Drives Systems Conference, 2005. Vol. 2:955 - 959
    [12] T. Ye, Z. Stuart. Equalization of EV and HEV batteries with a ramp converter. IEEE Transactions on Aerospace and Electronic Systems. Vol.33, No1, Jan. 1997:307-312
    [13] H. Sakamoto, K. Nishijima. Balanced charging of series connected battery cells. Twentieth International Telecommunications Energy Conference, 1998. Oct. 1998:311-315
    [14] Hong-Sun Park, Gun-Woo Moon, Chong-Eun Kim.Charge Equalization with Series Coupling of Multiple Primary Windings for Hybrid Electric Vehicle Li-Ion Battery System. IEEE Power Electronics Specialists Conference, 2007:266 - 272
    [15] C. Pascual , P.T. Krein. Switched capacitor system for automatic series battery equalization. Twelfth Annual Applied Power Electronics Conference and Exposition, 1997. Vol.2, Feb. 1997:848 - 854
    [16] N.H. Kutkut, D.M. Divan. Dynamic equalization techniques for series battery stacks. Telecommunications Energy Conference, 1996 :514 - 521
    [17] S.T. Hung, D.C. Hopkins. Extension of battery life via charge equalization control. IEEE Transactions on Industrial Electronics. Vol.40, Nol, Feb. 1993:96-104
    [18] D.C. Hopkins, C.R. Mosling. The use of equalizing converters for serial charging of long battery strings. Applied Power Electronics Conference and Exposition, 1991:493 - 498
    [19] D.C. Hopkins, C.R. Mosling, S.T. Hung. Dynamic equalization during charging of serial energy storage elements. IEEE Transactions on Industry Applications. Vol.29, No. 2, March-April 1993:363 - 368
    [20] Yao C. Hsieh , Chin S. Moo , Wen Y. Ou-Yang . A Bi-directional Charge Equalization Circuit for Series-connected Batteries. International Power Electronics and Drives Systems Conference, 2005. Vol.2, Nov. 2005:1578-1583
    [21] N.H. Kutkut. A modular nondissipative current diverter for EV battery charge equalization. Thirteenth Annual Applied Power Electronics Conference and Exposition, 1998. APEC '98.Vol.2, Feb. 1998 :686 - 690
    
    [22] Yuang Shung Lee, Szu Han Chen, Yi Pin Ko. Micro-Controller Unit Application in Fuzzy Battery Equalization Control for Battery String. IEEE International Conference on Systems, Man and Cybernetics, 2006. Vol.3, Oct. 2006:2110-2115
    
    [23] Y.-S. Lee , G.-T. Cheng. Quasi-Resonant Zero-Current-Switching Bidirectional Converter for Battery Equalization Applications. IEEE Transactions on Power Electronics. Vol.21, No.5, Sept. 2006:1213 - 1224
    
    [24] Yuang-Shung Lee , Chun-Yi Duh. Battery Equalization Using Bi-directional Cuk Converter in DCVM Operation. IEEE 36th Power Electronics Specialists Conference, 2005 :765 - 771
    
    [25] Yuang-Shung Lee, Ming-Wang Chen, Ko-Lin Hsu. Cell equalization scheme with energy transferring capacitance for series connected battery strings. IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, 2002. Vol. 3, Oct. 2002:2042 - 2045
    
    [26] C.S. Moo, Y.C. Hsieh, I.S. Tsai. Charge equalization for series-connected batteries. IEEE Transactions on Aerospace and Electronic Systems. Vol. 39, No. 2, April 2003:704-710
    
    [27] C. Karnjanapiboon, Y. Rungruengphalanggul. The low stress voltage balance charging circuit for series connected batteries based on buck-boost topology. International Symposium on Circuits and Systems, 2003. Vol.3, May 2003:III-284 - III-287
    
    [28] C.S. Moo, Y.C. Hsieh, I.S. Tsai. Dynamic charge equalisation for series-connected batteries. IEE Proceedings on Electric Power Applications. Vol. 150, No.5, Sept. 2003:501-505
    
    [29] Juan Zhao, Jiuchun Jiang, Liyong Niu. A novel charge equalization technique for electric vehicle battery system. The Fifth International Conference on Power Electronics and Drive Systems,2003.Volume 2,Nov.2003:853-857
    [30]陈军,陶占良.镍氢二次电池,化学工业出版社,2006
    [31]田亮.镍氢动力电池均衡充电系统的设计与试验研究.西南大学硕士学位毕业论文,2007
    [32]龚春,英刘煜,肖岚.几种MOSFET驱动电路的研究.电源技术应用.2001,3(3)
    [33]褚振勇,奇亮.FPGA设计及应用.第二版.西安电子科技大学出版社,2002
    [34]李兰英等.NIOS Ⅱ嵌入式软核SOPC设计原理及应用.北京航空航天大学出版社,2006
    [35]Nianqiang Li,Lu Zhang,Changzhi Wei.Research on the PWM Waveform Compensation Algorism.8th International Conference on Electronic Measurement and Instruments,2007:3-1013-3-1016
    [36]R.Wolf,Wei Hu,S.Bruins.Digital Power Supply Controller for control of extremely precise power supplies.European Conference on Power Electronics and Applications,2007:1-6
    [37]Burr-brown Corporation.Ads7844 Datasheet.1999.www.burr-brown.com
    [38]Maxim corporation.Max4081 Datasheet.2002.www.maxim-ic.com,
    [39]Altera Corporation.NIOS Ⅱ Processor Reference Handbook.2007.www.altera.com
    [40]Altera Corporation.NIOS Ⅱ Hardware Development Tutorials.2007.www.altera.com
    [41]Altera Corporation.NIOS Ⅱ软件开发参考手册.2007.www.altera.com.cn.
    [42]Altera Corporation.Cyclone Ⅱ用户手册.2007.www.altera.com.cn.
    [43]蔡伟纲.NIOS Ⅱ软件架构解析.西安电子科技大学出版社,2007
    [44]Altera公司.NIOS Ⅱ嵌入式处理器设计大赛2006年优秀作品精选集.西安电子科技大学出版社,2007
    [45]潘松,王国栋.VHDL实用教程.电子科技大学出版社,2001
    [46]张占松,蔡宣三.开关电源的原理与设计.修订版.电子工业出版社,2004
    [47]林渭勋.现代电力电子技术.机械工业出版社,2006
    [48]夏宇闻.Verilog数字系统设计教程.北京航空航天大学出版社,2003
    [49]贾新章.OrCAD/Pspice 9实用教程.西安电子科技大学出版社,1999
    [50]比林斯,张占松.开关电源手册.第2版.人民邮电出版社,2006
    [51]老虎工作室.电路设计与制板:ProtelDXP入门与提高.人民邮电出版社,2003
    [52]周立功.SOPC嵌入式系统基础教程.北京航空航天大学出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700