自走式果园风送定向喷雾机的研制与试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密植是现代果园栽培发展的总趋势,但矮化密植种植模式也给果园实现机械化作业带来了挑战。现阶段我国果园施药机械多为担架式、手推式喷雾机,作业效率低、防效较差。近年也有一些科研单位研制风送式喷雾机,提高了工作效率和防治效果,但多采用轴流风机,作业方式为牵引式、悬挂式,体积较大,不能适应低矮密植型果园的栽培模式。至今我国尚没有自行设计制造、适应低矮密植型种植模式的自走式果园风送定向喷雾机
     针对现代果园低矮密植的种植特点,本着农机与农艺相结合原则,本文以研制适应我国现代果园种植模式的自走式果园风送定向喷雾机、探寻低矮密植型果园风力辅助下靶标边界风、雾流场的分布规律为目的,在以下几个方面进行研究。
     (1)研制出一种适用于低矮密植型果园的自走式果园风送定向喷雾机,作业性能达到设计要求。对我国果园种植模式进行了调研分析,确定了自走式果园风送定向喷雾机总机方案。比较分析了几种农用车辆性能和结构特征,对喷雾机底盘进行选型,确定了采取三动力输出、风机后置、异形药箱等布置方式。对选用的农用车底盘传动系统进行测试,根据各功能部件的作业要求,设计出单动力输入、多动力输出的专用动力分配装置,确定动力传递路线,合理分配传动比,使风机、液泵、行走装置获得各自所需的功率和工作速度,保证各部分协调工作。风机支路采用液压传动,实现风机0-2400r/min无级变速。
     (2)根据低矮密植果园气体流动的特点,设计了一种适用于低矮密植果园的圆环双流道风机,实现轴向进风,径向出风。风送式喷雾利用气流对雾滴二次雾化并辅助输送雾滴到果树,提高雾滴沉积率和喷雾效率农药利用率。传统轴流风机的气流方向与风叶轴同向,喷雾范围也很难辐射到果树上方交叉枝叶;体积较大,很难进入低矮密植果园内部。通过理论计算确定了风机主要技术参数,并对内部气流特性和结构进行了分析和计算。设计了环形喷洒装置,分布于风机出口处。环形喷头组与交叉冠层形成的弧形相对应,喷头组为三段并联控制,可实现左、上、右方向独立喷雾。
     (3)通过建立了环境因素可控的室内试验系统,探寻低矮密植型果园风力辅助下靶标边界风、雾流场的分布规律。通过搭建试验台,对风机性能进行了测试,得出风机性能参数满足设计要求。设置不同的喷雾技术参数组合,对风场速度分布、雾滴粒径、喷头流量、雾量沉积、雾滴分布等进行测试。在1400r/min工况下,风机最佳作业幅宽为5m,与理论计算一致,为后期机具设计和整机田间试验确定了基础。
     (4)根据机具运行情况及试验出现的问题,对机具传动机构进行了优化设计。根据各动力传递支路的速度要求,设计了分动箱机构,运用Matlabe软件对两级齿轮传动比进行了优化分配。相比较优化前,喷雾机离地间隙提升了78mam,提高了机具的地面通过性。设计了风机无极变速液压传动系统,解决杆件、皮带传动系统不稳定,易与其它系统发生运动干涉等问题。并对优化后的各功能部件进行了传动比测试验证,满足改进设计目标。
     (5)机具在低矮密植型果园通过性能是需要解决的关键问题之一。由于低矮密植果园行距和株距窄、树高较低,要求喷雾机外形尺寸小、轮距轴距小,与枝叶有足够的农艺间隙,能够在果园行间自由行驶、灵活转向,通过性好;但果园地面的不平整也要求机具有足够的离地间隙和良好的地面越障能力。针对前期试验出现易与果园内凸丘发生碰撞问题,对优化后的机具进行了轮廓通过性研究。理论计算和试验表明:该喷雾机对200mm高度的凸丘有良好的通过性。
     果园风送定向喷雾机是一种大容量药箱自走式喷雾机,药箱满载重量占机具总重的1/4。喷雾作业时药量的变化会导致喷雾机重心位置改变,影响机具通过性及?越障能力。因此基于动态重心的喷雾机在低矮密植型果园的越障能力是评价机具通过性能的重要指标。通过对喷雾机动态重心的测量,建立数学模型,得出药量和越障能力的函数关系。越障试验和理论值一致,喷雾机越障性能较好。结合自走式果园风送定向喷雾机药箱容积对作业效率的影响,提出自走式果园喷雾机药箱容量建议值,为其他带有大水(药)箱机具的通过性能研究提供了借鉴。
     (6)通过田间试验检验机具作业性能,以雾滴覆盖率、沉积量分布和飘移特性为评价指标。根据室内试验结果,设定不同的喷雾技术参数,分析各水平下的喷雾效果。
     在行、株距5m×3m的低矮密植果园中,喷雾机单侧喷雾作业,保持行驶速度1.0-1.2m/s、喷雾压力1.OMPa等参数不变,设置风机转速1400r/rain,这时果树冠层内树叶正面雾滴覆盖率可以达到22.73%,反面覆盖率为13.45%,药液沉积量可以达到6.00μg/cm2,外侧正面有36.98%的覆盖率。风机转速1000r/min时,冠层内树叶正反面雾滴覆盖率分别为8.37%、2.56%,药液沉积量可以达到3.26μg/cm2。无风送(风机转速Or/min)喷雾时,冠层内树叶正反面雾滴覆盖率仅为2.02%、0.21%,药液沉积量仅为1.29μg/cm2,风速对雾滴覆盖率和药液沉积量影响显著。风机1400r/min转速时雾量分布变异系数为0.57,相对于风机Or/min、1000r/min转速雾量分布更加均匀。机具作业效率可以达到15.25亩/h,比现有担架式喷雾机作业效率提高10.5倍。
The compact planting is a general trend of the modern cultivation of fruit trees, compact planting mode is a challenge to mechanized operations of the orchard. The orchard sprayer such as stretcher-style, hand-push and so on were used widely. In recent years, there were a number of researches on developing breeze sprayer. But the most of them were Tractor-draw and hanging, bulky, can not meet the requirements of current orchard development. Until now, self-propelled orchard wind sprayers were still no self-designed, manufactured in china.
     According to modern orchard planting pattern, follow the principle of combining agricultural and agronomic, a kind of self-propelled air-blowing orchard sprayer was developed. Wind and fog flow field distribution law was explored in this study, the mainly work has been accomplished as followed.
     (1) Planting pattern was conducted an investigated in some orchards of different regions. The operator program of orchard sprayer was identified. Sevearal agricultural vehicle chassis were Comparative analyzed. The orchards sprayer chasis was chosen. The drive system of original chassis has been tested. According to the operational requirements of the various functional components, new transmission was designed and the sprayer power transmission line was determined. The transmission ratio was reasonably assigned. Fans, pumps and walking devices obtained the required power and speed to ensure that all parts of coordination.
     (2) Droplet was atomized and conveyed to the fruit trees by breeze spray. Droplet deposition rate and spray efficiency has been raised. Traditional axial fan was large. It was difficult to enter the compact planting orchard internally. The foliage above was not easily sprayed. A kind of ring-type dual channel fan was designed to adapt compact planting orchards. Based on agronomic characteristics the fan structure and the key components were determined using the fluid dynamics and application techniques.Corresponding to the nozzle group and the arc foimed by the corss canopy. Spray group was designed to be curved, independent control of three sections.
     (3) The spray effect was influenced by a number of factors when sprayer was operated. The environmental factors can be controlled easily and parameters were adjusted comfortably. The bed was build to test the performance of sprayer fan. Different parameter was set up with combinations. The speed of wind distribution, the size of droplet, nozzle flow, fog deposition amount and droplet distribution were tested. The optimal fan operating width of5m was consistent with the theoretical calculations in1400r/min-conditions. Laboratory test was prepared for the design of post-equipment and the whole field trials.
     (4) Machinery processing and assembly of the sprayer were completed. The optimization densign of the improved drive mechanism was studied according to problems of operation and test. The institutions of transfer case were designed by the requirement of speed and power in each transmission slip. The gear ratio was optimized allocation using Matlab software. The ground clearance of sprayers was elevated78mm. The infinitely variable hydraulic drive system of fan was designed to solve the problems of pole pieces, belt drive system instability and movement interference with others. The optimized transmission ratio was tested and meets the design objectives.
     (5) In order to solve problems of insufficient ground clearance in pre-trial, the through performance of optimized orchard sprayer was studied. Theoretical calculations and experiments showed that the sprayer had a good passing ability in the orchard.3WZ-700orchard sprayers had a large capacity medicine cabinet, the weight of medicine cabinet fully loaded was1/4of equipment. The change of the dose in sprayer affected its center of gracity which impact on its surmounting obstacles capability. Therefor, the passing ability in compact planting orchard of large-capacity medicine was the key to this study.
     By measuring the dynamic center of gravity of the sprayer, the function between dose and the through performance was derived by building a mathematical model. The result of obstacle test was consistent was with the theoretical value and the through performance of sprayer was very good. Considering the affection of volume of spray machine on operating efficiency, recommended value of medicine cabinet capacity was obtained and a reference was provided for studying through performance of other equipment with a large tank.
     (6) Field experiment was done to test machine performance. Droplet coverage, distribution of the deposition and drift characteristics have been used as evaluation index. Based on the results of laboratory test, spray effect was analyzed by setting different spray parameters in different working conditions. The performance of sprayer was proven very good. Droplet coverage and liquid deposition were founded in canopy very well.
     In row plant spacing of5*3m compact planting orchard, sprayer operating with speed1.0-1.2m/s, spray pressure1.0MPa and other factors constant. The canopy was founded good droplet coverage and liquid deposition when the fan run1400r/min. Compared to0r/min,1000r/min,1400r/min had better spray effect. Operating efficiency of the sprayer can reach1.02hm2/h, was increased by10.5times than stretcher sprayer.
引文
[1]张毅.加入WTO后我国水果企业应对战略[J].西安邮电学院学报,2004,7(2):74-77
    [2]王万章,洪添胜.果树农药精确喷雾技术[J].农业工程学报,2004,20(6):98-101
    [3]中国果品流通协会.我国果品产业发展概况[J].果农之友,2011,(12):34
    [4]傅泽田,祁力钧.国内外农药使用状况及解决农药超量使用问题的途径[J].农业工程学报1998,14(2):7-12
    [5]傅锡敏,吕晓兰,丁为民,等.我国果园植保机械现状与技术需求[J].中国农机化,2009,(6):10-13,17
    [6]李羊林,吴春笃,储金宇,等.高射远程风送式喷雾车性能试验[J].农业机械学报,2007,38(11):182-184,195
    [7]毕士成.浅议我国果园喷药机械化问题[J].北方果树,1998,(2):33
    [8]门红军.我国果品营销的现状和发展建议,现代农业科技,2011,(4):393-399
    [9]邓军蓉,郭兵.我国果品营销现状及应对措施[J].果农之友,2006,(7):10-11
    [10]罗定成,秦春芳,吴美方.植保机械的使用现状及对策分析[J].中国农机化,2008,(2):57-59
    [11]M Salyani. Optimization of deposition efficiency for air blast sprayers [J]. Transactions of the ASAE,2000,43(02):247-253.
    [12]Nuyttens, D., Baetens, K., Schampheleire, M.De and Sonck, B., (2007) Effect of nozzle type, size and pressure on spray droplet characteristics, Biosystems Engineering,97, pp.333-345.
    [13]Delete M A, Jaeken P, Debaer C, et al. CFD prototyping of an air-assisted orchard sprayer aimed at drift reduction[J].Computers and Electronics in Agriculture,2007,55:16-27.
    [14]Baetens K, Nuyttens D, Verboven P, et al. Predicting drift from field spraying by means of 3D computational fluid dynamics model[J]. Computers and Electronics inAgriculture,2007,56:161-173.
    [15]Brown D L, Giles D K, Oliver M N, et al. Targeted spray technology to reduce pesticide in runoff from dormantorchards[J]. Crop Protection,2008,27(3):545-552.
    [16]Lee W S, Alchanatis V, Yang C, et al. Sensing technologies for precision specialty crop production[J]. Computers and Electronics in Agriculture,2010,74(1):2-33.
    [17]Chueca P, Garcera C, Molto E, Gutierrez A. Development of a sensor-controlled sprayer for applying low-volume bait treatments[J]. Crop Protection,2008,27(10):1373-1379.
    [18]Walklate P J, Cross J V, Richardson G M, et al. Optimisingthe adjustment of label-recommended dose rate for orchard spraying[J]. Crop Protection,2006,25(10):1080-1086.
    [19]Fox, R.D., Derksen, R.C., Zhu, H., Brazee, R.D. and Svensson, S.A., (2008) A history of air-blast sprayer development and future prospects, Transactions of the ASABE,51(2), pp.405-410.
    [20]Howell, C. R, Mechanisms Employed by Trichoderma Species in the Biological Control of Plant Diseases:The History and Evolution of Current Concept[J] Plant Disease 2003,87,(1),4-10
    [21]戈晓康.我国植保机械的现状及发展趋势探讨[J].农机化研究,2007,(03):218-220
    [22]高良润.我国植保机械的发展与技术开发[J].农业机械学报,1985,(4):95-102
    [23]邓巍,丁为民.基于PWM技术的连续式变量喷雾装置设计与特性分析[J].农业机械学报,2008,39(6):77-80
    [24]邱白晶,李会芳,吴成笃,等.变量喷雾装备及关键技术的探讨[J].江苏大学学报(自然科学版),2004,25(2):97-101
    [25]穆琦,臧兆烈,王冠军.新型动力喷雾机研究开发[J].农业机械学报,1996,27(增刊):125-128
    [26]宋坚利,何雄奎,曾爱军,等.三种果园施药机械施药效果研究[J].中国农机化,2006,(5):79-82
    [27]巴慧珍,王桂盛.91WDC-35型自走式超低量喷雾机[J].新疆农机化.1989,(3):21-22
    [28]周宏平.烟雾机的研究与发展[J].卫生杀虫药械.1999.5(3):4-6
    [29]卜云龙,杨仁全,王刚,等.JYG-1型移动喷灌机的研制[J].沈阳农业大学学报,2006,37(3):286-290
    [30]郭辉,崔海民.果园植保机械现状与发展研究[J].农业技术与装备,2009,(10):30-31
    [31]邱白晶,李佐鹏,吴昊,等.变量喷雾装置响应特性的试验研究[J].农业工程学报,2007,23(11):148-152
    [32]吕晓兰,何雄奎,宋坚利,等.标准扇形雾喷头雾化过程测试分析[J].农业工程学报,2007,23(9):95-100
    [33]陆军,李萍萍,贾卫东,等.温室轴流风送药雾靶标沉积试验[J].农业机械学报,2009,40(12):88-92
    [34]何培杰,吴春笃,陈翠英,等.新型喷雾混药装置性能研究[J].农业机械学报,2001,32(3):44-47
    [35]陶雷.弧型罩盖减少药液雾滴飘失的理论与试验研究[D]:北京:中国农业大学,2004
    [36]何培杰,陈翠英,吴春笃,等.射流混药装置混合管流场数值计算[J].江苏大学学报:自然科学版,2002,23(2):13-16
    [37]汤伯敏,梁建,杨德水,等.塑料温室内的雾滴沉积分布研究[J].农业机械学报,2004,35(3):72-75
    [38]茹煜,郑加强,周宏平.风送式静电喷屋技术防治林木病虫害研究与展望[J].世界林业研究.2005.18(3):38-42
    [39]张京,杨雪玲,何雄奎,等.改进双圆弧罩盖减少雾滴飘失试验[J].农业机械学报,2009,40(7):67-71
    [40]金超花.静电喷雾雾滴输运沉积特性的研究[D].镇江:江苏大学,2007
    [41]邱白晶,徐溪超,杨宁.射流混药装置结构参数对混药性能影响的模拟分析[J].农业机械学报,2011,42(6):76-79
    [42]张佳喜,陈发,赵志艳.风筒结构对风送式喷雾机喷幅的影响[J].农机化研究,2007,(1):176-177
    [43]宋坚利,何雄奎,曾爱军.罩盖喷杆喷雾机的设计与防飘试验[J].农业机械学报,2007,38(74-77,89):34-35
    [44]刘秀娟,周宏平,郑加强.农药雾滴飘移控制技术研究进展[J].农业工程学报,2005,(1):188-192
    [45]宋淑然,王卫星,洪添胜,等.水稻田农药喷雾上层植株雾滴截留影响的试验研究[J].农业工程学报,2003,19(6):114-117
    [46]宋淑然.水稻田农药喷雾分布质量的试验研究[D].广州:华南农业大学,2003
    [47]赵东,张晓辉,蔡冬梅,等.梯度风对雾滴穿透性影响的研究及试验[J].农业工程学报,2004,20(4):12-16
    [48]赵茂程,郑加强.树形识别与精确对靶施药的模拟研究[J].农业工程学报,2003,19(6):150-153
    [49]王贵恩,洪添胜,李捷,等.果树施药仿形喷雾的位置控制系统[J].农业工程学报,2004,20(3):81-84
    [50]杨学军,严荷荣.植保机械的研究现状及发展趋势[J].农业机械学报,2006,33(6):129-131
    [51]弋晓康.植保机械的现状及发展趋势[J].河南农业科学,2006,(4):72-73
    [52]刘建,吕新民,党革荣等.植保机械的研究现状及发展趋势[J].西北农林科技大学学报:自然科学版,2003,31(10):202-204
    [53]刘青.9WZCD-25型风送式喷雾机喷雾性能优化试验研究[D].乌鲁木齐:新疆农业大学,2003
    [54]张玲,戴奋奋.我国植保机械及施药技术现状与发展趋势[J].中国农机化,2002,(06):34-35
    [55]唐辉宇.植保机械在国外的发展[J].河北农机,2005,(01):28
    [56]http://cigrjournal.Org/index.php/Ejounral/article/viewFile/1250/1107. [2008-05]
    [57]W C Hoffmann, M Salyani. Spray deposition on citrus canopies under different meteorological conditions [J]. Transactions of the ASAE,1996,39(01):17-22
    [58]C P Gupta, TX Due. Deposition studies of a hand-held air-assisted electrostatic sprayer [J]. Transaction of the ASAE,1996,39(05):1633-1639
    [59]M Salyani, R D Fox. Evaluation of spray quality by oil and water-sensitive papers [J]. Transaction of the ASAE,1999,42(01):37-43
    [60]M Salyani. Optimization of deposition efficiency for air blast sprayers [J]. Transactions of the ASAE,2000,43(02):247-253.
    [61]J W Travis, W A Skroch, T B Sutton. Effects of travel speed, application volume, and nozzle arrangement on deposition and distribution of pesticide in apple trees [J]. Plant Disease,1987, 71(07):606-612.
    [62]Andrew J Landers, Developments Towards an Automatic Precision Sprayer for Fruit Crop Canopies [C].2010 ASABE Annual International Meeting,2010, Pittsburgh, Pennsylvania, June 20-23.
    [63]J.V. Cross, P.J. Walklate, R.A. Murray, G.M. Richardson. Spray deposits and losses in different sized apple trees from an axial fan orchard sprayer:1. Effects of spray liquid flow rate [J]. Crop Protection.2001,20(1):13-30
    [64]J.V. Cross, P.J. Walklate, R.A. Murray, G.M. Richardson. Spray deposits and losses in different sized apple trees from an axial fan orchard sprayer:2. Effects of spray quality Original Research Article [J]. Crop Protection,2001,20(4):333-343
    [65]J.V. Cross, P.J. Walklate, R.A. Murray, G.M. Richardson. Spray deposits and losses in different sized apple trees from an axial fan orchard sprayer:3. Effects of air volumetric flow rate Original Research Article [J].Crop Protection,2003,22(2):381-394
    [66]Celen I H, Arin S, Durgut M R. The effect of the air blast sprayer speed on the chemical distribution in vineyard [J]. Pakistan Journal of Biological Sciences,2008, (11):1472-1476
    [67]R Holownicki, G Doruchowski, A Godyn, et al. Variation of spry deposit and loss with air-jet directions applied in orchards [J]. Agric. Enging. Res,2000, (02):129-136
    [68]F. Solanelles, A. Escola, S. Planas. An Electronic Control System for Pesticide Application Proportional to the Canopy Width of Tree Crops. [J]. Biosystems Engineering 2006,95(4),473-481
    [69]H.Zhu, R.D.Brazee, R.C.Derksen. A specially designed air-assisted sprayer to improve spray penetration and air jet velocity distribution inside dense nursery crops [J].2006.49(5),1285-1294
    [70]郭辉,崔海民.果园植保机械现状与发展研究[J].农业技术与装备,2009,(10):30-31
    [71]何雄奎.改变我国植保机械和施药技术严重落后的现状[J].农业工程学报,2004,(01):13-15
    [72]傅锡敏,薛新宇.基于我国施药技术与装备现状的发展思路[J].中国农机化,2008,(06):72-76.
    [73]王贵恩.果树仿形喷雾机理及其关键技术研究[D].广州:华南农业大学,2003
    [74]刘洪杰,冯晓静,刘俊峰,等.果树风送喷雾机的设计[J].安徽农业科学,2011,39(33):20911-20913
    [75]翟长远,赵春江,王秀,等.树型喷洒靶标外形轮廓探测方法[J].农业工程学报,2010,26(12):173-177
    [76]宋淑然,阮耀灿,洪添胜,等.果树管道喷雾系统药液压力的自整定模糊的PID控制[J].农业工程学报,2007,27(6):157-161
    [77]林惠强,肖磊,刘才兴,等.果树施药仿形喷雾神经网络模型及其应用[J].农业工程学报2005,21,(10):95-99
    [78]袁湘月,吴春笃,储金宇,等.果园自动对靶喷雾机的研制—对靶喷雾技术的研究[J].安徽技术师范学院学报,2004,18(1):49-52
    [79]张晓辉,郭清南,李法德,等.3MG-30型果园弥雾机的研制与试验[J].农业机械学报,2002,33(03):30-33
    [80]洪添胜,王贵恩,陈羽白,等.果树施药仿形喷雾关键参数的模拟试验研究[J].农业工程学报,2004,20(4):104-107
    [81]崔志华,祁力钧,王俊.果园风送式喷雾机气体流场对飘移性的影响[J].现代农业科技2007,4,(14):64-66
    [82]陈发元,汪小旵,傅锡敏,等.圆盘风扇风送喷雾气流速度场的CFD模拟及试验验证[J].江西农业学报,2009,21(11):87-89
    [83]陈发元,汪小旵,丁为民,等.果树喷雾用圆盘风扇三维气流速度场数值模拟与验证[J].农业机械学报,2010,41(08):51-55
    [84]葛玉峰,周宏平,郑加强.基于机器视觉的室内农药自动精确喷雾系统[J].农业机械学报,2005,36(3),86-89
    [85]甘英俊,周宏平,郑加强.车载对靶喷雾机自动控制及低速巡航系统的研究[J].南京林业大学学报(自然科学版),2011,35(1),99-102
    [86]胡天翔,郑加强,周宏平.基于DSSA的智能对靶喷雾机软件系统设计[J].技术开发,2008,22(2),68-70
    [87]邵晓玲.南京农机化所科研成果和在研项目简介[J].农机科技推广,2005(8),37-38
    [88]何雄奎,严苛荣,储金宇.果园自动对靶静电喷雾机设计与试验研究[J].农业工程学报,2003,19(6):78~80.
    [89]傅泽田,祁力钧,王秀.化学农药喷施技术的优化[M].北京:中国农业科学技术出版社,2002.12
    [90]祁力钧,傅泽田.风助式喷雾器雾滴在果树上的分布[J].农业工程学报,1998,14(03):135-139
    [91]祁力钧,傅泽田.不同条件下喷雾分布试验研究[J].农业工程学报,]999,15(02):107-111
    [92]傅泽田,祈力钧.风洞实验室喷雾漂移试验[J].农业工程学报,1999,15(01):109-112
    [93]傅泽田,王俊,祁力钧,等.果园风送式喷雾机气流速度场模拟及试验验证[J].农业工程学报2009,25(1):69-73
    [94]祁力钧,赵亚青,王俊,等.基于CFD的果园风送式喷雾机雾滴分布特性分析[J].农业工程学报2010,41(2):62-67
    [95]宋淑然,洪添胜等.风机电源频率对风送式喷雾机喷雾沉积的影响[J].农业工程学报,2011,27(1):153-159
    [96]宋淑然,洪添胜,孙道宗,等.风送式喷雾机变速喷雾雾滴沉积试验[J].农机化研究,2009,(01):166-169
    [97]何雄奎,曾爱军,何娟.果园喷雾机风速对雾滴沉积分布影响研究[J].农业工程学报,2002,18(4):75-77
    [98]吕晓兰,傅锡敏,吴萍,等.喷雾技术参数对雾滴沉积分布影响试验[J].农业机械学报.2011,42(6):70-75
    [99]吕晓兰,傅锡敏,宋坚利,等.喷雾技术参数对雾滴飘移特性的影响[J].农业机械学报.2011,42(1):59-63
    [1]周海燕,刘树民,杨学军,等.大田蔬菜高地隙自走式喷杆喷雾机的研制[J].农机化研究,2001,(6):70-72
    [2]丁为民,邱威,傅锡敏,等.一种用于果园喷雾机的动力分配装置[P].中国:ZL200920282980.3.2010-12-01
    [3]Qiu Wei, Ding Weimin, Gong Yan, et al. Research on the sprayer chassis systems used in the high-density orchard[C]. Proceedings of 2nd International Workshop of Plant Protection Machinery and Application Techniques,2010, Beijing, China, sep15-17
    [4]张勇,涂良斌.多功能车载式车载式电动喷雾机的研制[J].新疆农机化,2011,(4):35-36
    [5]张京,何雄奎,宋坚利,等.挡板导流式罩盖喷雾机结构优化与性能试验[J].农业机械学报,2011,42(10):101-104
    [6]雷小龙,马荣朝,关安禄,等.自控式植保喷雾机械底盘控制系统的设计[J].中国农机化,2011,(5):71-75
    [7]王福军.计算机流体动力学分析[M].北京:清华大学出版社,2004
    [8]闻建龙,张星,宋晓宁,等.轴流风送静电喷雾试验[J].农业机械学报,2009,40(10):58-61,80
    [9]聂信天,史立新,顾浩,等.基于质量反应法的拖拉机质心高度测量方法[J].农业工程学报,2011,27(增刊):336-339
    [10]GB/T 12538-2003,汽车重心高度测定方法[S].中国标准出版社,2003
    [11]谢东明,邱彬.两轴道路车辆重心位置测定方法及数据处理[J].汽车技术,2009,4:45-49
    [1]刘银章,朱建华,苏春伟,等.红江橙密植园树冠结构调查研究[J].广西热带农业,2005,(3):18-19
    [2]刘永朝.密植果园行间距与冠形探讨[J].广西热带农业,2000,17,(1):46-47
    [3]凌晓明,董玉山,魏玉君,等.发展密植果园,促进果树生产优质高效[J].山西果树,2005,(1):37
    [4]薛秋红.红枣直播密植园技术探讨[J]新疆农业科技,2009,(1):50-51
    [5]杨学军,严荷荣.植保机械的研究现状及发展趋势[J].农业机械学报,2002,6(33):129~131.
    [6]修振军.果园机械化的试验研究[J].农业机械化与电气化,2005(3):4
    [7]J.Q.Hansen, M.Winther, S.C.Sorenson.The influence of driving patterns on petrol passenger car emissions, The Science of the Total Enviroment,1995,169(1-3),129-139
    [8]王志超,李文娟,王艳萍.东方红-C502型履带拖拉机拖拉机与农用车,2009,36(3)103~105
    [9]吉林工业大学汽车教研室.汽车设计.北京:机械工业出版社.1981
    [10]丁为民,邱威,傅锡敏,等.一种用于果园喷雾机的动力分配装置:中国,200920282980.3[P].2010-12-01
    [11]丁为民,邱威,汪小旵,等.一种用于农用车的变速器操控机构:中国,201020130297.0[P].2010-12-01
    [12]成大先.机械设计手册[M].北京:化学工业出版社,2010
    [13]邱宣怀,郭可谦,吴宗泽,等.机械设计[M].北京:高等教育出版社,1997
    [14]郑文伟,吴克坚.机械原理[M].北京:高等教育出版社,1997
    [15]陈忠良,潘白桦.机械制图与计算机绘图[M].北京:中国农业出版社,2007
    [16]戴奋奋,袁会珠.植保机械与施药技术规范化[M].北京:中国农业科学技术出版社,2002
    [1]翟长远,赵春江,王秀,等.树型喷洒靶标外形轮廓探测方法[J].农业工程学报,2010,26(12):173-177
    [2]Ali Bayat, Nigar Yarpuz Bozdogan. An air-assisted spinning disc nozzle and its performance on spray deposition and reduction o f drift potential [J]. Crop Protection,2005,24(11):951-960
    [3]王万章,洪添胜.果树农药精确喷雾技术[J].农业工程学报,2004,20(6):98-101
    [4]傅泽田,祁力钧.国内外农药使用状况及解决农药超量使用问题的途径[J].农业工程学报, 1998,14(2):7-12
    [5]何雄奎,曾爱军,何娟.果园喷雾机风速对雾滴沉积分布影响研究[J].农业工程学报,2002,18(4):75-77
    [6]Derksen R C, Krause C R. Spray delivery to nursery trees by air curtain and axial fan orchard sprayer [J]. J. Environ. Hort,2004,22(1):17-22
    [7]Pezzi F, Rondelli V. The performance of an air-assisted sprayer operating in vineyard [J]. Journal of Agricultural Engineering Research,2000,76(4):331-340
    [8]宋淑然,洪添胜,等.风机电源频率对风送式喷雾机喷雾沉积的影响[J].农业工程学报,2011,27(1):153-159
    [9]傅锡敏,吕晓兰,丁为民,等.我国果园植保机械现状与技术需求[J].中国农机化,2009,(6):10-13,17
    [10]戴奋奋.风送喷雾机风量的选择与计算[J].植物保护,2008,34(6):124-127
    [11]江宏俊.流体力学[M].北京:高等教育出版社,1985
    [12]魏润柏.通风工程气体流动理论[M].北京:中国建筑工业出版社,1981
    [13]华绍曾,杨学宁,等.实用流体阻力手册[M].北京:国防工业出版社,1985
    [14]L.普朗克.流体力学概论[M].郭永怀,译.北京:科学出版社,1986
    [15]机械工程手册编辑委员会.机械工程手册—机械产品(四)[M].北京:机械工业出版社,1982
    [16]商景泰.通风机实用技术手册[M].北京:机械工业出版社,2005
    [17]Hewitt A J. Spray drift:impact of requirements to protect the environment [J]. Crop Protection, 2000,19(8-10):623-627
    [18]王贵恩.果树仿形喷雾机理及其关键技术研究[D].广州:华南农业大学,2003
    [19]Holownick R, Doruchowski G, Godyn A, et al. Variation of spray deposit and loss with air-jet directions applied in orchards [J]. J Agric Engng Res,2000, (77):129-136
    [20]王贵恩,洪添胜,李捷,等.果树施药仿形喷雾的位置控制系统[J].农业工程学报,2004,20(3):81~84
    [21]洪添胜,王贵恩,陈羽白,等.果树施药仿形喷雾关键参数的模拟试验研究[J].农业工程学报,2004,20(4):104-107
    [1]吕晓兰,傅锡敏,吴萍,等.喷雾技术参数对雾滴沉积分布影响试验[J].农业机械学报.2011,42(6):70-75
    [2]吕晓兰,傅锡敏,宋坚利,等.喷雾技术参数对雾滴飘移特性的影响[J].农业机械学报.2011,42(1):59-63
    [3]何雄奎,曾爱军,何娟.果园喷雾机风速对雾滴沉积分布影响研究[J]农业工程学报,2002,18(4):75-77.
    [4]茹煜.农药航空静电喷雾系统及其应用研究[D].南京:南京林业大学,2009
    [5]宋淑然,洪添胜,等.风机电源频率对风送式喷雾机喷雾沉积的影响[J].农业工程学报,2011,27(1):153-159
    [6]祁力钧,赵亚青,王俊,等.基于CFD的果园风送式喷雾机雾滴分布特性分析[J].农业工程学报2010,41(2):62-67
    [7]欧亚明,刘青.轴流式风机在风送式喷雾机上的选型与计算[J].中国农机化,2004(2):24-25
    [8]华绍曾,杨学宁,等.实用流体阻力手册[M].北京:国防工业出版社,1985
    [9]商景泰.通风机实用技术手册[M].北京:机械工业出版社,2005
    [10]机械工程手册编辑委员会.机械工程手册—机械产品(四)[M].北京:机械工业出版社,1982
    [11]史岩,傅泽田,祁力钧,等.垂直小目标雾滴分布试验[J].农业机械学报,2004,35(04):47-50
    [12]吴建民,赵武云,樊英生.弥雾机雾滴分布试验研究[J].农业机械学报,2001,32(01):42-45.
    [1]杨新刚,黄玉美,杨文栋.基于可操作性的串联机器人相对传动比优化[J].农业机械学报2009,40(8):209-213,218
    [2]宋兆基,徐流美MATLAB在科学计算中的应用[M].北京:清华大学出版社,2005
    [3]王万章,洪添胜.果树农药精确喷雾技术[J].农业工程学报,2004,20(6):98-101
    [4]邱宣怀.机械设计[M].北京:高等教育出版社,1997
    [5]孙靖民.机械优化设计[M].北京:机械工业出版社,1999
    [6]何岳平,陈青春,何瑞银,等.大蒜栽植机栽植系统优化设计与运动分析[J].农业机械学报2010,42(2):89-93,119
    [7]成大先.机械设计手册[M].北京:化学工业出版社,2010
    [8]李丽,张彦娥.现代工程制图基础[M].北京:中国农业出版社,2006
    [9]濮良贵,纪名刚.机械设计[M].北京:高等教育出版社,2001
    [10]郑文伟,吴克坚.机械原理[M].北京:高等教育出版社,1997
    [11]林清安编著.Pro/ENGINEER Wildfire零件设计——基础篇[上][M].北京:中国铁道出版,2003
    [12]林清安编著Pro/ENGINEER Wildfire零件设计——基础篇[下]M].北京:中国铁道出版,2003
    [13]胡仁喜,等Pro/ENGINEER Wildfire3.0中文版机械设计高级应用实例[M].机械工业出版社,2007
    [14]钟日铭.Pro/ENGINEER Wildfire3.0中文版机械设计实例教程[M].北京:清华大学出版社,2007
    [15]何茂先,殷晨波,肖乐.基于Pro/E的渐开线齿轮的参数化建模研究[J].机械与电子,2006(3):72-74
    [16]张宏文,吴杰,郑霞.基于Pro/Engineer的齿轮参数化设计的建模技术[J].石河子大学学报(自然科学版),2006,24(5):633-635
    [1]傅锡敏,吕晓兰,丁为民,等.我国果园植保机械现状与技术需求[J].中国农机化,2009,(6):10-13.17
    [2]魏道高,周孔亢,区颖刚,等.滩涂车辆的性能分析[J].农业机械学报,2009,33(5):31-34
    [3]舒庆,刘晋浩.防风固沙草方格铺设机器人通过性研究[J].农业机械学报,2007,38(7):99-102,120
    [4]于庆有,司俊山,陆怀民.森林消防车沼泽地通过性研究[J].农业机械学报,1996,27(1):80-84
    [5]李文哲,许绮川.汽车拖拉机学[M].北京:中国农业出版社,2006
    [6]GB/T 12538—2003两轴道路车辆重心位置的测定[S]
    [7]马金猛,李小凡,姚辰,等.地面移动机器人越障动力学建模与分析[J].机器人,2008,37(3):273~278
    [8]张云龙,诸文农,孙冬野,等.履带拖拉机越障失稳机理与试验研究[J].农业机械学报,2008,27(4):7-11
    [9]范华林,刘福君.箱式路面体系车辆通过性机理分析[J].农业机械学报,2007,38(2):26-29
    [10]Kim C, Yun S, Park K, et al. Sensing system design and torque analysis of a hap tic operated climbing robot [A]. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems [C]. Piscataway, NJ, USA:IEEE,2004.1845-1848
    [11]余志生.汽车理论.北京:机械工业出版社,1996
    [12]Liu J G, Wang Y C, Ma S G, et al. Analysis of stairs climbing ability for a tracked reconfigurable modular robot[A]. Proceedings of the IEEE International Workshop on Safety, Security, and Rescue Robots[C]. Piscataway, NJ, USA:IEEE,2005.36-41
    [13]张海洪,龚振邦,谈士力.全方位越障移动机构研究[J].机器人,2001,23(4):341-345
    [14]周孔亢.车辆理论基础.北京:兵器工业出版社,1996
    [15]GB/T 12541-90汽车地形通过性试验方法[S].
    [1]南京农业大学.田间试验和统计方法[M].北京:农业出版社,1988
    [2]盖钧镒.试验统计方法[M].北京:中国农业出版社,2000
    [3]祁力钧,傅泽田.不同条件下喷雾分布试验研究[J].农业工程学报,1999,15(02):107-111
    [4]吕晓兰,傅锡敏,吴萍,等.喷雾技术参数对雾滴沉积分布影响试验[J].农业机械学报.2011,42(6):70-75
    [5]吕晓兰,傅锡敏,宋坚利,等.喷雾技术参数对雾滴飘移特性的影响[J].农业机械学报.2011,42(1):59-63
    [6]刘秀娟,周宏平,郑加强.农药雾滴飘移控制技术研究进展[J].农业工程学报,2005,21(1):186-190
    [7]孙文峰,王立君,陈宝昌,等.喷杆式喷雾机喷雾质量影响因素分析[J].农机化研究,2009(11):114-117
    [8]宋淑然,洪添胜,孙道宗,等.风送式喷雾机变速喷雾雾滴沉积试验[J].农机化研究,2009(1):166-169
    [9]张京,李伟,宋坚利,等.挡板导流式喷雾机的防飘性能试验[J].农业工程学报,2008,24(5)140-142
    [10]茹煜.农药航空静电喷雾系统及其应用研究[D].南京:南京林业大学,2009
    [11]NY/T 992-2006风送式果园喷雾机作业质量
    [12]JB/T 9782-1999植保机械通用试验方法
    [13]JB/T 17977-1999农药喷雾机(器)田间操作规程及喷洒质量评定
    [14]GB/T 18675-2002农业喷雾机总残留液量的测定
    [15]NY/T 650-2002喷雾机(器)作业质量
    [16]GB/T 24683-2009灌木和乔木作业用风送式喷雾机试验方法
    [17]ISO22866-2005 Equipment for crop protection—Methodsfor field measurementof spray drift
    [18]付强.数据处理方法及其农业应用[M].北京:科学出版社,2006
    [19]谢中华MATLAB统计分析与应用:40个案例分析[M].北京:北京航空航天大学出版社,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700