风景园林病虫害防治物联网智能处理系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的风景园林病虫害的防治主要存在调查手段单一、记录和存储方式落后、监控技术落后、历史数据缺乏、诊断过程局限等缺点,很大程度的降低了工作人员的工作效率,无形之中又为病虫害的防治工作增加了难度。
     本文主要研究风景园林病虫害防治物联网智能处理系统,以便携式智能处理系统设计理念为重要的核心,以提高风景园林景区病虫害的防治能力为目标,将智能控制技术、无线传输技术与互联网技术有机结合,解决园林病虫害的防治问题。
     本文分析了风景园林景区的植物生长环境的数据,针对园林病虫害发生的环境数据的变化,选择相关的传感器,在电路设计上为第三方传感设备预留接口以提高系统的可扩展性,采用触摸屏来完成对测试数据的显示以及对系统的控制。在供电系统上设计多模式供电的模式以适应不同的风景园林景区的工作环境,来解决部分景区的设备的供电困难的问题;
     本文分析现有的无线与有线的数据传输方式,并结合风景园林景区的实际情况对数据传输方式进行选型,实现一个无线监控网络;并及时将采集到的数据和图像上传至服务器或上位机进行分析与备份,为以后病虫害的防治工作提供可靠的数据源。在数据传输过程中,采用本文系统制定通讯协议来实现上位机、SIM300、触摸屏和MCU之间的通讯功能,节省了系统开发的周期。
     本文分析目前现有的风景园林病虫害防治的基本措施,针对具体景区环境数据超出文本系统所设置的范围时,做出相应的智能应对措施。
     经过调试和试验表明,本文设计的风景园林病虫害防治物联网智能处理系统具有传输延时短、数据可靠性高、系统扩展性好等优点,符合本文设计的初衷。
The traditional treatments of the landscape architecture diseases and insect pest had the shortcoming such as single survey instruments, lag in record and storage, and lag in-monitoring technology, lack of historical data, and limitation in diagnostic process. All ofthe shortcoming, cut the working efficiency to a great extent, and make the treatment ofdiseases and insect pest increasing difficulty.
     This paper studied intelligent processing system of landscape architecture diseases andinsect pest treatment. The design philosophy of portable intelligent processing system ba-sed on the Internet of Things is the important core of the system, aiming at improvingthe treatment of the landscape architecture diseases and insect pests.Combined the intellig-ent control technology, the wireless transmission technology and the Internet, Ultimately sol-ved the problem of diseases and insect pests treatment.
     The plant growth environment in the landscape architecture area was analyzed, selecte-d relevant sensors for the changing environment of landscape architecture diseases and i-nsect pests. In the circuit design, reserved interface for the third-party sensing devices, ai-ming at improve the system expandability. Adopted the touch screen to display the testdata and control the system. In the power supply system, adopted multi-mode power sup-ply to adapt to the different work environment of the scenic, and solve the supply proble-ms of the equipment in part of the landscape.
     The existing wired and wireless transmission equipment was analyzed, and selected thedata transmission mode selection according to the actual situation of the landscape architect-ture.Uploaded the collected data and images to the server for analysis and backup, to providereliable data source for future pest and disease prevention and control work. In the data tra-nsfer process, the communication prot-ocol was developed to realize the communicationbetween the SIM300, touch screen and the MCU, saving development cycle. And made
     corresponding intelligent response treatment measure for the situation that the scenic environment data beyond the range setted
     As shown in the experiment, the intelligent processing system of landscape architect-ure diseases and insect pests treatment based on Internet of Things had the advantage ofshort propagation delay, high data reliability, higher system expansion, consistenting withthe original design
引文
[1]陈存良.风景园林在城市发展中的作用的探讨[J].河南林业科技,2009,29(3):75.
    [2]殷信,曲战.加强森林病虫害防治的措施[J].民营科技,2009,(8):82.
    [3]国家林业局森林病虫害防治总站.森林病虫害防治工作任重道远[N].中国绿色时报,2000-2-28.
    [4]宋玉双,韩少敏.对加强我国森林病虫害治理工作的思考[J].森林病虫通,1999(2):42-44
    [5]叶建仁.中国森林病虫害防治现状与展望[J].南京林业大学学报,2000,24(6):1-5.
    [6]丁筱慧,谢业霞.浅析森林病虫害防治对策[J].中国高新技术企业,2010(10):175.
    [7]武振涛.森林病虫害防治技术[J].现代农业科技,2010(17):198-199.
    [8]仲成春.走进“物联网”[J].天津经济,2010:10.
    [9]王保云.物联网技术研究综述[J].电子测量与仪器学报,2009,23(12):1.
    [10]曹青林.物联网研究现状综述[J].软件导刊,2010,9(5):6-7.
    [11] DUQUENNOY S,GRIMAUD J J G.VANDEWALLE.Smews.2009.smart and mobile embedded WebServer International Conference on Complex,Intelligent and Software Intensive Systems.
    [12]关勇.物联网行业发展分析[D].北京邮电大学,2010.
    [13] PUJOLLE G.An autonomic-oriented architecture for the Internet of Things[C].IEEE John VincentAtanasoff2006International Symposium on Modern Computing.2006.
    [14]苏彬,范曲立.物联网的体系结构与相关技术研究[J].南京邮电大学学报(自然科学版),2009,(6):29.
    [15]范奎,宋良图.无线农业数据采集系统的设计[J].仪表技术,2010,(1):33-34.
    [16]熊书明,王良民.作物精量灌溉系统的无线传感网络应用开发[J].农业工程学报,2009,25(7):143-144.
    [17] MuzikaRM,GrusheckyST,SmithRL.Using thinning as a management tool for gypsymoth: the influence onsmall mammal abundance [J].Forest Ecology and Management,2004,192(2-3):349-359.
    [18] Loh Douglas K,Holtferich David R,Van Stipdonk Stacy E P.Automated construction of rule bases forforest resource planning [J].Computers and Electronics in Agriculture,1998,21(2):117-133.
    [19] Loh Douglas K,Holtferich David R,Van Stipdonk Stacy E P. Spatially constrained reasoning for thedetermination of wild life foraging areas [J]. Computers and Electronics inAgriculture,1996.15(4):323-334.
    [20]周秀明,宋蛰存.信息技术在森林病虫害测报中的应用现状[J].森林工程,2006,22(6):1-3.
    [21]胡天翔,郑加强.基于DSSA的智能对靶喷雾机软件系统设计[J].林业科技开发,2008,22(2):68-70.
    [22]齐建东,蒋禧.基于无线多媒体传感器网络的森林病虫害监测系统[J].北京林业大学学报,2010,32(4):186-190.
    [23]曹咏梅.广东省森林病虫害远程诊断系统的设计研究[D].中南林业科技大学,2006.
    [24]付航.浅谈移动通讯网与物联网技术的融合[J]. DIGITCW,2010,(6):38.
    [25]贾风华.浅谈园林植物病虫害综合治理策略[J].工业科技,2011,(30):346.
    [26]赵国营.园林病虫害发生的环境分析与防治需注意的问题[J].现代园艺年,2008,(8):45.
    [27]曹洪霞.浅谈光照对植物生态作用的影响[J].安徽农学通报,2010,16(3):56.
    [28]万冬梅.环境与生物进化[J].化学工业出版社,2003.
    [29]雷鹏飞.植物可视化建模中光照对植物生长的影响[D].重庆大学,2008.
    [30]华孟.土壤物理学(M)北京农业大学出版社:华孟,1993:44-50
    [31]粟震霄.电阻式土壤含水率非扰动连续测量装置的研究[J].甘肃农业大学学报,1993,34(4):369.
    [32]张国平.植物生理生态学[M].浙江大学出版社:2003:45-50.
    [33]雷鹏飞.植物可视化建模中光照对植物生长的影响[D].重庆大学,2008.
    [34]邹春蕾.高CO2浓度对植物的影响研究进展[J].东北农业大学学报,2008,39(3):134.
    [35] Cure J D. Crop response to carbon dioxide doubling: a literature survey[R] Agriculture and ForestMeteorology1986,(38):127-145.
    [36] Delucia E H. Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbondioxide[J]. Photosynthesis Res,1985,7(2):175-184.
    [37] Yelle S.1989Acclimation of two tomato species to high atmospheric CO2[J]. Plant Physiology90期P1473-1477.
    [38] Gunderson C A1994Photosynthetic acclimation in tree rising atmospheric CO2: a broader perspective[J].Photosynthesis Res39P369-388.
    [39]王文萃.红外甲烷气体检测仪的设计以及干扰分析[J].红外技术,2009,31(8):458-460.
    [40]项颖.农业病虫害图像远程传输系统的研究与设计[D].中国农业科学院,2006.
    [41]潘琢金.C8051F020/1/2/3混合信号ISP FLASH微控制器数据手册[M],2005.
    [42]王伟.基于C8051F920的太阳能金卤灯控制器设计[J].现代电子科技,2005,(14):38.
    [43]陈明文.提高抗干扰能力的PCB布局[J].科技情报开发与经济,2011,21(9):148-149.
    [44]太淑琳.浅谈GPRS技术在配电监控系统中的应用[J].黑龙江农业工程职业学院学报,2008,(4):44.
    [45]太淑琳.浅谈通用分组无线业务[J].黑龙江农业工程职业学院学报,2006,(1):90.
    [46]晏强. GPRS技术在电压质量监测中的应用[J].新疆电力技术,2008,(4):19.
    [47]李睿.基于ZigBee的移动只能终端在物联网智能家具中的应用[D].北京邮电大学,2011.
    [48]梁光胜.基于CC2430的ZigBee无线网络节点设计[J].电子设计工程,2010,18(2):15.
    [49]张晓静.物联网研究综述[J].辽宁大学报,2010,37(1):37-39.
    [50]卫菊红.基于RFID技术的物联网在现代物流中的应用[J].电子世界,2011,(12):5.
    [51]刘志群.基于RS485实现的PC机与单片机多机通信[J].闽江学院学报,2007,28(2):45-46.
    [52]宋海亮.CAN总线的特点及发展趋势[J].科学与财富,2010,(8):6.
    [53]陈敏.基于C8051F的CRC校验算法的实现[J].自动化仪表,2006,27(11):33.
    [54]黄颖琦.C8051片内温度传感器测量环境温度误差分析[D].贵州大学,2008.
    [55]王艳芳.基于UDP的数据可靠传输技术研究与应用[J].计算机工程与应用,2010,46(3):105.
    [56]黄焕.一种基于TCP协议的点对点通信方法[J].计算机与现代化,2005,(9):62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700