基于智能工程和代谢调控的毕赤酵母发酵过程控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醇营养型毕赤酵母(Methylotrophic Pichia pastoris)是近年来应用广泛、发展迅速的一种外源蛋白表达系统。实现目标外源蛋白(猪α干扰素,pIFN-α;人血清白蛋白-人白介素-2融合蛋白,IL-2-HSA)的高效表达离不开有效的过程控制策略。然而,发酵过程的控制和优化一般建立在非构造式动力学模型的基础上,难以适应发酵过程的时变特征,严重制约了过程控制和最优化系统的有效性和通用能力。为进一步改善毕赤酵母培养过程的控制性能,首先要深入理解毕赤酵母细胞在不同阶段的代谢特征和生理状态。然后结合智能模式识别控制和宏观的代谢调控等方法,针对毕赤酵母发酵过程的不同阶段,建立有效、通用的在线控制和故障诊断方法。基于以上的学术思想,本论文主要开展了以下研究:
     (1)在5 L发酵罐中研究了不同的甘油流加策略对毕赤酵母细胞生长和蛋白(pIFN-α)表达的影响。传统的DO-Stat流加策略导致细胞的比生长速率很低,在后续的诱导阶段细胞干重只有90 g/L。采用基于DO/pH在线测量和人工神经网络模式识别模型的控制系统(Artificial Neural Network Pattern Recognition based Control, ANNPR-Ctrl),可以把细胞浓度提高到120 g-DCW/L,pIFN-α的浓度也从采用DO-Stat流加策略时的0.43 g/L提高到了0.95 g/L。但此方法在甘油流加阶段的最后10 h,细胞的比生长速率由0.15~0.18 h-1降至0.03~0.08 h-1,导致pIFN-α产量的不稳定。该问题通过改进型的ANNPR-Ctrl系统(Imp-ANNPR-Ctrl)得以解决。新的流加策略使细胞的比生长速率维持在0.11 h?1以上,相应的pIFN-α的浓度达到了1.43 g/L的水平,是采用标准的ANNPR-Ctrl控制系统时pIFN-α浓度的1.5倍。研究结果表明,提高培养期细胞的比生长速率有利于诱导期外源蛋白的表达。通过Imp-ANNPR-Ctrl流加策略,细胞浓度和比生长速率都得到了提高,pIFN-α的生产性能也相应改善。
     (2)前期研究对比了不同甲醇浓度水平(5 g/L, 10 g/L和20 g/L)对pIFN-α表达的影响。结果表明甲醇浓度10 g/L条件下,pIFN-α的表达水平最高为1.25 g/L。而在此条件下,诱导初期OUR/DO的变化模式显示细胞有6 h左右的适应期,说明这一阶段甲醇浓度过高。为了缩短细胞适应期,提高蛋白表达水平,我们提出了两阶段甲醇浓度控制策略。即甲醇浓度在诱导前20 h从0 g/L线性增加到10 g/L,在20 h后维持在10 g/L的水平。在此条件下,pIFN-α的最高浓度达到了1.81 g/L。
     (3)在毕赤酵母表达外源蛋白过程中,诱导期甲醇浓度是最重要的控制参数,如何准确有效的把甲醇浓度控制在合适的范围内直接决定了蛋白表达量的高低。在研究氧气消耗速率(OUR)和pIFN-α表达水平以及甲醇浓度的相互关系的基础上,我们发现,正常发酵时,诱导期OUR稳定在200~250 mmol/L/h的水平。当甲醇浓度突然升高时(>20 g/L),OUR迅速下降,出现转折点。通过在线监控OUR的变化模式,我们建立了一种简单的在线故障诊断方法。该方法能够在线及时准确地识别甲醇浓度过高的问题,pIFN-α表达的稳定性得到进一步增强。
     (4)单一过程参数(OUR)进行故障诊断不具有通用性。通过选取多个在线参数(OUR,CER,搅拌转速,甲醇流加量,氨水流加量等),我们提出了基于自联想人工神经网络的毕赤酵母表达IL-2-HSA过程的甲醇诱导期两阶段故障诊断方法。该方法能够在线及时准确地识别甲醇电极出现的各种故障和pH值的漂移。当系统提示出现故障时,离线分析,并对比最优化的pH值和甲醇浓度变化曲线,确定故障类型,采取相应措施。当出现甲醇浓度过高的故障时,通过以2 g/L/h的速率限制性添加甘油可以有效提高菌体的呼吸活性,促进菌体生长,缓解甲醇过量积累对细胞的毒害作用。
     (5)在前期5 L发酵罐研究的基础上,我们开展了10 L发酵罐规模的放大研究。结果表明,采用相同的甘油流加和甲醇诱导控制策略,pIFN-α在10 L发酵罐中的表达水平明显低于5 L罐。其主要原因是蛋白表达的时间缩短,降解严重,细胞代谢活性较低。为解决上述问题,我们采用了低温(20℃)诱导策略。在此条件下,毕赤酵母的最大耐甲醇能力达到约40 g/L,有效地解决了因甲醇浓度变化造成的系统不稳定问题。此外,通过甲醇代谢和能量代谢分析计算表明,在20℃下,更多的碳流用于pIFN-α蛋白的合成;ATP再生效率提高了49~66%;pIFN-α最高浓度水平从0.29 g/L提高到1.1 g/L (比活性1.4×10~6 IU/mg)。10 L发酵罐中pIFN-α表达水平有了明显提高,基本达到5 L罐的水平。
     (6)降低诱导温度能够有效提高毕赤酵母发酵生产pIFN-α的性能。但低温条件下,大量冷却水的消耗和氧气消耗速率的提高导致发酵成本明显上升。在10 L发酵罐和不同诱导策略(30℃/20℃甲醇单独诱导和30℃甲醇/山梨醇混合流加)条件下,我们开展了过程参数和代谢酶学分析以及能量代谢过程解析。结果表明:当采用30℃甲醇/山梨醇混合流加时,pIFN-α合成的主要供能途径由甲醇诱导时的甲醛异化产能途径转向混合流加时的TCA循环。混合流加条件下,甲醛异化代谢途径被弱化,有毒代谢中间产物甲醛的积累得到有效缓解;理论耗氧速率大幅下降,整个诱导阶段溶氧浓度处在适中的水平;能量和甲醇的利用效率显著提高,更多的甲醇可以直接用于细胞和蛋白的合成。此时,pIFN-α浓度达到2.1 g/L,比活性8.6×10~6 IU/mg。另外,甲醇/山梨醇混合流加可以在30℃常温和使用空气供氧的条件下进行,发酵操作成本明显降低,发酵性能得到提高。
The methylotrophic yeast Pichia pastoris is currently one of the most effective and versatile systems for the expression of heterologous proteins. Normally, the fermentation process control strategry is based on unstructured models and difficult to apply to dynamic changing of fermentation which largely prevents its effectiveness and versatility. In this dissertation, to improve the fermentation performance of Pichia pastoris, by combinational using techniques of artificial intelligent and metabolic/enzymatic analysis, new control methods were established for the different Pichia pastoris fermentation process stages. The main results of this dissertation were summarized as following:
     (1) Effective expression of porcine interferon-α(pIFN-α) with recombinant Pichia pastoris was conducted in a 5 L fermentor. The influence of the glycerol feeding strategy on the specific growth rate and protein production was investigated. The traditional DO-Stat feeding strategy led to very low cell growth rate resulting in low dry cell weight (DCW) of about 90 g/L during the subsequent induction phase. The previously reported Artificial Neural Network Pattern Recognition (ANNPR) model based glycerol feeding strategy improved the cell density to 120 g-DCW/L. pIFN-αconcentration improved to 0.95 g/L from only 0.43 g/L with DO-Stat feeding strategy. With ANNPR-Ctrl model, the specific growth rate decreased from 0.15-0.18 h-1 to 0.03~0.08 h-1 during the last 10 h of the glycerol feeding stage leading to a variation of the pIFN-αproduction as the glycerol feeding scheme had a significant effect on the induction phase. This problem was resolved by an improved ANNPR model based feeding strategy to maintain the specific growth rate above 0.11 h-1. With this feeding strategy, the pIFN-αconcentration reached 1.43 g/L, about 1.5 folds of that obtained with the previously adopted feeding strategy. Our results showed that, increasing the specific growth rate favored the target protein production and the glycerol feeding methods directly influenced the induction stage. Consequently, higher cell density and specific growth rate as well as effective pIFN-αproduction have been achieved by our novel glycerol feeding strategy.
     (2)Our previous study compared the results of setting constant methanol concentration of different levels (5 g/L, 10 g/L and 20 g/L) during the induction phase and concluded that the highest pIFN-αactivity was achieved at methanol concentration of 10 g/L. The changing patterns of DO/OUR indicated an adaptation phase of 6 h, which showed the methanol concentration of 10 g/L was too high for the beginning of the induction. Therefore, effective expression of pIFN-αwith recombinant Pichia pastoris was conducted in the 5 L bench-scale fermentor using an on-line methanol electrode based feeding process with the control level of methanol concentration linearly increased to 10 g/L for the first 20 h and maintained at 10 g/L for the rest expression phase. With this two-stage control process, the highest pIFN-αconcentration reached a level of 1.81 g/L.
     (3) For the protein expression with Pichia pastoris, methanol concentration during induction phase was the most important parameter dominating heterologous protein production and should be strictly controlled at adequate levels. The relationship between OUR methanol concentration and pIFN-αactivity was analysed. Normally, the OUR level stayed at 200~250 mmol/L/h. The OUR changing patterns showed a turning point when methanol concentration increased largely. Consequently, the pIFN-αexpression stability could be further enhanced with the aid of a simple on-line fault diagnosis method for methanol over-feeding based on oxygen uptake rate (OUR) changing patterns.
     (4) Fault diagnosis only with OUR can not be used widely. In this chapter, based on the effective recognition of physiological status and characteristics of parameters, an autoassociative neural network (AANN) model was used for two-stage fault diagnosis in the process of IL-2-HSA expression with Pichia pastoris. The optimized AANN could provide on-line and accurate fault alarm for Pichia pastoris induction stage. It was potentially helpful in supplying useful information for removing fault and recovering abnormal fermentation. When detecting methanol over-feeding, glycerol limited feeding at 2 g/L/h could improve the cell activity and release the toxicity of methanol.
     (5) The scaled-up pIFN-αproduction was conducted in a 10 L fermentor. Because of short expression phase, protein degradation and low cell activity, the pIFN-αactivities obtained in 10 L fermentor were obviously lower than those in the 5 L fermentor with the same control strategies. A low temperature induction strategy at 20oC was thus adopted for efficient pIFN-αproduction in a 10 L fermentor. With the strategy, maximal methanol tolerance level could reach about 40 g/L to effectively deal with methanol concentration variations, so that the complicated on-line methanol measurement system could be eliminated. Moreover, metabolic analysis based on multiple state-variables measurements indicated that pIFN-αantiviral activity enhancement profited from the formation of an efficient ATP regeneration system at 20oC induction and the enhanced carbon flow towards to pIFN-αsynthesis. Compared to the induction strategy at 30oC, the proposed strategy increased the ATP regeneration rate by 49-66%, the maximal pIFN-αconcentration reached 1.1 g/L and the specific antiviral activity was 1.4×10~6 IU/mg.
     (6) It has been reported that, an enhanced pIFN-αfermentative production by Pichia pastoris could be achieved when inducing at a lower temperature of 20oC. However, induction at low temperature leads to a high operation cost including a large amount of cooling water and pure oxygen usage. In this study, an alternative pIFN-αproduction mode using sorbitol/methanol co-feeding strategy at room temperature of 30oC was conducted in a 10 L fermentor with the focus on analyzing changing patterns of energy regeneration and the corresponding metabolic enzymology, aiming at improving fermentation performance and reducing operation cost simultaneously. The results showed that when using the methanol/sorbitol co-feeding strategy at 30°C, major energy metabolism energizing pIFN-αsynthesis shifted from formaldehyde dissimilatory energy metabolism pathway to TCA cycle. Under this operation mode, the formaldehyde dissimilatory pathway was weakened and accumulation of toxic intermediate metabolite-formaldehyde was relieved; the theoretical oxygen consumption rate was largely reduced, leading to a moderate DO level throughout the induction phase; energy/methanol utilization efficiency was largely increased so that more methanol could be directed into the cell/protein synthesis route. As a result, pIFN-αconcentration reached the highest level of 2.1 g/L which was about 1.9~7.2 folds of those obtained under pure methanol induction at 20°C and 30°C, respectively. More importantly, enhanced pIFN-αproduction by sorbitol/methanol co-feeding strategy could be implemented under mild operation conditions at room temperature and using air for aeration, which greatly reduced fermentation costs and improved the entire fermentation performance in turn.
引文
[1] Idiris A, Tohda H, Kumagai H, et al. Engineering of protein secretion in yeast: strategies and impact on protein production [J]. Appl Microbiol Biotechnol, 2010, 86: 403-417.
    [2] Plantz B A, Sinha J, Villarete L, et al. Pichia pastoris fermentation optimization: Energy state and testing a growth-associated model [J]. Appl Microbiol Biotechnol, 2006, 72: 297-305.
    [3] Cregg J M, Vedvick T S, Raschke W C. Recent advances in the expression of foreign genes in Pichia pastoris [J]. Nat Biotechnol, 1993, 11: 905-910.
    [4] Pavlou A K, Reicher J M. Recombinant protein therapeutics: success rates, market trends and values to 2010 [J]. Nat Biotechnol, 2004, 22: 1513-1519.
    [5] Macauley-Patrick S, Fazenda M L, McNeil B, et al. Heterologous protein production using the Pichia pastoris expression system [J]. Yeast, 2005, 22: 249-270.
    [6] Cos O, Ramón R, Montesinos J L, et al. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia [J]. Biotechnol Bioeng, 2006, 95: 145-154.
    [7] Cereghino G P L, Cereghino J L, Cregg J M. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris [J]. Curr Opin Biotechnol, 2002, 13: 329-332.
    [8] Gurkan C, Ellar D J. Recombinant production of bacterial toxins and their derivatives in the methylotrophic yeast Pichia pastoris [J]. Microb Cell Fact, 2005, 4: 33.
    [9] Daly R, Hear M T W. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production [J]. Mol Recognit, 2005, 18: 119-138.
    [10] Li P, Anumanthan A, Gao X G, et al. Expression of recombinant proteins in Pichia pastoris [J]. Appl Biochem Biotechnol, 2007, 142: 105-124.
    [11] Graf A, Dragosits M, Gasser B, et al. Yeast systems biotechnology for the production of heterologous proteins [J]. FEMS Yeast Res, 2009, 9: 335-348.
    [12]史仲平,潘丰.发酵过程解析、控制与检测技术(第2版) [M].北京:化学工业出版社, 2010.
    [13]王树青,望英元.生化过程自动化技术[M].北京:化工出版社, 1999.
    [14] Shi Z, Shimizu K. Neuro-fuzzy control of bioreactor systems with pattern recognition [J]. J Biosci Bioeng, 1992: 39-45.
    [15] Lenas P, Kitade T, Watanabe H, et al. Adaptive fuzzy control of nutrients concentration in fed-batch culture of mammalian cells [J]. Cytotechnology, 1997, 25: 9-15.
    [16] Nakajima M, von Numers C, Yada H, et al. An on-line advisory control system for the lactic acid fermentation process [J]. Appl Microbiol Biotechnol, 2002, 42: 204-211.
    [17] Ilkova T, Tzonkov S. Optimal control of a fed-batch process by neuro-dynamic programming [J]. Bioautomation, 2004, 1: 57-66.
    [18] Zhang W, Bevins M A, Plantz B A, et al. Modeling Pichia pastoris growth on methanoland optimizing the production of a recombinant protein, the heavy-chain fragment C of Botulinum neurotoxin serotype A [J]. Biotechnol Bioeng, 2000, 70: 1-8.
    [19] Minning S, Serrano A, Ferrer P, et al. Optimization of the high-level production of Rhizopus oryzae lipase in Pichia pastoris [J]. J Biotechnol, 2001, 86: 59-70.
    [20] Jungo C, Marison I. Regulation of alcohol oxidase of a recombinant Pichia pastoris Mut+ strain in transient continuous cultures [J]. J Biotechnol, 2007, 130: 236-246.
    [21]陈坚,李寅,毛英鹰,等.培养模式对重组大肠杆菌高密度培养生长谷胱甘肽的影响[J].生物工程学报, 1998, 14(4): 452-455.
    [22] Riesenberg D, Guthke R. High cell density cultivation of microorganisms [J]. Appl Microbiol Biotechnol, 1999, 51: 422-430.
    [23]李民,杨立宏,任红玉,等.高密度培养大肠杆菌YK537BHL-11生产重组从细胞白介素-3 [J].生物工程学报, 1999, 15(4): 470-476.
    [24] Lim H K, Choi S J, Kim K Y, et al. Dissolved-oxygen-stat controlling two variables for methanol induction of Guamerin in Pichia pastoris and its application to repeated fed-batch [J]. Appl Microbiol Biotechnol, 2003, 62: 342-348.
    [25] Park Y S, Kai K, Lijama S, et al. Enhancedβ-galactosidas production by high cell-density culture of recombinant Bacillus subtilis with glucose concentration control [J]. Biotechnol Bioeng, 2000, 40: 686-696.
    [26] Eppstein L, Shevitz J, Yang X M. Increased biomass production in a bench top fermentor [J]. Biotechnology, 1989, 7: 1178-1181.
    [27]郭美锦,吴康华,杭海峰,等.基因工程菌Pichia Pastoris高密度培养条件研究[J].微生物学通报, 2001, 3: 25-28.
    [28] Lee C, Nakano A, Shiomi N, et al. Effects of substrate feed rates on heterologous protein expression by Pichia pastoris in DO-stat fed-batch fermentation [J]. Enzyme Microb Technol, 2003, 33: 358-365.
    [29] Shi X Z, Karkut T, Chamankhah M, et al. Optimal conditions for the expression of a single-chain antibody(scFv) gene in Pichia pastoris [J]. Protein Expr Purif, 2003, 28: 321-330.
    [30] Sinha J, Plantz B A, Inan M, et al. Causes of proteolytic degradation of secreted recombinant proteins produced in methylotrophic yeast Pichia pastoris: case study with recombinant ovine interferon-T [J]. Biotechnol Bioeng, 2005, 89: 102-112.
    [31] Jahic M, Rotticci-Mulder J C, Martinelle M, et al. Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein [J]. Bioproc Biosyst Eng, 2002, 24: 385-393.
    [32] Hang H F, Chen W, Guo M J, et al. A simple unstructured model-based control for efficient expression of recombinant porcine insulin precursor by Pichia pastoris [J]. Kor J Chem Eng, 2008, 25: 1065-1069.
    [33] Munoz D F R, Enciso N A A, Ruiz H C, et al. A simple structured model for recombinant IDShr protein [J]. Biotechnol Lett, 2008, 30: 1727-1734.
    [34] ?elik? E, ?al?k P, Oliver S G. A structured kinetic model for recombinant proteinproduction by Mut+ strain of Pichia pastoris [J]. Chem Eng Sci, 2009, 64: 5028-5035.
    [35] Ren H T, Yuan J Q, Bellgardt K H. Macrokinetic model for methylotrophic Pichia pastoris based on stoichiometric balance [J]. J Biotechnol, 2003, 106: 53–68.
    [36] Chiruvolu V, Eskridge K M, Cregg J M, et al. Effects of glycerol concentration and pH on growth of recombinant Pichia pastoris [J]. Appl Biochem Biotechnol, 1998, 75: 163-173.
    [37] Zhang W, Smith L A, Plantz B A, et al. Design of methanol feed control in Pichia pastoris fermentations based upon a growth model [J]. Biotechnol Prog, 2002, 18: 1392-1399.
    [38] Ren H T, Yuan J. Model-based specific growth rate controlfor Pichia pastoris to improve recombinant protein production [J]. Chem Technol Biotechnol, 2005, 80: 1268-1272.
    [39] Sinha B J, Plantz A, Zhang W, et al. Improved production of recombinant ovine interferon-τby Mut+ strain of Pichia pastoris using an optimized methanol feed profile [J]. Biotechnol Prog, 2003, 19: 794-802.
    [40]Trinh L B, Phue J N, Shiloah J. Effect of methanol feeding strategies on production and yield of recombinant mouse endostatin from Pichia pastoris, Biotechnol Bioeng, 2003, 82: 438-444.
    [41] Singh S, Gras A, Vandal C F, et al. Large-scale functional expression of WT and truncated human adenosine A2A receptor in Pichia pastoris bioreactor cultures [J]. Microb Cell Fact, 2008, 7: 28.
    [42] Chung J D. Design of metabolic feed controllers: Application to high-density fermentations of Pichia pastoris [J]. Biotechnol Bioeng, 2000, 68: 298-307.
    [43] Woo S H, Park S H, Lim H K, et al. Extended operation of a pressurized 75-L bioreactor for shLkn-1 production by Pichia pastoris using dissolved oxygen profile control [J]. Ind Microbiol Biotechnol, 2005, 32: 474-480.
    [44] Goodrick J C, Xu M, Finnegan R, et al. High-level expression and stabilization of recombinant human chitinase produced in a continuous Constitutive Pichia pastorisexpression system [J]. Biotechnol Bioeng, 2001, 74: 492-497.
    [45] Brierley R A, Bussineau C, Kosson R, et al. Fermentation development of recombinant Pichia pastoris expressing the heterologous gene: bovine lysozyme [J]. Ann N Y Acad Sci, 1990, 589: 350-362.
    [46] Siegel R S, Brierley R A. Methylotrophic yeast Pichia pastoris produced in high-cell density fermentations with high cell yields as vehicle for recombinant protein production [J]. Biotechnol Bioeng, 1989, 34: 403-404.
    [47] Barr K A, Hopkins S A, Sreekrishna K. Protocol for efficient secretion of HAS developed form Pichia pastoris [J]. Pharm Eng, 1992, 12: 48-51.
    [48] Anjou M C, Daugulis A J. A rational approach to improving productivity in recombinant Pichia pastoris fermentation [J]. Biotechnol Bioeng, 2000, 72: 1-11.
    [49] Lee C Y, Nakano A, Shiomi N, et al. Effects of substrate feed rate on heterologous protein expression by Pichia pastoris in DO-stat fed-batch Fermentation [J]. Enzyme Microb Technol, 2003, 33: 358-365.
    [50] Hu X Q, Chu J, Zhang Z, et al. Effects of different glycerol feeding strategies on S-adenosyll-methionine biosynthesis by PGAP-driven Pichia pastoris over expressing methionine adenosyltransferase [J]. J Biotechnol, 2008, 137: 44-49.
    [51] Oliveira R, Clemente J J, Cunha A E, et al. Adaptive dissolved oxygen control through the glycerol feeding in a recombinant Pichia pastoris cultivation in conditions of oxygen transfer limitation [J]. J Biotechnol, 2005, 116: 35-50.
    [52] Cunha A E, Clemente J J, Gomes R, et al. Methanol induction optimization for scFv antibody fragment production in Pichia pastoris [J]. Biotechnol Bioeng, 2004, 86: 458-467.
    [53] Schenk J, Marison I W, von Stockar U. A simple method to monitor and control methanol feeding of Pichia pastoris fermentations using mid-IR spectroscopy [J]. J Biotechnol, 2007, 128: 344-353.
    [54] Surribas A, Cos O, MontesinosJ L, et al. On-line monitoring of the methanol concentration in Pichia pastoris cultures producing an heterologous lipase by sequential injection analysis [J]. Biotechnol Lett, 2003, 25: 1795-1800.
    [55] Guarna M M, Lesnicki G J, Tam B M, et al. On-line monitoring and control of methanol concentration in shake-?asks cultures of Pichia pastoris [J]. Biotechnol Bioeng, 1997, 56: 279-286.
    [56] Curvers S, Linnemann J, Klauser T, et al. Recombinant protein production with Pichia pastoris in continuous fermentation-kinetic analysis of growth and product formation [J] Eng Life Sci, 2002, 2: 229-235.
    [57] Katakura Y, Zhang W H, Zhuang G Q, et al. Effect of methanol concentration on the production of humanβ2-glycoprotein I domain V by a recombinant Pichia pastoris: a simple system for the control of methanol concentration using a semiconductor Gas Sensor [J]. J Ferment Bioeng, 1998, 86: 482-487.
    [58] Crowley J, Arnold S A, Wood N, et al. Monitoring a high cell density recombinant Pichia pastoris fed-batch bioprocess using transmission and re?ectance near infrared spectroscopy [J]. Enzyme Microb Technol, 2005, 36: 621-628.
    [59] Gurramkonda C, Adnan A, G?bel T, et al. Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: application to intracellular production of Hepatitis B surface antigen [J]. Microb Cell Fact, 2009, 8: 13.
    [60] Liao J C. Fermentation data analysis and state estimation in presence of incomplete mass balance [J]. Biotechnol Bioeng, 1989, 33: 613-622.
    [61] Saner U, Stephanoponlos G. Application of pattern recognition techniques to fermentation data analysis [M]. New York: Pergamon, 1992: 123-128.
    [62] Syu M J, Tsao G T. Neural network modeling of batch cell growth pattern [J]. Biotechnol Bioeng, 1993, 42: 376-380.
    [63] Thibault J, Breusegem V V, Cheruy A. On-line prediction of fermentation variables using neural networks [J]. Biotechnol Bioeng, 1990, 36: 1041-1048.
    [64] Cregg J M, Cereghino J L, Shi J, et al. Recombinant protein expression in Pichia pastoris [J]. Mol Biotechnol, 2000, 16: 23-52.
    [65] Clare J J, Romanos M A, Rayment F, et al. Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies [J]. Gene, 1991, 105: 205-212.
    [66] Hong F, Meinander N Q, J?nsson L J. Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris [J]. Biotechnol Bioeng, 2002, 79: 438-449.
    [67] Li Z, Xiong F, Lin Q, et al. Low temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris [J]. Protein Expr Purif, 2001, 21: 438-445.
    [68] Wu D, Hao Y Y, Chu J, et al. Inhibition of degradation and aggregation of recombinant human consensus interferon- mutant expressed in Pichia pastoris with complex medium in bioreactor [J]. Appl Microb Cell Physiol, 2008, 80: 1063-1071.
    [69] Sirén N, Weegar J, Dahlbacka J, et al. Production of recombinant HIV-1 nef protein using Pichia pastoris and a low-temperature fed-batch strategy [J]. Biotechnol Appl Biochem, 2006, 44: 151-158.
    [70] Jahic M, Wallberg F, Bollok M, et al. Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures [J]. Microb Cell Fact, 2003, 2: 6-16.
    [71] Surribas A, Stahn R, Montesinos J L, et al. Production of a Rhizopus oryzae lipase from Pichia pastoris using alternative operational strategies [J]. Biotechnol, 2007, 130: 291-299.
    [72] Ruiz J, Pinsach J,álvaro G, et al. Alternative production process strategies in E. coli improving protein quality and downstream yields [J]. Process Biochem, 2009, 44: 1039-1045.
    [73] ?elik E, ?al?k P, Oliver S G. Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol [J]. Yeast, 2009, 26: 473-484.
    [74] Zhang W, Inan M, Meagher M M. Fermentation strategies for recombinant protein expression in the methylotrophic yeast Pichia pastoris [J]. Biotechnol Bioprocess Eng, 2000, 5: 275-287.
    [75] Zhang W H, Potter K J, Plantz B A, et al. Pichia pastoris fermentation with mixed-feeds of glycerol and methanol: growth kinetics and production improvement [J]. J Ind Microbiol Biotechnol, 2003, 30: 210-215.
    [76] Xie J L, Zhou Q W, Pen D, et al. Use of different carbon sources in cultivation of recombinant Pichia pastoris for angiostatin production [J]. Enzyme Microb Technol, 2005, 36: 210–216.
    [77]Hellwig S, Emde F, Raven N P, et al. Analysis of single-chain antibody production in Pichia pastoris using on-line methanol control in fed-batch and mixed-feed fermentations [J]. Biotechnol Bioeng, 2001, 74: 344-352.?
    [78] Baker K N, Rendall M H, Patel A, et al. Rapid monitoring of recombinant protein products: a comparison of current technologies [J]. Trends Biotechnol, 2002, 20: 149-156.
    [79] Thorpe E D, d'Anjou M C, Daugulis A J. Sorbitol as a non-repressing carbon source for fed-batch fermentation of recombinant Pichia pastoris [J]. Biotechnol Lett, 1999, 21: 669-672.
    [80] Avila Botton S, Brum M C, Bautista E, et al. Immunopotentiation of a foot-and-mouth disease virus subunit vaccine by interferon alpha [J]. Vaccine, 2006, 24: 3446-3456.
    [81] Chang H W, Jeng C R, Liu J J, et al. Reduction of porcine reproductive and respiratory syndrome virus (PRRSV) infection in swine alveolar macrophages by porcine circovirus 2 (PCV2)-induced interferon-alpha [J]. Vet Microbiol, 2005, 108: 167-177.
    [82] Chinsangaram J, Moraes M P, Koster M, et al. Novel viral disease control strategy: adenovirus expressing alpha interferon rapidly protects swine from foot-and-mouth disease [J]. J Virol, 2003, 77: 1621-1625.
    [83] Chun X, Wu D, Wu W X, et al. Cloning and expression of interferon-α/γfrom a domestic porcine breed and its effect on classical swine fever virus [J]. Vet Immunol Immunopathol, 2005, 104: 81-89.
    [84] Zhou X, Song Z, Liu X, et al. Production of recombinant porcine interferon alpha using PHB-intein-mediated protein purification strategy [J]. Appl Biochem Biotechnol, 2011,163: 981-993.
    [85] Chen X, Xue Q, Zhu R, et al. Comparison of antiviral activities of porcine interferon type I and type II [J]. Chin J Biotech, 2009, 25: 806-812.
    [86] Cao R B, Xu X Q, Zhou B, et al. Gene modification and high prokaryotic expression of porcine interferon alpha-1 [J]. Chin J Biotech, 2004, 20: 291-294.
    [87] Cereghino J L, Cregg J M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris [J]. FEMS Microbiol Rev, 2000, 24: 45-66.
    [88] Huang H, Xie P, Yu R S, et al. High level secretion expression of pIFN-αin Pichia pastoris [J]. Hereditas, 2005, 27: 215-220.
    [89]Ge L, Li Z, Yu R S, et al. Secretive Expression of Porcine IFN-αin Yeast Pichia pastoris [J]. Chin J vet Sci, 2005, 25 (3): 289-292.
    [90] Inan M, Meagher M M. The effect of ethanol and acetate on protein expression in Pichia pastoris [J]. J Biosci Bioeng, 2001, 92: 337-341.
    [91]金虎.毕赤酵母高效发酵生产猪α干扰素过程的优化与代谢调控[D]: [博士学位论文].无锡:江南大学, 2011.
    [92] Chauhan A K, Arora D, Khanna N. A novel feeding strategy for enhanced protein production by fed-batch fermentation in recombinant Pichia pastoris [J]. Process Biochem, 1999, 34: 139-145.
    [93] Choi D B, Park E Y. Enhanced production of mouseα-amylase by feeding combined nitrogen and carbon sources in fed-batch culture of recombinant Pichia pastoris [J]. Process Biochem, 2006, 41: 390-397.
    [94] Zhang J G, Wang X D, Su E Z, et al. A new fermentation strategy for S-adenosylmethionine production in recombinant Pichia pastoris [J]. Biochem Eng, 2008, 41: 74-78.
    [95] Yu R S, Dong S J, Zhu Y M, et al. Effective and stable porcine interferon-αproduction byPichia pastoris fed-batch cultivation with multi-variables clustering and analysis [J]. Bioprocess Biosyst Eng, 2010, 33: 473-483.
    [96] Duan S B, Shi Z P, Feng H J, et al. An on-line adaptive control based on DO/pH measurements and ANN pattern recognition model for fed-batch cultivation [J]. Biochem Eng J, 2006, 30: 88-96.
    [97]萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T.分子克隆实验指南[M].第2版,金冬雁,黎孟枫译.北京:科学出版社, 1993.
    [98]Suye S, Ogawa A, Yokoyama S, et al. Screening and identification of Candida methanosorbosa as alcohol oxidase-producing methanol using yeast [J]. Agric Biol Chem ,1990, 54: 1297-1298.
    [99]Min C K, Lee J W, Chung K H, et al. Control of specific growth rate to enhance the production of a novel disintegrin, saxatilin, in recombinant Pichia pastoris [J]. J Biosci Bioeng, 2010, 110: 314-319.
    [100]Bahrami A, Shojaosadati S A, Khalilzadeh R, et al. Two-stage glycerol feeding for enhancement of recombinant hG-CSF production in a fed-batch culture of Pichia pastoris [J]. Biotechnol Lett, 2008, 30: 1081-1085.
    [101]Cos O, Ramón R, Montesinos J L, et al. A simple model-based control for Pichia pastoris allows a more efficient heterologous protein production bioprocess [J]. Biotechnol Bioeng, 2006, 95: 145-154.
    [102]Khatri N K, Hoffmann F. Oxygen-limited control of methanol uptake for improved production of a single-chain antibody fragment with recombinant Pichia pastoris [J]. Appl Microbiol Biotechnol, 2006, 72: 492-498.
    [103]Wei C, Zhou X, Zhang Y. Improving intracellular production of recombinant protein in Pichia pastoris using an optimized preinduction glycerol-feeding scheme [J]. Appl Microbiol Biotechnol, 2008, 78: 257-264.
    [104]Baumann K, Maurer M, Dragosits M, et al. Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins [J]. Biotechnol Bioeng, 2008, 100: 177-183.
    [105]Jin H, Zheng Z Y, Gao M J, et al. Effective induction of phytase in Pichia pastoris fed-batch culture using an ANN pattern recognition model based on-line adaptive control strategy [J]. Biochem Eng, 2007, 37: 26-33.
    [106]Almuzara C, Cos O, Baeza M, et al. Methanol determination in Pichia pastoris cultures by flow injection analysis [J]. Biotechnol Lett, 2002, 24: 413-417.
    [107]谢静莉,张励,叶勤,等. MutS型基因重组巴斯德毕赤酵母高密度发酵过程中甲醇流加的控制[J].无锡轻工大学学报, 2003, 22(1): 12-15.?
    [108]Zhou X S, Lu J, Fan W M, et al. Development of a responsive methanol sensor and its application in Pichia pastoris fermentation [J]. Biotechnol Lett, 2002, 24: 643-646.
    [109]Wu D, Yu X W, Wang T C, et al. High yield Rhizopus chinenisis prolipase production in Pichia pastoris: Impact of methanol concentration [J]. Biotechnol Bioprocess Eng, 2011, 16: 305-311.
    [110]Sibirny A A, Ubiyvovk V M, Gonchar M V, et al. Reactions of direct formaldehydeoxidation to CO2 are non-essential for energy supply of yeast methylotrophic growth [J]. Arch Microbiol, 1990, 154: 566-575.
    [111]Shimizu H, Yasuoka K, Uchiyama K, et al. On-line fault diagnosis for optimal riceα-amylase production process of a temperature-sensitive mutant of Saccharomyces cerevisiae by an autoassociative neural network [J]. J Ferment Bioeng, 1997, 83: 435-442.
    [112]Zhang X Y, Feng J, Ye X, et al. Development of an immunocytokine, IL-2-183B2scFv, for targeted immunotherapy of ovarian cancer [J]. Gynecol Oncol, 2006, 103: 848-852.
    [113]McKallip R J, Fisher M, Do Y, et al. Targeted deletion of CD44v7 exon leads to decreased endothelial cell injury but not tumor cell killing mediated by IL-2 activated cytolytic lymphocytes [J]. J Biol Chem, 2003, 278: 43818-43830.
    [114]冯博,王光蕙,李萍,等.人白细胞介素-2基因在大肠杆菌中表达水平的提高及产物初步纯化[J].同济医科大学学报, 1994, 23: 15-18.
    [115]金光泽.人血清白蛋白-人白介素-2融合蛋白在毕赤酵母中的表达[D]: [硕士学位论文].无锡:江南大学, 2007.
    [116]Gao M J, Dong S J, Yu R S, et al. Improvement of ATP regeneration efficiency and operation stability in porcine interferon-αproduction by Pichia pastoris under lower induction temperature [J]. Korean J Chem Eng, 2011, 28: 1412-1419.
    [117]Kramer M A. Nonlinear principal component analysis using auto-associative neural networks [J]. AIChE J, 1991, 37: 233-243.
    [118]Khatri N K, Hoffmann F. Impact of methanol concentration on secreted protein production in oxygen-limited cultures of recombinant Pichia pastoris [J]. Biotechnol Bioeng, 2006, 93: 871-879.
    [119]Sola A, Jouhten P, Maaheimo H, et al. Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemoStat cultures at low and high dilution rates [J]. Microbiology, 2007, 153: 281-290.
    [120]Zhang T, Gong F, Peng Y, et al. Optimization for high-level expression of the Pichia guilliermondii recombinant inulinase in Pichia pastoris and characterization of the recombinant inulinase [J]. Process Biochem, 2009, 44: 1335-1339.
    [121]Nakano A, Lee C Y, Yoshida A, et al. Effects of methanol feeding methods on chimericα-Amylase expression in continuous culture of Pichia pastoris [J]. Biosci Bioeng, 2006, 101: 227-231.
    [122]Mayson B E, Kilburn D G, Zamost B L, et al. Effects of methanol concentration on expression levels of recombinant protein in fed-batch cultures of Pichia methanolica [J]. Biotechnol Bioeng, 2003, 81: 291-298.
    [123]Wang Y, Wang Z H, Xu Q L, et al. Lowering induction temperature for enhanced production of polygalacturonate lyase in recombinant Pichia pastori [J]. Process Biochem, 2009, 44: 949-954.
    [124]Lee C Y, Lee S J, Jung K H, et al. High dissolved oxygen tension enhances heterologous protein expression by recombinant Pichia pastoris [J]. Process Biochem, 2003, 38: 1147-1154.
    [125]Dragosits M, Stadlmann J, Albiol J, et al. The effect of temperature on the proteome of recombinant Pichia pastoris [J]. Proteome Res, 2009, 8: 1380-1392.
    [126]Zhao H L, Xue C, Wang Y, et al. Increasing the cell viability and heterologous protein expression of Pichia pastoris mutant deficient in PMR1 gene by culture condition optimization [J]. Appl Microbiol Biotechnol, 2008, 81: 235-241.
    [127]Zhang J G, Wang X D, Zhang J N, et al. Oxygen vectors used for S-adenosylmethionine production in recombinant Pichia pastoris with sorbitol as supplemental carbon source [J]. Biosci Bioeng, 2008, 105: 335-340.
    [128]国家药典委员会.中华人民共和国药典[M].北京:化学工业出版社, 2005, 343-344.
    [129]Charoenrat T, Ketudat-Cairns M, Stendahl-Andersen H, et al. Oxygen-limited fed-batch process: an alternative control for Pichia pastoris recombinant protein processes [J]. Bioprocess Biosyst Eng, 2005, 27: 399-406.
    [130]Schroer K, Peter Luef K, Stefan Hartner F, et al. Engineering the Pichia pastoris methanol oxidation pathway for improved NADH regeneration during whole-cell biotransformation [J]. Metab Eng, 2010, 12: 8-17.
    [131]van der Klei I J, Yurimoto H, Sakai Y, et al. The significance of peroxisomes in methanol metabolism in methylotrophic yeast [J]. Biochim Biophys Acta, 2006, 12: 1453-1462.
    [132]Jin H, Liu G Q, Ye X F, et al. Enhanced porcine interferon-αproduction by recombinant Pichia pastoris with a combinational control strategy of low induction temperature and high dissolved oxygen concentration [J]. Biochem Eng J, 2010, 52: 91-98.
    [133]葛丽,李震,于瑞嵩,等.猪α-干扰素基因在毕赤酵母中的分泌表达[J],中国兽医学报, 2005, 25(3): 289-292.
    [134]Chiruvolu V, Cregg J M, Meagher M M. Recombinant protein production in an alcohol oxidase-defective strain of Pichia pastoris in fedbtach fermentations [J]. Enzyme Microb Technol, 1997, 21: 277-283.
    [135]Wang Z H, Wang Y, Zhang D X, et al. Enhancement of cell viability and alkaline polygalacturonate lyase production by sorbitol co-feeding with methanol in Pichia pastoris fermentation [J]. Bioresource Technol, 2010, 101:1318-1323.
    [136]Lee B, Yurimoto H, Sakai Y, et al. Physiological role of the glutathione-dependent formaldehyde dehydrogenase in themethylotrophic yeast Candida boidinii [J]. Microbiology, 2002, 148: 2697-2704.
    [137]Schütte H, Flossdorf J, Sahm H, et al. Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii [J]. Eur J Biochem, 1976, 62: 151-160. [ 138 ]McCarthy J L, Gauthier J. NADP-isocitric dehydrogenase of gerbil adrenal mitochondria: support of steroid hydroxylation [J]. Cell Mol Life Sci, 1984, 41: 484-485.
    [139]Hong S, Ryu J H, Song B J, et al. Interaction ofα-ketoglutarate dehydrogenase complex with allosteric regulators detected by a fluorescence probe, 1,1’-bi (4-aniline) naphthalene-5,5’-disulfonic acid, an inhibitor of catalytic activity [J]. J Biochem MolBiol, 1996, 29: 230-235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700