利用空气、冰与水的电阻、温度特性差异进行冰情检测的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是在国家自然科学基金项目“冰层厚度传感器及其检测方法的研究”(60672028)资助下进行的一项应用基础研究。利用空气、冰与水的电阻率差异的原理进行冰层厚度测量的传感器参加了第21、22次南极科学考察海冰观测项目。通过分析大量的海冰观测数据,我们发现利用电阻率差异测量冰层厚度对海冰和空气的上界面的判断比较精确,但是对于海冰和海水混合物的下界面判断不明显,误差较大。所以,在此基础上提出了利用空气、冰与水的电阻、温度特性差异进行冰情检测的新方法,减小对下界面的判断误差。同时,当气温与冰温相差较大时,可以用温度差异来判断上界面,提高上界面的测量精度,实现多参数的融合检测。以便帮助我们分析冰层厚度、冰下水位、冰层内部的性状,从而帮助我们预测冰层变化趋势,进行冰情测报。因而本项目的研究具有重要的科研和实际应用价值。
     本文在作了大量的初期机理实验后,通过对室内和室外的实验数据分析找到空气、冰与水的电阻、温度特性差异,为传感器的制作提供了理论基础。通过分析比较市场上各种温度传感器的特性,选择了数字温度传感器DS18B20来实现冰层温度梯度的检测。它的精度高、体积小、测量电路简单、可实现多点测量、价格低,而且可以在低温下可靠工作,能够满足本系统的要求,还可推广应用于一般小范围低温区域内的多点温度测量。
     在完成论文的过程中,基于空气、冰与水的电阻、温度特性差异设计制作了测量电阻值和温度值的实验室模型,实现了数据的自动采集与存储,节省了大量的人工操作。通过软件的方法实现用温度的变化来控制数据的采集与存储,改变了以前的定时采集存储数据的思路。使获得的数据比较合理,可用性强。进行了大量的实验室低温数据采集存储实验,结合实验中出现的问题进行了深入的理论分析。在实验模型的基础上设计制作了新的冰层厚度传感器,传感器的外型、选材、结构方面作了多项该进。模拟实际工作环境,对新的冰层厚度传感器进行了低温仿真实验,获得了大量的实验数据,为传感器性能的改进提供了科学理论和实践依据。
     新研制的冰层厚度传感器通过对冰层的多参数(电阻,温度)融合检测,测量精度与可靠性得到很大的提高,尤其是对下界面的区分比较明显,已经在第24次中国南极科学考察中实际使用,同时也为冰层厚度测报系统的进一步深入研究提供了新的理论依据和可供参考和借鉴的模式。
This paper is an application foundation research which is aided by the item of national natural science fund "the research of the ice layer thickness sensor and its detecting method" (60672028). The ice layer thickness sensor based on the difference of resistance value among air> water and ice has been actually used in the 21st and the 22nd Chinese Antarctic Scientific Expedition. After analyzing a great deal of data which is obtained in the course of detecting Antarctic sea ice, we discover that the method using the difference of resistance value to measure sea ice thickness is comparatively precise in judging air-ice interface, but has some error in judging ice-water interface. Based on this result, the author of this paper proposed a new detecting method that using the characteristic difference of resistance and temperature to detect ice thickness, this new method is helpful to improve the precision of judging ice-water interface. At the same time, when the discrepancy of ice temperature and air temperature is comparatively wide, we can use the difference of temperature to judge air-ice interface, so the new method can improve the precision of judging above interface and realize multi-parameter detection. From the data obtained, we can analyze ice thickness, water level under ice and ice properties inside, it will help us to forecast ice layer's change trend. So the research of this item has important scientific research value and practical application value.
     Through analyzing a quantity of earlier experimental data, we find the characteristic difference of resistance and temperature among air, water and ice. It provide us theory base of making sensor. After comparing all kinds of temperature sensors on sale, choose DS18B20 to realize multi-point temperature detecting. It has high precision, small volume, simple circuit, low price and can work under low temperature.
     We make a lab model which can collect and store data automatically. In this model, we use temperature's change to control collecting and storing data, not time collecting and storing data. The data obtained is more reasonable and more usable. After a lot of lab's low temperature experiments, combining with questions in using, the author analyzed the data deeply. Then, based on the model, we design and make new ice thickness sensor. The new sensor is improved from its shape, material to its structure according to actual working condition. Under similar working circumstance, we do low temperature experiments and acquired large numbers of data. The analysis of experimental data is good for improving sensor's performance.
     Through multi-parameter (resistance, temperature) detecting, the new ice thickness sensor monitoring system has been actually used in the 24th Chinese Antarctic Scientific Expedition. The precision and reliability of the system has been improved significantly, especially the precision of judging ice-water interface. At the same time, this new method not only provided a new theory, but also supplied a reference model for further research on the ice thickness monitoring system.
引文
[1]秦建敏,基于空气、冰与水的电导率检测冰厚的理论与应用研究,[学位论文],西安,西安理工大学,2004年9月
    [2]李志军,辽东湾平整固定冰冰温及其它物理特性的测定与分析,海洋学报,1989年7月,第11卷,第4期,P525-P533
    [3]DS18B20 Data Sheet[Z].DALLAS SEMICONDUCTOR,2001
    [4]Qin Jianmin,Prof.Dr.-Ing.C.Muller-Schloer,The realization of the digital automatic measure of water level using the electric characteristic of water,ICEMI2003,Conference Proceedings,Vol.1,P526-530
    [5]刘鸣等,温度传感器DSl8820的特性及程序设计方法,电测与仪表,2001年第10期,总第38卷,P47-P51
    [7]马福昌,秦建敏,王才,感应式数字水位传感器及其系统,水利学报,2001(增刊),P35-37
    [8]唐怀武,丁振荣,用VC++实现组态王数据的远程共享,测控技术,2005年第24卷第2期,P55-57
    [9]秦建敏,郗玉珠等,基于压差式水位传感器的冰层厚度自动监测系统,水文,2006年02期
    [10]李志军,冰层厚度变化的现场监测现状和研究进展,水科学进展,2005年05期
    [11]张萍,气温与结冰过程的,分析和计算,黑龙江水利科技,2005年01期
    [12]刘国庆,黄河冰层厚度测量仪的研制,山东理工大学学报(自然科学版),2005年05期
    [13]孙少伟,基于DS18B20组网测温的研究,自动化仪表,2006年10期
    [14]李聚光,用DS18B20实现多路测温,内江科技,2006年07期
    [15]高云红,数字温度传感器在多点温度测量系统中的应用,沈阳航空工业学院学报,2006年02期
    [16]刘建亭,DS18B20工作原理及基于C语言的接口设计,仪器仪表用户,2005年06期
    [17]孙明革,基于组态王软件下的SQL数据库技术,微计算机信息,2006年07期
    [18]方敏,基于单片机的数据采集监控系统设计,机械制造与自动化,2006年05期
    [19]李琳,基于组态王的监控系统设计及数据处理,工业控制计算机,2006年01期
    [20]闻瑞梅,王在忠,高纯水的制备及检测技术,科学出版社,1997
    [21]丁德文等,工程海冰学概论[M],海洋出版社,1999年10月
    [22]周冬婉,石伟,基于单总线温度检测的接口时隙分析,现代电子技术,2004年第17期总第184期
    [23]秦建敏,沈冰,利用水的导电特性对冰层厚度进行数字化自动监测的研究,冰川冻土,2003,25(增刊),P281-284
    [24]王幸之,钟爱琴,王雷等,AT89系列单片机原理与接口技术,北京航空航天大学出版社,2004.5
    [25]李志军,中国第19次南极科学考察中海冰调查技术介绍[J],冰川冻土,2003,25(增刊),P210-213
    [26]I2C总线规范,广州周立功单片机发展有限公司,http://www.zigmcu.com
    [27]组态王KingView 6.5使用手册,北京亚控科技发展有限公司,2004
    [28]秦龙,田莉,钱林杰等,MSP430单片机C语言应用程序设计实例精讲,北京,电子工业出版社,2006年5月
    [29]沈建华,杨艳琴,翟骁曙,MSP430系列16位超低功耗单片机原理与应用,北京,清华大学出版社,2004年11月
    [30]Shi Weixing,A measurement method of ice layer thickness based on resistance-capacitance circuit for closed loop external melt ice storage tank,Applied Thermal Engineering,v 25,n 11-12,August 2005,P1697-1707
    [31]Hanna.E,The role of Antarctic sea ice in global climate change[J].,Oceanographic Literature Review,1997,44(6),P371-401
    [32]Dallas semiconductor data books[M],Dallas Semiconductor Corporation,1995
    [33]H.Sodemann,Th.Foken.,Special characteristics of the temperature structure near the surface.,Theoretical and Applied Climatology.,2005.4,Vol.80.No.2-4,P81-89
    [34]E.C.PALM,T.P.MURPHY,S.W.TOZER etc.,RECENT ADVANCES IN LOW TEMPERATURE THERMOMETRY IN HIGH MAGNETIC FIELDS.,International Journal of Modern Physics B., Volume 16, Number 20-22/August 30, 2002
    
    [35] Chen, C. S. , Network based temperature measurement system., Proceedings of the 51st International Instrumentation Symposium. , v457, 2005, P49-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700