双基地高频雷达数据处理NFE技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高频地波雷达工作在频率十分拥挤、电磁环境极其复杂的短波段,其探测性能易受电磁环境变化的影响。在复杂电磁环境下,系统探测难以保证目标点迹的连续性,同时较低的方位分辨率导致远距离上检测点迹的高度分散和跳变。因此,在雷达数据处理时,存在难以航迹起始和形成稳定航迹的问题。然而双/多基地高频地波雷达体制是进一步提高单基地高频地波雷达全天候性能、保障在复杂电磁环境下航迹起始和稳定航迹形成的有效途径之一。本文以T/R-R型双基地高频地波雷达系统为背景,重点研究智能化信息融合模型和算法,以及复杂电磁环境下的航迹起始和短航迹合成问题。
     本文首先针对高频地波雷达电磁波沿海面绕射的特点,采用曲面定位法分析T/R-R型双基地高频地波雷达系统的探测范围及定位精度,绘制单、多测量子集定位精度曲线,并得到双基地高频地波雷达各测量子集在不同探测区域的精度分布。这些研究为双基地高频雷达数据处理方法的设计提供参考依据。
     受复杂电磁环境、海杂波及电离层杂波等影响,高频地波雷达系统的检测点迹往往具有突变性、非均匀性、区域性和模糊性等特点。本文从信号处理角度,将上述超视距探测时变不确定多源信息融合问题归结为多源、多模式信息的综合决策推理系统设计问题。这类问题的解决需要引入智能化的信息融合概念和算法,从而构造一个具有学习、推理、专家功能的高性能智能化信息融合系统。本文通过分析双基地高频雷达的数据特点及其在数据处理中存在的问题,在神经网络-模糊推理二维模型基础上引入专家系统技术,构造神经网络(Neural Network)、模糊推理(Fuzzy Reasoning)和专家系统(Expert System)三大技术相结合的紧耦合式NFE三维模型。研究表明,该模型能够综合神经网络、模糊推理和专家系统的特点,并具有通用性和收敛性,可看作是一类完备的智能化信息融合模型,适用于处理复杂环境背景下的不确定信息融合问题。
     由于高频地波雷达的速度探测精度远高于距离和方位的探测精度,因此在关联处理中速度信息起到至关重要的作用。在双基地高频雷达的点迹关联处理中,由于仅凭径向速度无法解决速度对齐问题,进而无法利用目标实际运动速度信息,因此很难预测首次检测点迹下一时刻的位置,这为数据处理的初始相关波门的位置和大小的选取带来极大的困难。针对此问题,本文提出基于NFE模型的初始点迹关联波门预测方法。该方法将回波点迹的径向斜率(由目标位置信息确定)和径向速度作为输入变量,以目标在径向坐标系的预计运动区域相应值作为输出变量,按照双基地高频雷达探测精度的不同建立专家系统和制定专家规则来确定不同区域的隶属函数,实现单检测点迹的初始波门预测,从而为解决双基地高频地波雷达初始点迹的速度关联提出一种可行的方法。该方法为及时准确地确定初始点迹关联波门和快速起始航迹提供有力保障。
     传统的微波雷达航迹起始算法具有的共性是:其一,主要利用目标的位置信息(包括径向距离和方位角)作为输入向量进行判断,然后考虑速度维的关联处理;其二,这些算法在判别是否形成有效航迹时所遵循的准则多以量测连线的线性程度的判断作为依据。然而双基地高频地波雷达航迹起始问题不能简单地照搬传统的微波雷达航迹起始算法,需要考虑由于低位置信息探测精度引起的检测数据的强突变性问题,从而无法应用传统的方法有效地起始航迹。针对此问题,本文在对双基地高频地波雷达数据特征详尽分析的基础上,研究基于NFE模型的航迹起始方法。该方法建立径向速度变化量、雷达反射截面积变化量及信杂比幅度与回波量测作为更新点迹的可信度之间的模糊关系,间接利用数据的位置信息将其作为专家系统的判决条件作为辅助选择相应的输入变量的隶属度函数实现航迹起始,从而解决双基地高频地波雷达系统在初始点迹高度分散、不连续的情况下航迹难以起始的问题。
     不同于一般的微波雷达,高频地波雷达采用了超分辨、高精度的多普勒处理技术,因此如何有效利用多普勒频移参数成为双基地高频雷达系统航迹处理的关键。由于在复杂环境下的各站航迹往往是断续的短航迹,而不是完整的稳定航迹,因此双基地高频地波雷达航迹融合实际上是短航迹合成问题。本文针对此问题提出利用多普勒频差因数修正相交关联门内公共量测来自目标的条件概率,并将其引入Hopfield网络的目标函数的Doppler-NJPDA数据关联算法,提高密集杂波环境下交叉运动目标相交的区域正确短航迹识别概率,从而解决双基地高频地波雷达交叉运动目标真假短航迹识别问题。另外,在短航迹合成处理中融汇基于NFE模型的航迹起始方法,并在航迹更新点可信度NFE模型的基础上按照航迹处理的特点对其进行改进用于虚假点迹剔除。综合使用以上方法可保证对多目标点迹-航迹关联的实时性和可靠性,从而解决双基地高频雷达密集虚假点迹环境下交叉运动目标相交区域的短航迹合成问题。
High Frequency Surface Wave Radar (HFSWR) works in the short wave band which has crowded frequencies and complicated electromagnetic environments, so its detection performance is susceptible to the ionosphere interference change. The system detection is difficult to guarantee the continuity of the target measurements, and the low azimuth resolution causes the deconcentration and jump of the detected plots. So it is a tough work to initiate target tracks and form stable ones while processing data. However, bistatic/multistatic HF radars are one of the approaches which could increase all-weather performance of monostatic HF radars and ensure the track initiation and forming effective tracks under complicated electromagnetic environments. The track initiation and short track composition under complicated electromagnetic environments is principally researched based on T/R-R bistatic HFSWR system and the intelligentized information fusion models and algorithms is proposed in this paper.
     According the characteristic that the vertical polarized electromagnetic wave diffracts along the ocean surface, the detection range and localization precision for T/R-R bistatic HF radar system are deduced and simulated using the curved face positioning analysis method, including drawing localization precision curves using single/multiple measurement subsets and the distribution diagram of high precision measurement subsets is obtained. These analyses make the proposing of data processing method based on bistatic HF radar system have pertinence and provide referenced proofs.
     Affected by the complicated electromagnetic environment, sea clutter and ionospheric clutter, the plots detected by HFSWR have the characteristics of saltation, nonuniformity, deficiency and regionality. The issues above are summarized to be the fusion problems of the uncertain information for bistatic HFSWR system in this paper from the angle of signal processing. The solving of this sort of problems needs to introduce intelligentized information fusion models and algorithms in order to structure a high-powered intelligentized information fusion system in possession of learning, reasoning and expert function. A tightly-coupled NFE model combined with Neural network, Fuzzy reasoning and Expert system is constructed based on neural network-fuzzy reasoning model by introducing expert system technology. It is indicated that this model can be regarded as a category of complete intelligentized information fusion model possessing commonality and approximation and it is adaptive to process the uncertain information fusion problems under complicated environment.
     The velocity precision is far higher than that of range and direction, so the velocity information takes a significant part in the association processing. It is unavailable to realize velocity coordinate transformation while processing measurement association in bistastic HFSWR in order that the actual velocity information could not be directly utilized, so this make it intractable to choose the position and size of the initial association gate. Aiming at this problem, the initial association gate forecasting NFE model based on single detected plot is proposed in this paper. In this model, the radial gradient (determined by the target position information) and radial velocity are set to be input variables and the predicted movement region in radial coordinate system is set to be output variable. According to the different detection precision for bistatic HFSWR the member functions subject to diverse regions are determined by establishing expert system to realize initial association gate forecasting in order to solve the difficult problem of forecasting target movement trend only depending on the first radar echo for bistatic HFSWR system. This method have not increased the calculation quantity profiting from the parallel processing of neural network as well as increasing the hypothetical gate numbers, so it ensures to determine the initial association gate and initiate tracks opportunely and exactly.
     The commonness of traditional track initiation methods is: firstly, they all utilize the position information (including radial range and azimuth angle) to make determination and then consider the velocity association; secondly, the criterion for judging whether forming valid tracks is according to the linearity degree of the link line of measurements. This is quite proper and effective for high precision radar system. However, the inherent characteristic of HFSWR determines low detection precision of target position accuracy and this makes the plot data saltation, nonuniformity, deficiency and regionality so that traditional algorithms could not initiate tracks efficiently, and this problem has stood out and desiderates solutions. Based on the considerations above, an NFE track initiation method is proposed from a brand-new angle and idea after a particular analysis of the data features for bistatic HFSWR. It has built the fuzzy relationship between the radial velocity change, radar cross section change and signal to clutter ratio magnitude and the degree of belief for the target measurement which is regarded to confirm the update in the proposed method and the position data are utilized indirectly to choose the corresponding member functions of input variables as the judgement conditions of the expert system, so as to solve the low track initiation probability problems under the circumstance of intermittent measurements in bistatic HFSWR system.
     HFSWR adopts super-resolution and high-precision Doppler processing technology other than ordinary microwave radar, therefore, how to get sufficient use of Doppler frequency shift parameter is the key of the track processing for bistatic HFSWR. In respect that tracks from each receiver are usually intermittent and short rather than compete and steady, the track fusion for bistatic HFSWR is actually a short track composition issue. Aiming at this situation, the Doppler-NJPDA data association method utilizing doppler frequency shift difference to revise the conditional probability of the public measurements from the targets is proposed to increase measurement-to-track association probability in the intersection of the cross moving targets in the dense false measurements environment in order to solve the true-or-false measurements identification problem of the cross moving targets for bistatic HFSWR. In addition, the adaptive tracking gate algorithm based on detection precision of bistatic HFSWR is proposed in short track composition processing affiliated the NFE track initiation method, and the modified update degree of belief NFE model is used to eliminate the outliers. Integrating the method above, the real-time operation and reliability measurement-to-track association is ensured so as to solve the short track composition problem of the cross moving targets in the intersection for bistatic HFSWR.
引文
1 D. L. Hall, J. Liunas. Handbook of Multisensor Data Fusion. CRC Press, 2001: 117~142
    2 R. Albert, A. L. Barabasi. Statistical mechanics of complex networks, Review of modern physics. 2002, 74(1): 48~97
    3 A. Benavoli, L. Chisci, A. Farina, S. Immediata, L. Timmoneri and G. Zappa. Knowledge-Based System for Multi-Target Tracking in a Littoral Environment, IEEE Transactions on Aerospace and Electronic Systems. 2006, 42(3): 1100~ 1119
    4 D. Smith, S. Singh. Approaches to Multisensor Data Fusion in Target Tracking: A Survey,Knowledge and Data Engineering, IEEE Transactions. 2006, 18(12): 1696~1710
    5权太范.信息融合:神经-模糊融合理论及应用(国防专著基金项目).国防工业出版社. 2002: 100~147
    6 J. R. Wait. Theory of HF ground wave backscatter from sea waves. J. Geophys. Res. 1966, (71): 4832~4839
    7 J. T. Kohut, S. M. Glenn, H. J. Roarty, M. Schofield. A Nested Multi-static HF Radar Testbed for the New York Bigh and Beyond. OCEANS 2007– Europe. 2007, Scotland: 1~3
    8 J. T. Kohut, S. M. Glenn, H. J. Roarty. Reccent Results from a Nested Multi- Static HF Radar Network for the NorthEast Observing System(NEOS). Teaming Toward the Future. 2003, San Diego: 23~35
    9湘鹏,陆志刚.国外双基地雷达发展计划.现代电子. 1994, 49(4): 6~17
    10 H. Leong. The potential of bistatic HF surface radar system for the surveillance of water-entry area along costline. 2006 IEEE Radar Conference. 2006, New York: 35~38
    11 Y. Bar-Shalom, T. E. Forman. Tracking and Data Association. Press Inc. 1988: 594~610
    12 Y. Bar-Shalom, E. Tse. Tracking in a Cluttered Environment with Probabilistic Data Association. Automatic. 1975, (11): 451~460
    13 S. C. Stubberud, K. A. Kramer. Data Association for Multiple Sensor TypesUsing Fuzzy Logic. IEEE Trans. On Instrumentation and Measurement. 2006, 55(6): 2292~2303
    14 D. L. Alspach. A Gaussian Sum Approach to the Multi-target Identification Tracking Problem. Automatic. 1975, (11): 285~296
    15 T. E. Fortman, Y. Bar-Shalom, M. Scheffe. Multi-Target Tracking Using Joint Probabilistic Data Association. 1980 IEEE Conf. Decision and Control. 1980, Albuquerque: 807~ 812
    16周宏仁,敬忠良,王培德.机动目标跟踪.国防工业出版社. 1991: 376~386
    17 A. Farina, S. Pardini. Track-While-Scan Algorithm in a Clutter Environment. IEEE Transactions on Aerospace and Electronic Systems. 1978, AES-14: 769~ 779
    18 P. R. Kalata. The Tracking Index: A Generalized Parameter forα?βandα?β?γTarget Trackers. IEEE Trans. Aerosp. Electron. System 1984, AES-20: 174~182
    19 R.G. Brown. Introduction to Random Signals and Applied Kalman Filtering. New York: Wiley. 1997: 248~299
    20 F.R.Castella. An adaptive two-dimensional Kalman tracking filter. IEEE Trans. Aerosp. Electron. Syst. 1980, Aes-16: 822~829
    21 Y. Sunahara. An Approximate Method of State Estimation for Nonlinear Dynamical Systems. Joint Automatic Control Conference. University of Colorado, 1969,(9): 1692~1699
    22 R. S. Bucy, K. D. Renne. Digital Synthesis of Nonlinear Filter. Automatica. 1971, 7(3): 287~289
    23 S. J. Julier, J. K. Uhlmann, H. F. Durrant-Whyte. A New Approach for Filtering Nonlinear System. Proceedings of the American Control Conference. 1995, Seattle: 1628~1632
    24 S. J. Julier, J. K. Uhlmann, H. F. Durrant-Whyte. A New Method for Nonlinear Transformation of Means and Covariances in Filters and Estimators. IEEE Trans.Automatic Control. 2000, (45): 477~482
    25 S. J. Julier, J. K. Uhlmann. Unscented Filtering and Nonlinear Estimation. Proceedings of the IEEE. 2004, 92(3): 401~422
    26 S. Julier. The Spherical Simplex Unscented Transformation. Proc. Amer. Control Conference. 2003, London: 2430~2434
    27 E. Daepour, Y. Bar-Shalom. An Interacting Multiple Model Approach for Targetwith Glint Noise. IEEE Trans. On Aerospace and Electronic Systems. 1995, 31(2): 706~715
    28 V. P. Jikkov, D. S. Angelova, T. A. Sermerdjiev. Design and Comparison of Mode-set Adaptive IMM Algorithms for Maneuvering Target Tracking. IEEE Trans. On Aerospace and Electronic Systems. 1999, 35(1): 343~350
    29 D. S. Albert, J. J.Garstka, R. E. Hayes, D.A. Signori. Understanding Informations Age Warfare. CCRP Library of Congress Cataloging in Pubication Data. 2001: 67~82
    30 M. G. Mullen. The Navy in the 21st Century, Part I: Surface Warfare. Johns Hopkins APL Technical Digest. 2001, 22(1): 7~18
    31 D. S.Alberts, J. Moffat. Network Centric Warfare and Complexity Theory.郁军,贲可荣.电子工业出版社. 2004: 9~19
    32高隽.智能信息处理方法导论.机械工业出版社. 2004: 1~16
    33 L. M. Fu. Neural Networks in Computer Intelligence. McGraw Hill Inc..1994: 187~208
    34 L. M. Fu. Knowledge-based Connectionism for Revising Domanin Theories. IEEE Trans. On Systems, Man, Cybernetics. 1993, 23(1): 173~182
    35 L. M. Fu. Rule Generation from Neural Networks. IEEE Trans. On Systems. Man, and Cybernetics. 1994, 24(8): 1114~1124
    36 L. M. Fu. Representation of Rule-based Knowledge in Neural Networks. IEEE ICNN. 1994,(11):1484~1484
    37 L. M. Fu. Incremental Knowledge Acquisition in Supervised Leaning Networks. IEEE Trans. On Neural networks. 1996, 7(6): 1517~1520
    38 L. M. Fu. Learning Capacity and Sample Complexity on Expert Networks. IEEE Trans. On Neural Networks. 1996, 7(6): 1517~1520
    39 L. R. Medsker. Hybrid Neural Networks and Expert Systems. Kluwer Academic Publisher. 1994: 177~194
    40 H. H. Ten. Neural Logic Networks: A New Class of Neural Networks. World Scientific. 1995: 207~259
    41戴汝为,王珏.关于智能系统的综合集成.中科院自动化研究所技术报告. 1993: 17~25
    42高隽.人工神经网络原理及仿真实例.机械工业出版社. 2003: 1~15
    43 X. S. Deng, X. Z. Wang. Incremental learning of dynamic fuzzy neural networks for accurate system modeling. Fuzzy Sets and Systems. 2009, 160(7):972~987
    44 R. A. Aliev, B. G. Guirimov, B. Fazlollahi, R. R. Aliev. Evolutionary algorithm- based learning of fuzzy neural networks. Part 2: Recurrent fuzzy neural networks. Fuzzy Sets and Systems. 2009, 160(17): 2553~2566
    45 A. F. Gobi, W. Pedrycz. The potential of fuzzy neural networks in the realization of approximate reasoning engines. Fuzzy Sets and Systems. 2006, (22): 2954~ 2973
    46 C. F. Hsu, P. Z. Lin, T. T. Lee, C. H. Wang. Adaptive asymmetric fuzzy neural network controller design via network structuring adaptation. Fuzzy Sets and Systems. 2008, 159(20): 2627~2649
    47 C. Quek, R. W. Zhou. Structure and learning algorithms of a nonsingleton input fuzzy neural network based on the approximate analogical reasoning schema. Fuzzy Sets and Systems. 2006, 157(13): 1814~183
    48 M. Khashei, S. R. Hejazi, M. Bijari. A new hybrid artificial neural networks and fuzzy regression model for time series forecasting. Fuzzy Sets and Systems. 2008, 159(7): 769~786
    49 T. G. Barbounis, J. B. Theocharis. A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation. Neuro- computing. 2007, 70(7): 1525~1542
    50 S. C. Lee, E. T. Lee. Fuzzy Neurons and Automata. 4th Princeton Conference Inform. Sci. Syst. 1970, New Jersey: 381~385
    51 T. J. Ross著.钱同惠,沈其聪,葛晓滨等译.模糊逻辑及其工程应用(Fuzzy logic engineering applications).电子工业出版社. 2001: 1~20
    52 A. Kandel, S. C. Lee. Fuzzy Switching and Automata: Theory and Applications. Crane Russak. 1979: 257~296
    53 J. S. R. Jang. ANFIS: Adaptive Network-based Fuzzy Inference Systems. IEEE Transactions on System, Man, Cybernetic. 1993, 23(3): 665~685
    54 L. X.Wang. Adaptive Fuzzy Systems and Control. Englewood Cliffs. Prentive Hall. 1994: 211~278
    55 G. A. Carpenter, S. Grossberg. Fuzzy ARTMAP: A neural Network Architecture for Incremental Supervised Learning of Analog Multimesional Maps. IEEE Trans. On Neural Network. 1992, 3(4): 698~713
    56 Y. Hayashi, J. J. Buckley, E. Czogala. Fuzzy Neural Network with Fuzzy Signal and Weight. Int. J. Intell. Syst. 1993, 3(5): 776~786
    57 S. I. Gallant. Connectionist Expert Systems. Communication of the ACM. 1988, 31(2):152~169
    58 S. I. Gallant. Neural Network Learning and Expert Systems. MIT Press, Cambridge. 1993: 181~203
    59 E. H. Dytch, L. G. Wied, B. Marluce. Artificial Neural Nets as Tools for Expert Systems in Objective Histopathology. IEEE Eng. Med. Biol. Soc. Annu. Conference. 1988, 10(3): 1375~1376
    60 J. Drabarek, R. Wirski. A Neural Expert System Concept Applied to Diagnostics. IEEE 8th International Conference on Electronics, Circuits and Systems, 2001, Mexico:1301~1304
    61 D. C., Kuncicky, S. I. Hruska, R. C. Lacher. Hybrid System: the Equivalence of Rule-based Expert Systems and Artificial Neural Network Inference. International Journal of Expert Systems. 1991, 4(3): 281~297
    62 G. G. Towell, J. W. Shavlik. Knowledge Based Artificial Neural Networks. Artificial Intelligence. 1994, 70(1/2): 119~165
    63 G. G. Towell, J. W. Shavlik, M. O. Noordewier. Refinement of Approximate Domain Theories by Knowledge Based. Neural Networks. Proc. of AAAI-90, 1990: 861~866
    64 S. C. Suddarth, A. D. C. Holden. Symbolic-neural Systems and the Use of Hints for Developing Compiles Systems. International Journal of Pattern Recognition. 1991, 5(4): 503~522
    65 H. Tirri. Implementing Expert System Rule Conditions by Neural Networks. New Generation Computing. 1991, (10): 55~71
    66 E. Avci, D. Hanbay, A. Varol. An expert Discrete Wavelet Adaptive Network Based Fuzzy Inference System for digital modulation recognition. Expert Systems with Applications. 2007, 33(3): 582~589
    67 J. D. Wu, P. H. Chiang, Y. W. Chang, Y. J. Shiao. An expert system for fault diagnosis in internal combustion engines using probability neural network.Expert Systems. 2008, 34(4): 2704~2713
    68 Y. Leung. Artificial Intelligence and Expert Systems. International Encyclopedia of Human Geography. 2009: 207~213
    69 W. K. Wong, X. H. Zeng, W. M. R. Au. A decision support tool for apparel coordination through integrating the knowledge-based attribute evaluation expert system and the T–S fuzzy neural network. Expert Systems withApplications. 2009, 36(2): 2377~2390
    70 S. S. Lin, S. C. Hong, C. H. Lin. A Neural Network theory based expert system- ICRT. Expert Systems with Applications. 2009, 36(3): 5240~5247
    71 K. P. Adlassing, G. Kolarz. Representation and Semiautomatic Acquistion of Medical Knowledge in Cadiag-1 and Cadiag-2. Computational Biomed. Res.. 1988, (19): 63~79
    72 J. F. Baldwin. Evidential Support Logic Programming. Fuzzy Sets and Systems. 1987, (24):1~26
    73 P. Bonissone, S. Gans, S. Decker. RUM: A Layered Architecture for Reasoning with Uncertainty. 10th Int, Joint Conf. Artificial Intelligence. 1987: 891~898
    74 J. Buckley, W. Siler, D. Tucker. Fuzzy Expert System. Fuzzy Sets and System. 1986, 20(1): 1~16
    75 J. Buckley, W. Siler, D. Tucker. Second Generation Fuzzy Expert System. Fuzzy Sets and Systems. 1989, 31: 271~284
    76 P. L. Jones. REVEAL: An Expert systems Support Environment. In Expert Systems: Principles and Case Studies, 1st ed. Chapman& Hall. 1984: 268~287
    77 Z. A. Sosnowski. FLISP-Language for Processing Fuzzy Data. Fuzzy Sets and Systems. 1990, (37): 23~32
    78 S. D. Kaminaris, T. D. Tsoutsos, D. Agoris, A. V. Machias Assessing renewables-to-electricity systems: a fuzzy expert system model. 2006, 34(12): 1357~1366
    79 A.V. S. Rao, D. K. Pratihar. Fuzzy logic-based expert system to predict the results of finite element analysis. Knowledge-Based Systems. 2007, 20(1): 37~50
    80 F. Bobillo, M. Delgado, J. Gómez-Romero, E. López. A semantic fuzzy expert system for a fuzzy balanced scorecard. Expert Systems with Applications. 2009,36(1): 423~433
    81 N. Etik, N. Allahverdi, I. U. Sert, I. Saritas. Fuzzy expert system design for operating room air-condition control systems. Expert Systems with Applications. 2009, 36(6) : 9753~9758
    82 Y. Hayashi. A Fuzzy Neural Expert System with Automated Extraction of Fuzzy If-Then Rules from a Trained Neural Network. Proceedings of First International Symposium on Uncertainty Modeling and Analysis. 1990, (8): 489~494
    83 Y. Hayashi. A Neural Expert System Using Fuzzy Teaching Input. 1992 IEEE International Conference on Fuzzy Systems - FUZZY-IEEE. 1992, Tokyo: 485~ 491
    84 A. Chohra, A. Farah, M. Belloucil. Neuro-fuzzy Expert System E-S-CO-V for the Obstacle Avoidance of Intelligent Autonomous Vehicles (IAV). In Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems. 1997, 3(3): 1706~1713
    85 M. E. Yahia, R. Mahmod, N. Sulaiman et al. Rough Neural Expert Systems. In Proceeding of the 2000 ELSEVIER of Expert Systems with Application. 2000, 18(2): 87~99
    86 M. Mohandes, R. E. Bogner, A. Bouzerdoum, K. J. Pope. A Neural Network Approach towards Multiradar Track Fusion. Proceedings of the 1996 IEEE International Conference on Neural Networks, ICNN. Part 1 (of 4). 1996, Washington: 1616~1621
    87 M. Mohandes, R. E. Bogner, A. Bouzerdoum. Hierarchical Clustering for OTHR Track Fusion. Proceedings of the 1996 1st Austalian Data Fusion Symposium. 1996, Adelaide: 90~93
    88 C. Helleur, M. Mathews, N. Kashyap, J. Rafuse.“Track-to-track fusion by a Human Operator for Maritime Domain Awareness”, Proc. 10th Annual Conf. Information Fusion. 2007, Quebec: 1~8
    89孙仲康,周一宇,何黎星.单多基地有源无源定位技术.国防工业出版社, 1996: 132~180
    90 HIS. Hibrid Intellegent Systems. Http://wikipedia.org/wiki/Hybrid_intelligent_ system. 2007,1
    91 IJHIS. International Journal of Hybrid Intelligent Systems. Http://ijhis. hybridsystem.com. 2007,1
    92 S. J. Ovaska, A. Kamiya, Y. Q. Chen. Fusion of soft computing and hard computing: computational structures and characteristic features. IEEE Transactions on Systems, Man and Cybermetics, Part C. 2006, 36(3): 439~448
    93 W. M. Morris. A Neural netwok for structural re-analysis. Computers structures. 1999, 72(6): 687~698
    94程伟良.广义专家系统.北京理工大学出版社. 2005: 14~28
    95铁男,张航,冯兆冰等.一种新型神经模糊系统及其通用逼近性.大庆石油学院学报. 2003, 27(3): 44~48
    96王立新.自适应模糊系统与控制-设计与稳定性分析.国防工业出版社. 1995: 12~27
    97 L. X. Wang, J. M. Mendel. Fuzzy Basis Functions, Universal Approximation, and Orthogonal Least Squares Learning. IEEE Trans on Neural Networks. 1992, 3(5): 807~817
    98 J. L. Castrl. Fuzzy Logic Controllers are Universal Approximates. IEEE Trans on Systems Man and Cybernetics. 1995, 25(4): 629~635
    99权太范.信息融合神经网络-模糊推理理论与应用.国防工业出版社. 2002: 112~122
    100肖秀春,张雨浓,姜孝华.基函数神经网络逼近能力探讨及全局收敛性分析.现代计算机. 2008, (303): 28~33
    101 W. Ehud. Optimal Source Localization and Tracking from Passive Array Measurements. In Proceeding of IEEE Transactions on Acoustics, Speech, and Signal Processing. 1982: 69~76
    102董志荣.多目标密集环境下航迹处理问题及集合论描述法.火力与指挥控制. 1981, (3): 1~21
    103董志荣.多目标密集环境下航迹处理问题及集合论描述法(续)上.火力与指挥控制. 1987, (1):1~11
    104董志荣.多目标密集环境下航迹处理问题及集合论描述法(续)下.火力与指挥控制. 1987, (2): 8~21
    105 A Farina, F A Studer. Radar Data Processing. Research Studies Press LTD. 1985: Vol. I~II
    106何友,修建娟,张晶炜,关欣等.雷达数据处理及应用.电子工业出版社. 2006: 83~87
    107赵光,权太范.一种多假设波门航迹起始算法.中国电子学会第九届青年学术年会会议论文. 2003,北京: 531~535
    108董志荣.论航迹起始方法.情报指挥控制系统与仿真技术. 1999, (2): 1~7
    109 A. Farina, S. Pardini. Multi-radar Tracking System Using Radial Velocity Measurement. IEEE Transactions on AES. 1979, 15(3): 555~562
    110 Y. Bar-Shalom, T. E. Fortmann. Tracking and Data Association. Academic press. 1988: 278~342
    111唐劲松,何友等.多雷达系统及其数据处理.海军航空工程学院学报. 1992, (4): 12~21
    112何友.多目标多传感器综合算法研究.海军工程大学硕士论文. 1988: 28~47
    113 R. O. Duda, P. E. Hart. Use of Hough Transformation to Detect Lines and Curves in Pitures. 135 Communication of the ACM. 1972, (1): 11~15
    114 J. Sklansky. On the Hough Technique for Curve Detection. IEEE transactions on Computer. 2004, 27(10): 923~926
    115 H. L. Kennedy. Comparison of MHT and PDA track initiation performance. Proceedings of the 2008 International Conference on Radar, Radar 2008. 2008, Australia: 508~512
    116 J. Chen, H. Leung, T. Lo. A Modified Probabilistic Data Association Filter in Real Clutter Environments. IEEE Transactions on AES, 1996, 32: 300~314
    117 H. Leung, Z. Hu, M. Blanchette. Evalution of Multiple Target Track Initiation techniques in Real Radar Tracking Enviroments. IEE Radar, Sonar and Navigation. 1996, 143(43): 246~254
    118王健.高频地波雷达舰船目标跟踪关键技术研究.哈尔滨工业大学博士论文. 2008: 32~47
    119 L. Zedel, Alex E. Hay. A Three-Component Bistatic Coherent Doppler Velocity Profiler: Error Sensitivity and System Accuracy. IEEE Journal of Oceanic Engineering. 2002, 27(3): 717~726
    120 T. Elfouhaily, D. R. Thompson, L. Linstrom. Delay-Doppler Analysis of Bistatically Reflected Signals from the Ocean Surface: Theory and Application. IEEE Transactions on Geoscience and Remote Sensing. 2002, 40(3): 560~574
    121孙仲康.单基地有源无源定位技术.国防工业出版社. 1996: 71~109
    122陈永光.双基地系统中基于信息融合的关联技术.国防科技大学学报. 1997, 19(6): 76~80
    123 M. W. Y. Poon, R. H. Khan, S. L. Ngoc. Singular Value Decomposition (SVD) Based Method for Suppressing Ocean Clutter in High Frequency Radar. IEEE Trans on signal processing. 1993, 41(3): 1421~1425
    124 Wang Jian. High resolution methods for small target detection and estimation in high frequency radar. Ph.D. dissertation. University of Victoria, Canada. 2004: 1~20
    125李雷.高频雷达自适应抗干扰技术研究.哈尔滨工业大学博士论文. 2007: 15~38
    126 J. Wang, R. Dizaji, A. M. Ponsford. Analysis of Clutter Distribution in Bistatic High Frequency Surface Wave Radar. Canadian Conference on Electrical and Computer Engineering. 2004, Ottawa: 1301~1304
    127 L. A. Zadeh. Outline of a New Approach to Analysis of Complex System and Decision Processes. IEEE Transactions on Systems, Man and Cybernetics, 1973, 3(1): 28~44
    128 L. A. Zadeh. Fuzzy Sets. Information and Control. 1965,(8): 338~353
    129何友,修建娟,张晶炜,关欣等.雷达数据处理及应用.电子工业出版社. 2006: 116~119
    130 D. B. Reid. An Algorithm for Tracking Multiple Targets. IEEE Trans. On AC. 1979, 24(6): 843~854
    131 S. Mori, C. Y. Chong, R. P. Wishner, et al. Multitarget Multisensor Tracking problems: A General Bayesian Approach. Proc.1983 American Control conference. 1983, San Francisco: 47~53
    132 S. Challa, G. W. Pulford. Joint Target Tracking and Classification Using Radar and ESM Sensors. IEEE Transactions on Aerospace and Electronic Systems. 2001, 37(3): 1039~1055
    133邓志东,孙增新.一种对成片连续野值不敏感的鲁棒Kalman滤波.清华大学学报. 1994, (1): 24~29
    134 D. S.Alberts, J. Moffat. Network Centric Warfare and Complexity Theory.郁军,贲可荣.电子工业出版社. 2004: 101~110
    135 Y. Bar-Shalom, E. Tse. Tracking in a Cluttered Environment with Probabilistic Data Association. Automatic. 1975, (11): 451~460
    136 A. Farina, F. A. Studer. Radar Data Processing. Vol. 1, Letchworth, Hertfordshire, England: Research Studies Press. 1985: 388~451
    137 Y. Bar-Shalom, D. B. William, Multitarget-Multisensor Tracking. Application and Advances, MA, Artech House. 2000: 207~345
    138张洁,林家骏,陈小伟.跟踪门对多目标跟踪系统性能的影响.华东理工大学学报(自然科学版). 2006, 32(12): 1468~1471
    139徐洪奎.近程多基地雷达探测系统中快速跟踪方法研究.中国科学技术大学博士论文. 2008: 23~37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700