机敏复合材料中TiNi形状记忆合金约束态相变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Study of Constrained Phase Transformation of TiNi Shape Memory Alloy in Smart Composite
  • 作者:李岩
  • 论文级别:博士
  • 学科专业名称:材料学
  • 学位年度:2001
  • 导师:杨大智
  • 学科代码:080502
  • 学位授予单位:大连理工大学
  • 论文提交日期:2001-01-05
摘要
智能材料的概念产生与二十世纪八十年代后期。形状记忆合金机敏复合材料一直是智能材料中的研究热点与重点之一,而形状记忆合金在基体材料约束态下相变行为的研究是应用与发展这类机敏材料的关键基础性问题。但是,这方面的研究仍然缺乏。
     本论文基于形状记忆合金机敏复合材料的应用特点,以近等原子比TiNi形状记忆合金为研究对象,采用电阻法,DSC,电阻应变仪,SEM和TEM等手段,对TiNi记忆合金在恒应变约束下的相变和力学行为及TiNi合金丝在水泥基体约束下的相变进行了系统研究,主要结论如下:
     采用DSC方法和回复应变的测量,对小预应变(<10%)TiNi形状记忆合金的相变及不完全相变行为进行了研究。结果表明,逆相变开始温度随预应变增加而增大,其原因是预应变造成马氏体再取向使弹性能降低,引起的塑性变形和晶粒间的约束提高了耗散能。晶粒的塑性变形及位错的引入是第二次逆相变开始温度低于未预应变时逆相变开始温度的主要原因。经不完全相变的样品由自适应马氏体和取向马氏体组成,第二次逆相变过程中,两者先后发生相变,其中自适应马氏体逆相变温度降低,取向马氏体逆相变需要过热。
     研究了预应变TiNi形状记忆合金的回复力及驱动特性。发现经973K(再结晶温度以上)退火以后的TiNi合金丝,回复力与温度变化成正比,即加热时上升,冷却时下降。回复力与预应变有关,当预应变为8%左右时可以得到最大回复力,预应变再增大,最大回复力反而减小:材料参数(do/dT)也随预应变增加而增大。在第二次加热时的回复力与第一次的变化路径明显不同。在约束态加热温度,第二次加热时的回复力比第一次的低。经723K热处理的TiNi合金丝在加热时的回复力,出现下降现象,可能与拔丝过程中形成的特殊取向马氏体有关。
     采用电阻法,DSC和TEM等手段研究了恒应变约束下预应变TiNi记忆合金的相变行为。实验结果表明,回复力的作用及其导致的取向马氏体再变形的发生,是约束态逆相变温度区间比自由态相变区间显著拓宽的两个原因;在约束态正相变过程中,由于回复力的诱导而生成应力诱发马氏体:正相变过程中的R相变与取向马氏体再变形过程中引入的位错有关。经不完全相变后的第二次逆相变中,应力诱发马氏体和剩余取向马氏体先后发生相变,并可以输出两
    
     QZ
    段回复力(约束态)或两段回复应变(自由态人
     制备了界面结合状况良好的TWi合金丝/水泥复合材料,研究了Tei合金
    在水泥基体约柬下的相变行为。实验结果表明,当记忆合金丝的预应变较大时,
    由于较大的回复力而导致复合材料的破坏。小预应变TINi记忆合金在水泥基
    约束下的逆相变是取向马氏体再变形过程。在复合材料DSC加热曲线上吸热峰
    所在的逆相变温度区间内,马氏体逆相变的平均速率较大;在复合材料DSC加
    热曲线吸热峰的结束温度以上,取向马氏体的逆相变仍在进行,但平均相变速
    率较小。
The concept of intelligent materials came into being in the late 1980's. Shape memory alloy smart composites have been one of the most absorbable things hi the diversity of intelligent materials. Phase transformation behaviors of shape memory alloy under constraint of matrix materials has been a crucial issue for application of the shape memory alloy smart composites. However, systemic research is absent in this field.
    Based on the practical feature of shape memory alloy smart composites, phase transformations and associated thermomechanical behaviors of prestrained near-equiatomic TiNi shape memory alloy under a constant strain constraint and TiNi/cement composite were explored using electric resistance measurement, DSC, resistance strain gauge, SEM, TEM etc., in this dissertation. And the major conclusions are listed as follows.
    Phase transformation and incomplete phase transformation behaviors of TiNi shape memory alloy within small prestrain level (<10%) were studied by DSC and recovery strain measurements. The results show that the reverse martensitic transformation start temperature increases with the increase of prestrain, which may be due to the elastic energy released by prestrain, and the energy dissipated increased by plastic deformation and the constrain effects of grains. The main reason that the start temperature of the second reverse transformation is lower than that of the first one is due to the plastic deformation of the grains and induced dislocations. After an incomplete reverse transformation, the prestrained TiNi alloy sample is composed of the self-accommodation martensite and the remained oriented martensite. In the following reverse transformation, the start temperature of the former is lowered and the start temperature of the latter is raised.
    The recovery stress and actuating characteristic were studied. To the TiNi alloy heat-treated at 973K, the recovery stress is a monotonous rise function of temperature and reaches its maximum at prestrain 8%. The parameter da/dT increases with increasing prestrain level. The route of the recovery stress upon the second heating is obviously different from that upon the first heating, but the amounts of the recovery stress is similar to each other at the first stop heating temperature. To the TiNi alloy heat-treated at 723 K, a decrease stage appears in the recovery-temperature curve, which
    
    
    may due to the particular oriented martensites formed during the wire drawing process.
    Phase transformation behaviors of TiNi shape memory alloy under constraint of a constant strain were explored by use of resistance measurements, DSC and TEM. The results indicated that the expansion of the temperature span of the reverse martensite transformation under constraint comparing with that in free state is due to two contributions, the effect of recovery stress and the oriented martensite re-deformation process induced by recovery stress. In the forward transformation, the stress-induced martensite is induced by the recovery stress and the appeared R phase transformation is associated with induced dislocations hi the oriented martensite re-deformation process. After an incomplete constrained transformation cycle, a two-stage recovery stress in constrained state or a two-stage recovery strain hi free state will emerge in the subsequent heating as the result of the reverse transformation of the stress-induced martensite and the remained oriented martensite to parent, respectively.
    A TiNi fiber/ cement composite with a perfect interfacial bonding was fabricated and its phase transformation behaviors were explored. The results show that if the prestrain level exceeds a certain amount, the composite will rupture due to the large recovery stress upon heating. The reverse transformation of the TiNi alloy fiber under the constraint of cement matrix is the oriented martensite re-deformation process. In the temperature span of the endothermic peak of the DSC heating curve, the average transformation rate is relatively large. The reverse transformation of oriented marte
引文
1. Gandhi M V, Thompson B S, "Smart Materials and Structures", Chapman & Hall, London, 1992
    2. Rogers C A, Intelligent materials, Scientific American, Sep., 1995, pp.122-124
    3. Rogers C. A., et al. Rebuilding and enhancing the nation's infrastructure: a role for intelligent material systems and structures, J. Intell. Mater. Sys. Struc., 6, 1995, pp.4-12
    4. Davidson R., Smart composites: where are they going?, Materials and Design, 13(1992)pp.87-91
    5. Vincent J F V, Smart by nature, smart by nature, Smart Mater. Struct., 9(2000) pp.255-259
    6. Spillman Jr. W B., Sirkis J S and Gardiner P T, Smart materials and structures: what are they? Smart Mater. Struct., 5(1996) pp.247-254
    7. Robertshaw H H, Control approaches for intelligent material systems-what can we learn from nature?, Proc. of 2nd Inter. Conf. of Intell. Mater. ICIM'94, Edited by Rogers C. A., et al., pp. 63-70
    8. Shahinpoor M., Intelligent materials and structures revisited, SPIE. 2716,1996, pp.238-250
    9. Mucklich F and Janocha H., Smart materials-the "IQ" of materials in systems, Z. Metallkd., 87(1996) pp.357-364
    10. Newnham R E, Molecular mechanisms in smart materials, MRS Bulletin, 22(1997) pp.20-34
    11. Tani J, Takagi T and Qiu J H, Intelligent material systems: application of functional materials, Appl. Mech. Rev., 51,1998, pp.505-521
    12.杨大智,智能材料与智能系统—21世纪新材料丛书,杨大智主编,天津大学出版社,2000年
    13.陶宝祺等 编著,智能材料结构,国防工业出版社,北京,1997
    14.姚康德,徐美萱等,智能材料—21世纪的新材料,天津大学出版社,天津,1996
    15.杨大智,石萍,陈非遐,耗散结构与材料智能化,智能材料与集成系统发展战略文集,杨大智主编,2000年4月,pp.27-34
    16.石平,Ti_(50)Ni_(25)Cu_(25)形状记忆合金及其颗粒/铝基智能复合材料的研究,博士学位论文,大连理工大学,1998,p.1
    
    
    17.周本濂,材料仿生研究的一些新进展,98’中国材料研讨会大会特邀报告,1998
    18.周本濂,冯汉保,张弗天,师昌绪,复合材料的仿生探索,自然科学进展——国家重点实验室通讯,4(1994) pp.714-725
    19.向春霆 范镜泓,自然复合材料的强韧化机理和仿生复合材料的研究,力学进展,24(1994) pp.220-231
    20.崔福斋,冯庆玲 编著,生物材料学,科学出版社,北京,1996
    21.周本濂,复合材料-21世纪新材料丛书,吴人洁主编,天津大学出版社,2000年,p.224-261
    22.赵晓鹏,周本濂,罗春荣,王景华,刘建伟,具有自修复行为的智能材料模型,材料研究学报,10(1996) pp.101-104
    23.陈亚丽,黄勇,郝赫男 等,仿珍珠层氮化硅陶瓷的设计与制备,96’中国材料研讨会论文集,Ⅲ-1卷,北京:化学工业出版社,1997,p.252
    24.杨大智,智能材料与结构的发展大事记,智能材料与集成系统发展战略文,杨大智主编,2000年4月,pp.41-46
    25.吴人洁,智能材料与集成系统发展战略文集,杨大智主编,2000年4月,pp.22-26
    26.吴人洁,复合材料—21世纪新材料丛书,吴人洁主编,天津大学出版社,2000年,p.145-196
    27. Newnham R E, Skinner D P and Cross L E, Connectivity and piezoelectricpyroelectric composites, Mat. Res. Bull., 13(1978) pp.525-536
    28. Yang D Z, Shape memory alloy and smart hybrid composites—advanced materials for the 21st Century, Materials and Design, 21(2000) pp.503-505
    29. Wei Z G, Sandstrm R, Miyazaki S, Shape memory materials and hybrid composite for smart systems, PartⅡ shape-memory hybrid composites, J. Mater. Sci., 33(1998)3763-3783
    30.任勇生,SMA智能复合材料结构研究进展,复合材料学报,16(1999)pp.1-7
    31.崔立山,陈飞遐,杨大智,金属基形状记忆合金复合智能材料研究中的几个关键问题,高技术通讯,8(1994) pp.43-44
    32.杨庆生,智能复合材料的热力学特性,固体力学学报,17(1996)pp.339-342
    33.陶宝祺,粱大开,熊克,袁慎芳,形状记忆合金增强智能复合材料结构的自诊断、自修复功能的研究,航空学报,19(1998) pp.250-252
    34. C. M. Jackson, H. J. Wangner and R. J. Wasilewiski, 55Nitinol-The alloy with a memory: Its physical metallurgy, properties and applications, NASA-SP-5110, (1972) p.91
    
    
    35. T. W. Duerig, K. N. Melton, D. Stockel and C. M. Wayman, Engineering Aspects of Shape Memory Alloys, Butterworth-Heineman Press, London (1990)
    36. K Otsuka and C M Wayman, Shape Memory, Alloy, Cambridge University Press, (1998)
    37.杨大智,张连生,王凤庭 编著,形状记忆合金,大连工学院出版社,大连,1988
    38.舟久保,熙康,形状记忆合金,机械工业出版社,北京,1992
    39.杨杰,吴月华 编著,形状记忆合金及其应用,中国科学技术大学出版社,合肥,1993
    40. Rogers C A, Novel design concept utilizing shape memory alloy reinforced composite, Proc. of 3rd the American Soc. of Composites, Lancaster Technomic, 1988, pp.719-731
    41. Baz A, Imam K, and McCoy J, Active vibration control of flexible beams using shape memory actuators, J. Sound and Vibration 140(1990): pp.437-456
    42. Baz A, Poh S and Gilheany J, A multi-mode distributed sensor for vibrating beams, J. Sound and Vibration, 165(1993) pp.481-495
    43. Baz A, Poh S, Ro J and Gilheany J, Control of the natural frequencies of Nitinolreinforced composite beam, J. Sound and Vibration, 185(1995):171-185
    44. Epps J and Chandra R, Shape memory alloy actuation for active tuning of composite beams, Smart Mater Struct., 6(1997) pp.251-264
    45. Rogers C A, Active vibration and structural acoustic control of shape memory alloy hybrid composites: Experimental results, J. Acoustic. Soc. Am., 88(1990)2803-2810
    46. Chandra R, Active strain energy tuning of composite beams using shape memory alloy actuators, 1993, SPIE 1917, pp.267-284
    47.王征 吴建生 董伟建 孙国钧,形状记忆合金丝增强复合材料的热机特性—智能复合材料研究,复合材料学报,14(1997) pp.52-56
    48.王吉军,崔立山,杨大智,NiTi记忆合金的振动主动控制研究,大连理工大学学报,37(1997) pp.485-489
    49. Choi S and Lee J J, The shape control of a composite beam with embedded shape memory alloy wire actuators, Smart Mater Struct., 7,(1998) pp.759-770
    50. Hanagud S V and Roglin R L, Adaptive Airfoils, First workshop on smart structures, University of Texas-Alington, September, 1993
    
    
    51. Barrett R and Gross R S, Super active shape-memory alloy composite, Smart Mater Sturct, 5(1996) pp.255-260
    52. Hebda D A, Whitlock M E, and Ditman J B and White S R, Manufacturing of adaptive graphite/epoxy structures with embedded Nitinol wires, J. Intell Mater Syst and Struct., 6(1995) pp.220-228
    53. Umezaki E., Improvement in separation of SMA from matrix in SMA embedded smart composite, Mater. Sci. Eng. A285 (2000) pp.363-369
    54. Paine J S N, and Rogers C A, The response of SMA hybrid composite materials to low velocity impact, J. Intell. Mater Syst. and Struct., 5(1994)530
    55. Paine J S N, and Rogers C A, High velocity impact response of composite with surface bonded Nitinol SMA hybrid layers, AIAA, 1995, p.1409
    56. Birman V, Chandrashekhara K, and Sain S, An approach to optimization of shape memory alloy hybrid composite plates subjected to low-velocity impact, Composite: Part B, 27B (1996) pp.439-446
    57. Furuya Y, Sasaki A and Taya M, Enhanced mechanical properties of TiNi shape memory fiber/Al matrix composite, Mater. Trans. JIM., 34(1993) pp.224-227
    58. Hamada K, Lee J H, Miziuuchi K, et al., Thermomechanical behavior of TiNi shape memory, Metallugical and Materials Transactions A 1998, 29A, pp.1127-1135
    59.陶宝祺等 编著,智能材料结构,国防工业出版社,北京,1997,pp.300-308
    60. Furuya Y, Design and material evaluation of shape memory composite, J Intell Mater. Syst. and Struct., 7,(1996), pp.321-330
    61.杜彦良 聂景旭,主动探测裂纹和控制裂纹扩展的智能材料结构,力学进展,24(1994) pp.499-510
    62.张学仁,聂景旭,杜彦良,SMA智能复合构件控制裂纹的数值与实验研究,航空动力学报,13(1998) pp.357-361
    63.张学仁,聂景旭,杜彦良,主动控制裂纹智能复合构件的的有限元分析,复合材料学报,16(1999) PP.147-151
    64. Armstrong W. D. and Kino H., Martensite transformation in a TiNi fiber reinforced 6061 aluminum matrix composite, J. of Intell. Mater. Syst. & Struct, 6(1995) pp.809-816
    65. Armstrong W D, and Lorentzen T, Fiber phase transformation and matrix plastic flow in a room temperature tensile strained NiTi shape memory alloy fiber reinforced 6082 aluminum matrix composite, Scripta Materialia, 36(1997) pp.1037-1043
    
    
    66. Armstrong W D, Lorentzen T, Brndsted P and Larson P H, An experimental and modeling investigation of the external strain, internal stress and fiber phase transformation behavior of a NiTi actuated aluminum metal matrix composite, Acta Mater., 46(1998) pp. 3455-3466
    67. Zheng Y J, Cui L S, Zhu D et al., The constrained phase transformation of prestrained TiNi fibers embedded in metal matrix smart composite, Mater. Lett., 2000(43), pp.91-96
    68. Cui L S, Zheng Y J, Zhu D et al., The effects of thermal cycling on the reverse martensitic transformation of prestrained TiNi alloy fibers embedded in A1 matrix, J. Mater. Sci. Lea., 19(2000), pp.1115-1117
    69.陈斌 陈非瑕 崔立山 杨大智 朱英臣,NiTi形状记忆合金表面改性绝缘膜的研究,材料研究学报,1994,8(4),pp.319-321
    70. Chen P W and Chung D D L, Carbon fiber reinforced concrete as an intrinsically smart concrete for damage assessment during static and dynamic loading, ACI Material Journal, 93(1996) pp.341-350
    71.毛起疖,赵斌元,沈大荣,李卓球,水泥基碳纤维复合材料压敏性的研究,复合材料学报,13(1996) pp.8-11
    72.王秀峰,王永兰,金志浩,碳纤维增强水泥复合材料的电导性能及其应用,复合材料学报,15(1998) pp.75-80
    73. K. Wilde, Y. Zheng, P. Gardoni and Y. Fujino, Experimental and analytical study on shape memory alloy damper, SPIE Vol.3325,1998
    74. Maji A K, Member, ASCE, et al., Smart prestressing with shape-memory alloy, J. Engi. Mech., 124,1998, pp.1121-1128
    75.何思龙,黄先应,陈孟诗等,形状记忆合金增强钢筋混凝土自诊断与自适应智能结构系统的研究,96中国材料研讨会论文集,化学工业出版社,1997.622-626
    76.刘秉京 编著,混凝土技术,人民交通出版社,北京,1998,p.16
    77.庞强特 主编,混凝土制品工艺学,武汉工业大学出版社,武汉,1993,p.180
    78. T Itsukaichi, S Ohura, J G Cabanas-moreno et al., Mechanically alloyed NiTi and its transformation by thermal treatment, J Mater. Sci., 29(1994) pp.1481-1486
    79. S Q Chen, Y C Zhou and Y Y Li, Synthesis and characterization of nanocrystalline Ni-Ti and Ni-Cr powders by mechanical alloying, J Mater. Sci. Technol., 13(1997) pp.86-90
    
    
    80. L L Ye, Z G Liu, K Raviprasad, et al., Consolidation of MA amorphous NiTi powder by spark plasma sintering, Mater. Sci. Eng. A241 (1998) pp.290-293
    81. Wei Z.G.; Cui L.S.; Yang D.Z.; Tang C.Y and Lee W.B., Preparation of a smart composite material with TiNiCu shape memory particulates in an aluminum matrix, Materials Letters, 32 (1997) pp. 313-317
    82. Yamada Y, Taya M, and Watanabe R, Strengthening of Metal Matrix Composite by shape memory effect, Mater Trans JIM, 34 (1993) 254-
    83. 石萍 崔立山 陈非瑕 杨大智,Ti50Ni25Cu25颗粒增强铝基复合材料的相变及界面反应,96'中国材料研讨会论文集,I.功能材料,化学工业出版社, pp.586-590
    84. G Wang, P Shi, M Qi, J. J. Xu, F X Chen and D Z. Yang, Dry sliding wear of a Ti50Ni25Cu25 particulate-reinforced aluminum matrix composite, Metall. Mater. Trans. A 1998, 29A: 1741-1747
    85. Silvain J F, Chazelas J, Lahaye M and Trombert S, The use of shape memory alloy NiTi particles in SnPbAg matrix: interfacial analysis and mechanical characterisation, Mater. Sic. Eng. A273-275 (1999) pp.818-823
    86. Busch J D and Johnson A D, Shape memory properties in Ni-Ti sputter-deposited film, J. Appl. Phy. 68 (1990) pp.243-246
    87. Ishida A, Taki A and Miyazaki S, Shape memory alloy thin film of TiNi formed by sputtering, Thin Solid Film, 228, 1993, 210-214
    88. Miyazaki S, Hashinaga T.and Ishida A, Martensitic transformations in sputter-deposited TiNiCu shape memory alloy thin films, Thin Solid Film, 281-282 (1996) pp.364-367
    89. .Makino E, Uenoyama M and Shibata T, Flash evaporation of TiNi shape memory thin film for microactuators, Sensors and Actuators A 71 (1998) pp. 187-192
    90. Miyazaki S and Ishida A, Shape memory characteristics of sputtering-deposited TiNi thin films, Mater. Trans. JIM, 35 (1994) pp. 14-19
    91. Ishida A, Taki A, Sato M and Miyazak S, Stress-strain curves of sputtered thin films of TiNi, ibid., 281-282 (1996) pp.337-339
    92. Mercado P G, and Jardine A P, The film multilayers of ferroelastic TiNi-ferroelectric PZT: fabrication and characteristic, Proc. of the 2nd International Conference on Intelligent Materials, ICIM'94, Edit by Rogers C. A. and Wallage G G, pp.665-676
    93. Liu X .P., Meng C G., Yang D Z and Chen F.X., New synthesis method to improve the properties of PbTiO3/TiNi composite film, Materials and Design 21(2000) pp.517-519
    
    
    94. Su Q, Riba S, Roytburd A and Wuttig M, Principles and components of hybrid actuators, Proc. of the 2nd International Conference on Intelligent Materials, ICIM'94, Edit by Rogers C. A. and Wallage G G, pp.1185-1193
    95. Su Q M, Kim T, Zheng Y and Wuttig M, Thin film composite actuators, SPIE vol.2441 (1995) pp.179-184
    96. Falk F, Pseudoelastic stress-strain curves polycrystalline shape memory alloys calculated from single crystal data, Int J Eng. Sci., 27 (1989) 277-284
    97. K. Tanaka, A thermomechanical sketch of shape memory effect: one dimensional tensile behavior, Res. Mechanica, 18 (1986) pp.251-263
    98. Body J G and Lagoudas D. C., Thermomechanical response of shape memory composite, 5 (1994) 333-346
    99. Bhattacharyya A and Lagoudas D C, A stochastic thermodynamic model for the gradual thermal transformation of SMA polycrystals, Smart Mater Struct., 6, (1997) pp.235-250
    100. Graesser E J and Cozzarelli F A, Shape memory alloys as new materials for aseismic isolation, ASCE J Eng. Mech. 117 (1991) pp.2590-2608
    101. Graesser E J and Cozzarelli F A, A proposed three-dimensional constitutive model for shape memory alloys, J. Intell. Mater. Sys t. & Struct, 5 (1994) pp. 78-89
    102. Liang C. and Rogers C. A., One-dimentional thermomechanical relations for shape memory materials, J. of Intell. Mater. Syst. & Struct, 1, (1990) ,pp.207-234
    103. Brinson L C, One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable, J. of Intell. Mater. Syst. & Struct, 4 (1993) pp.229-242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700