水泥基压电复合材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥基压电复合材料可有效解决传统智能材料与混凝土母体结构材料之
    间的相容性问题,它不但具有感知功能,而且具有驱动功能,其制备工艺简单,
    造价低,非常适合于土木工程领域中智能材料的发展需要,因此,研究与开发
    该类压电复合材料对于推动各类土木工程结构向智能化方向发展有着广泛的
    工程应用意义和学术价值。
     本文采用压制成型法和切割-填充法分别制备了0-3型和1-3型水泥基压电
    复合材料,重点研究了其压电性能和介电性能,并初步进行了水泥基压电复合
    材料的应用研究。
     研究了极化条件对0-3型水泥基压电复合材料压电性能的影响,结果表
    明,对硫铝酸盐水泥基压电复合材料来说,最佳极化工艺参数为:极化电场强
    度为4kV/mm;极化时间为30min;极化温度应在80~C~100℃之间。
     系统研究了压电陶瓷含量、粒度和水泥基体对0-3型水泥基压电复合材料
    压电性能和介电性能的影响规律,结果表明,随着PLN含量的增加,压电应
    变常数d_33和压电电压常数g_33、介电常数ε_r和介电损耗tgδ、机电耦合系数K_p
    和K_t、剩余极化强度P_r和矫顽电场强度E_c均增大,而机械品质因数Q_m则在
    19~50之间波动。只有当PLN含量超过70%时,水泥基压电复合材料才显示
    出较好的压电性能;随着PLN粒度的增大,压电常数d_33和g_33、机电耦合系
    数K_p和K_t与剩余极化强度P_r和矫顽电场强度E_c均随之增大。当PLN粒度大
    于1001μm时,d_33和g_33值几乎不受PLN粒度的影响;以硫铝酸盐水泥为基体
    的压电复合材料的压电性能明显高于以普通硅酸盐水泥为基体的压电复合材
    料的压电性能,而介电性能则恰恰相反,这主要是由于硫铝酸盐水泥无论是早
    期的力学性能还是后期的力学性能均优于普通硅酸盐水泥的,与陶瓷颗粒的结
    合更为致密的缘故。在PLN陶瓷含量相同的条件下,前者的K_p和K_t值随PLN
    含量的增加均呈增大趋势,而后者的K_p和K_t值则呈减少趋势,且波动较大;
    随着频率的增大,两种不同基体的压电复合材料的极化机制基本相同,即在低
    频段,均以界面极化为主,高频时呈现良好的介电频率稳定性。
     介频谱和介温谱分析结果表明,在40~100kHz频率范围内,0-3型水泥基
    压电复合材料的介电常数均随频率的增大而迅速降低,这主要受水泥基体内的
    各种极化和复合材料中的界面极化所影响。高频时,介电常数变化较小,损耗
    较低,表明水泥基压电复合材料的高频稳定性较好;在-40~C~150℃之间,水
Cement-based piezoelectric composites can overcome the deficiency which the traditional piezoelectric materials have bad compatibility with civil engineering's main structural material—concrete. It not only has sensing function, but also actuating property, which is very suitable for application in civil engineering fields. Therefore, research and development of the cement-based piezoelectric composite play an extremely important role in advancing all kinds of civil engineering structure to be intelligent.0-3 cement-based piezoelectric composites and 1-3 cement-based piezoelectric composites were fabricated by compressing technique and cut-filling process, respectively. The piezoelectric properties and dielectric properties of two kinds of composites were studied in detail, and its applications were investigated.The dependences of piezoelectric properties of composites on poling conditions were studied. The results show that for the 0-3 sulphoaluminate cement-based piezoelectric composites, the optimum poling field E, poling time t and poling temperature Tare 4.0kV/mm, 30min and 80℃~100℃, respectively.The influence of piezoelectric ceramic content, particle size and cement matrix on the 0-3 cement-based piezoelectric composites was researched in detail. The results show that with increasing the PLN content, piezoelectric strain factor d_(33), piezoelectric voltage factor g33, dielectric constant ε_r and dielectric loss tgδ, electromechanical coupling coefficient K_p and K_t, remanent polarization P_r and coercive field E_c increase, but mechanical quality Q_m fluctuate between 19 and 50. Only when PLN content is larger than 70%, can the cement-based piezoelectric composites show good piezoelectric properties. With increasing the PLN particle size, the d_(33), g33, K_p, K_t, P_r and E_c all increase. When PLN particle size is larger than 100 urn, the value of d_(33) and g33 is nearly independent of the PLN particle size. The piezoelectric properties of the composites made from sulphoaluminate cement are superior than that of the piezoelectric composites made from Portland cement, which is just contrary to the dielectric properties. This is attributed to that the sulphoaluminate cement has better early and late mechanical properties and better combination with ceramic particles than Portland cement. Under the same
    condition, for the former, K? and Kt increase with increasing PLN ceramic content, but for the latter, Kp and Kt decrease and fluctuate sharply. With increase of the frequency, the polarization mechanism of two different matrix composites is nearly the same, that is, at the low frequency, the interface polarization is dominant. At the high frequency, it shows good dielectric-frequency stability.From relation between dielectric constant and frequency, temperature, it is obtained that the dielectric constant of 0-3 cement-based piezoelectric composites decreases sharply with the frequency increasing, which is mainly due to various polarization in the cement matrix and interface polarization in the composite. At high frequency, the dielectric constant and dielectric loss change slightly, which means that the cement-based piezoelectric composites have good high frequency stability. In the temperature range between -40°Cand 150°C, the 0-3 cement-based piezoelectric composites shows excellent dielectric- temperature stability.Influences of cement hydration ages and humidity on the piezoelectric properties and dielectric properties of the 0-3 cement-based piezoelectric composites were studied. The results indicate that the piezoelectric properties of the cement based piezoelectric composites are very different from that of the piezoelectric ceramics and polymer/ceramic piezoelectric composites. For the latter, the piezoelectric properties decrease with the prolonging of time, while that of the cement based piezoelectric composite are improved with increasing the cement hydration age. When the cement hydration age exceeds a certain value, J33 tended to be a constant. The value of t/33 increases slightly with increase of the environmental humidity below 60%, while sharply increases with increase of humidity above 60%. The effect of environmental humidity on dielectric constant of the composite is mainly ascribed to change of water absorbed. Increasing of water absorbed improve ionic mobility and polarizability in interface zone, which leads to the remarkable increase of composites dielectric constant. The contribution of water to the polarization is mainly at low frequency, and conductive loss is dominant in dielectric loss.With increasing volume fraction of PMN, the c/33, Kp, Kt, ex, Pr and Ec value of 1-3 cement-based piezoelectric composites increase, but g33 value reduces. Compared with g33 value of PMN, the #33 value of the composite is much bigger, which greatly improve sensing property of the composites. At lower and higher
    frequencies, the dielectric constant and dissipation factor change steadily, which exhibit good dielectric-frequency stability. The temperature has little effect on the dielectric constant in the temperature range between -30 °C and 150°C, which shows that 1-3 cement-based piezoelectric composite has good dielectric -temperature stability.The laws that the properties of the 1 -3 cement-based piezoelectric composite vary with ratio of width to thickness(w/t) of PMN ceramic rod were investigated. The results show that the J33, Kp, Ku Qm, er, tgS and acoustic impedance Z value of 1-3 cement-based piezoelectric composites decrease with increasing w/t of PMN ceramic rod, but the £33 value is nearly independent of w/t of PMN ceramic rod. When the volume fraction of PMN is 22.72%, the acoustic impedance Z value similar to that of the concrete can be obtained by adjusting w/t of PMN ceramic rod, which can effectively solve the mismatch problem of intelligent materials and concrete structure.According to the feature of cement-based piezoelectric composites, a date acquisition system suitable for the composites was designed, and the research of its application was carried out. The results show that 0-3 and 1-3 cement-based piezoelectric composites have good mechano-electric effect, that is, the voltage is produced in two kinds composites under compressive stress, which increases or decreases as the load increases or decrease. This indicates that cement-based piezoelectric composites are suitable for health monitoring of structures in the civil engineering.
引文
[1] 田莳.材料物理性能.北京:北京航空航天大学出版社,2001
    [2] 李远,秦自楷,周志刚.压电与铁电材料的测量.北京:科学出版社,1984
    [3] 王从曾,刘会亭.材料性能学.北京:北京工业大学出版社,2001
    [4] 张沛霖,张仲渊.压电测量.北京:国防工业出版社,1983
    [5] B Satish, K Sridevi, M S Vijaya. Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press technique.Journal of Physics D: Applied Physics, 2002, 35: 2048-2050
    [6] E Venkatragavaraj, B Satish, P R Vinod, M S Vijaya. Piezoelectric properties of ferroelectric PZT-polymer composites. Journal of Physics D: Applied Physics, 2001, 34: 487-492
    [7] H. L. W. Chan, Y. Chen, C. L. Choy. Study on PZT4/VF_2NF_3 Piezoelectric 0-3 composites. IEEE, 1995: 198-201.
    [8] K. H. Lam, H. L. W. Chan, C. L. Choy, E. Z. Luo, I. H. Wilsom. Studies of proton irradiated 0.9PMN-0.1PT/P(VDF-TrFE) 0-3 composites. IEEE, 2002:33-36
    [9] Newham R E, Skinner D P, Cross L E. Connectivity and piezoelectric-pyroelectric composites. Mat. Res. Bull., 1978(13): 525~536
    [10] 赵方鸣,项瑞阳,闻荻江.0-3型聚合物基压电复合材料的研究概况.武汉工业大学学报,1996,18(3):1-5
    [11] N. Jayasunders, B. V. Smith. Dielectric constant for binary piezoelectric 0-3 composites. J. Appl. Phys, 1993, 73(5): 2462-2466
    [12] H. Banno, K. Ogura. Dielectric and piezoelectric properties of a flexible composite consisting of polymer and mixed ceramic powder of PZT and PbTiO_3. Ferroelectrics, 1989, 95: 171-174
    [13] D. K. Das-gupta, M. J. Abdullah. Dielectric and pyroelectric properties of polymer/ceramic composites. Journal and Materials Science Letters, 1988, 7: 167-170
    [14] M. J. Haun, R. E. Newnham. An experimental and theoretical study of 1-3 and 1-3-0 piezoelectric PZT-polymer composites for hydrophone applications. Ferroeleetrics, 1986, 68: 123-139
    [15] Wallace Arden Smith, Bertram A. Auld. Modeling 1-3 composite piezoelectrics: thickness-mode oscillations. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1991, 38(1): 40-47
    [16] D. Robertson, G. Hayward, A. Gachagan. Lamb wave suppression in periodic 1-3 piezoelectric composite transducers. IEEE Ultrasonics Symposium, 2002: 1181-1184
    [17] Clyde G. Oaldey, R. D. Desing consideration for 1-3 composites used in transducers for medical ultrasonic imaging. IEEE, 1991: 233-236
    [18] 吴人洁.复合材料.天津:天津大学出版社,2000
    [19] Zongiin Li, Dong Zhang and Kcru Wu. Cement-Based 0-3 Piezoelectric Composites. Journal of American Ceramic Society, 2002, 85(2): 305-313
    [20] 张东,吴科如,李宗津.水泥基压电机敏复合材料的可行性分析和研究.建筑材料学报.2002,5(2):141-146
    [21] 张东,吴科如,李宗津.0—3型水泥基压电机敏复合材料的制备和性能.硅酸盐学报.2002,30(2):161-166
    [22] 张东,吴科如,李宗津.水泥基压电机敏复合材料的逆压电效应.同济大学学报,2002,30(3):312-317
    [23] Z. J. Li, D. Zhang and K. R. Wu. Cement matrix 2-2 piezoelectric composite—Patti: Sensory effect, Materials and Structures, 2001, 34(10): 506-512
    [24] Chen P W, Chung D D L. Carbon fiber reinforced concrete as an intrinsically smart concrete for damage assessment during dynamic loading. Joural of Ceramics society, 1995, 78(3): 816-818
    [25] Fu X, Chung D D L. Self-monitoring of fatigue damage in carbon fiber reinforced cement. Cement and Concrete Research, 1996, 26(1): 15-20
    [26] Fu X, et al. Improving the strain-sensing ability of carbon fiber reinforced cement by ozone treatment of the fibers. Cement and Concrete Reseach, 1998, 28(2): 183-187
    [27] 孙明清.碳纤维水泥基复合材料的Seebeck效应.材料研究学报,1998,12(1):329-331.
    [28] Sagae A, et al.Humidity controlling concrete material. Concrete Joural, 1998, 36(1): 37~40.
    [29] Hiraishi H, et al. Smart structure system. Concrete Journal, 1998, 36(1): 11-12
    [30] Dry C. Two intellingent materials both of which are self-forming and self-repairing, one also self sense and recycles. Proceeding of Third International Conference on Intelligent Materials, Lyon France, 1996: 164-171
    [31] Dry C. Smart earthquake resistant materials(using time released adhesive for damping, stiffening and deflection control). Proceeding of Third International Conference on Intelligent Materials, Lyon France, 1996: 958-967
    [32] 张东,吴科如.层状水泥基压电智能复合材料及其制备方法.中国,发明专利申请号: 03116465.X,2003,4,17
    [33] 韩宝国,关新春,欧进萍.碳纤维水泥石压敏传感器电极的实验研究.功能材料,2004,35(2):262-264
    [34] 宋显辉,郑立霞,李卓球.碳纤维水泥变形传感器研制,测控技术,2004,23(2):22-24
    [35] 张卫东,徐学燕.智能材料在土木工程健康监测中的应用.石油工程建设,2004,30(2):9-13
    [36] 黄世峰,徐荣华,程新,等.水泥基功能复合材料研究进展及应用.硅酸盐通报,2003,22(4):58-63
    [37] 陈兵,张东.新型水泥基复合材料的研究与应用.新型建筑材料,2000,(4):28-30
    [38] 叶青,胡国君.水泥基复合功能材料的研究与开发.材料科学与工程,1995,13(2):62~65
    [39] Huston D R, Fuhr P L, Ambrose T P, et al. Intelligent civil structures-activities in vermont[J]. Smart Material and Structures, 1994, 3(2): 129-139
    [40] Ansari F, Maji A, Leung C. Intelligent civil engineering materials and structures. New York: American Society of Civil Engineers, 1997
    [41] Aizawa S, Kakizawa T, Higasino M. Case studies of smart materials for civil structures. Smart Materials and Structures, 1998, 7(5): 617-626
    [42] Banks H T, Smith R C, Wang Y. Smart material structures: modeling, estimation, and control [M]. New York: John Wiley & Sons Inc, 1996: 52~74
    [43] Jonacha H. Adaptronics and Smart Structures. Berlin: Springer, 1999: 106-123
    [44] 陶宝祺.智能材料与结构.北京:国防工业出版社,1997
    [45] Wang M L, Heo G, Satpathi D. A health monitoring system for large structural systems[J] Smart Materials and Structures, 1998, 7(5): 606-616
    [46] Neville, A.M.. Properties of concrete. John Wiley & Sons, New York, 1996
    [47] Kamada T. Active control of structures with smart structures using PZ actuators[J]. J. Inrell. Mater. Syst. and strut., 1997, 8(6): 447-456
    [48] 王燕谋,苏慕珍,张量.硫铝酸盐水泥.北京:北京工业大学出版社,1999,12
    [49] 王树彬,韩杰才,杜善义.压电陶瓷/聚合物复合材料的制备工艺及其性能研究进展.功能材料,1999,30(2):113-117
    [50] 李小兵,田莳,李宏波.PZN-PZT压电陶瓷及其PVDF压电复合材料的制备和性能.复合材料学报,2002,19(3):70-74
    [51] Yamada T, Ueda T, Kitayama T. Piezoelectricity of a high content lead zirconatetitanate/polymer composite. J Appl Phys, 1982, 53(4): 4328-4332
    [52] M. J. Abdullah, D. K. Das-Gupta. Electricla properties of ceramic/polymer composites. IEEE Transactions on Electrical Insulation, 1990, 25(3): 605-610
    [53] 张福学,王丽坤.现代压电学.北京:科学出版社,2002
    [54] E Venkatragavaraj, B Satish, P R Vinod and M S Vijaya. Piezoelectric properties of ferroelectric PZT-polymer composites. J. Phys. D: Appl. Phys. 2001, 34: 487-492
    [55] IEEE Standard on Piezoelectricity[S], ANSI/IEEE Std. 176-1987. IEEE, New York, 1987.
    [56] 国家标准总局.GB2414-81.压电陶瓷材料性能测试方法,1981,10,1
    [57] 关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社.2000
    [58] 王红卫,闻荻江,项瑞阳.钛酸铅.环氧树脂压电复合材料的极化及压电性能研究.功能材料,1999,30(5):545-546
    [59] Sa-gong G, Safari A, Jang S J, Newnham R E. Poling flexible piezoelectric composites. Ferroelectdcs Letters, 1986(5): 131-142
    [60] Sa-gong G. Poling study of PbTiO_3-polymer composites [A]. Proceedings of IEEE 6th Symposium on Application of Ferro-electrics(ISAF' 86)[C]. Pennsylvania: [sn], 1986, 281-284.
    [61] Hyeung Gyu Lee and Ho Gi Kim. Influence of Microstructure on the Dielectric and piezoelectric properties of lead Zieconate Titanate—polymer composites. J. Am. ceram. soc, 1989, 72(6): 938-42
    [62] 甘国友,严继康,孙加林,等.压电复合材料的现状与展望.功能材料,2000,31(5):456-459
    [63] Kw onhoon, Safari A, Riman R E. Colloidal processing for Improved pzoelectfic properties of Flexible 0-3Ceramie-polymerComposites. J Am Ceram Soc, 1991, 74(7): 1699-1702.
    [64] H. Banno, K. Ogura. Dielectric and piezoelectric properties of a flexible composite consisting of polymer and mixed ceramic powder of PZT and PbTiO_3. Ferroelectrics, 1989, 95: 171-174.
    [65] 游达,张联.PZT/PVDF压电复合材料微观结构与性能研究,武汉理工大学学报,2003,25(6):10-12
    [66] T Furukawa, K Ishida, E Fukada. Piezoelectric Properties in the Composite Systems of Polymer and Ceramics. J. Appl. Phys., 1979, 50(7): 4904-4907
    [67] 殷景华,王雅珍,鞠刚.功能材料概论.哈尔滨工业大学出版社,2002,9
    [68] 钟维烈.铁电体物理学.科学出版社,2000,6
    [69] D. J. Mickish. J. Appl. Phys.1979, 50: 5923-5928
    [70] Hyeung-Gyu Lee and Ho-Gi Kim. Ceramic particle size dependence of dielectric and piezoelectric properties of piezoelectric cermic-polymer composites. J.Appl.Phys. 1990, 67(4): 2024-2028
    [71] Hsing-I Hsiang, Kwo-Yin Lin, Fu-Su Yen, Chi-Yuen Hwang. Effects of particle size of BaTiO_3 powder on the dielectric properties of BaTiO_3/polyvinylidene fluoride composites. Joumal of Materials Science, 2001, 36: 3809-3815
    [72] R. P. Tandon, N. Narayana Swami and N. C. Soni. Particle size dependence of piezoelectric and acoustical response of a composite hydrophone. Ferroeleetrics, 1994, 156: 61-66
    [73] 符史流.TGS·PVDF复合材料的介电和热释电性质.复合材料学报,1996,13(1):19-24
    [74] 赵方鸣,项瑞阳,闻荻江.0-3型聚合物基压电复合材料的研究概况[J].武汉工业大学学报,1996,18(3):1-5
    [75] 刘颖,张洪涛,涂铭旌.塑料对0-3型锆钛酸铅压电复合材料性能的影响.功能材料,1996,27(5):434-442
    [76] Peter C. Hewlett. LEA' Chemistry of Cement and Concrete. New York: Copublished in North, Central and South America by John Wiley&Sons Inc. 1988
    [77] FURUKAWA T, ISHIDA K, FUKADA E. Piezoelectric properties in the composite systems of polymer and ceramics. J Appl Phys., 1979, 50(7): 4904-4907
    [78] T. Furukawa, K. Jujino, and E. Fukada. Electromechanical Properties in the Composites of Epoxy Resin and PZT Ceramics. Jpn. J. App. Phy.. 1976, 15(11): 2119-2129
    [79] Titchell. Environmenta Degradation of Macrodefect-FreeCements. J. Mat. Sci., 1991, 26: 1199-1204
    [80] Poon C S, Wassell L E, Groves G W. Stability of Macro-Defect-Free Cement. Mat. Sci.Tech., 1998, 3(10): 993-996
    [81] Otto G P, Chew W C. Improved calibration of a large open-ended coaxialprobe for dielectric measurements. IEEE Transactions on Instrumentation and Measurement, 1991, 14(4)
    [82] Bosma T J, Leney T, Chenerie I, et al. The use of mixing laws for modeling the climatic ageing of dielectric materials[J]. J Appl Phy D, 1995, 28(6): 1180-1186
    [83] Achour M E, Malhi M E, Miane J L, et al. Electric properties of carbon Black-Epoxy resin composites at microwave frequencies [J]. J Appl Polymer Sci, 1996, 61(11): 2009-2013
    [84] Molla J, Gonzalez M, Vila R, et al. Effect of humidity on microwave dielectric losses of porous alumina[J]. J Appl Phys, 1999, 85(3): 1727-1730
    [85] Banks W M, Dumolin F, Halliday, S T, et al. Dielectric and mechanical assessment of water ingress into carbon fiber composite materials[J]. Composites and Structure, 2000, 76(1~3): 43-55
    [86] Boinard E, Pethrick R A, Dalzel-Job J. Studies of water permeation into fiber reinforced composite structures. Plastics, Rubber and Composites Processing and Applications, 1998, 27(4): 206-211
    [87] 李北星,梁文泉,何真.MDF水泥基复合材料的微观结构与水敏性关系研究——胶结相渗透特性与湿度吸收.武汉工业大学学报,2000,22(1):10-14
    [88] 胡昂,方永汉.湿度对DSP水泥基材料介电常数的影响.硅酸盐学报,1995,23(2):190-194
    [89] Buchanan C. Ceramic materials for electrics. New York and Basel, Marcel Dekker, Inc, 1986: 36
    [90] 吴科如,王君达,谈慕华.MDF材料的介电性能湿敏研究.建筑材料学报,1998,1(1):15-18
    [91] 王君达.聚合物水泥基复合材料及其介电性能研究[博士学位论文].上海:同济大学,1998
    [92] 王君达,谈慕华,吴科如.无宏观缺陷水泥基复合材料的介电性能.同济大学学报.2000,28(2):168-171
    [93] Wallace Arden Smith, Bertram A. Auld. Modeling 1-3 composite piezoelectrics: thickness mode oscillations. IEEE Transactions on Ultrasonics, Ferroelectries and Frequency Control. 1991, 38(1): 40-47
    [94] D. Robertson, G. Hayward, A. Gachagan. Lamb wave suppression in periodic 1-3 piezoelectric composite transducers. IEEE Ultrasonics Symposium, 2002: 1181-1184
    [95] Clyde G. Oakley, R. D.. Desing consideration for 1-3 composites used in transducers for medical ultrasonic imaging. IEEE, 1991: 233-236
    [96] Dan-Yang Wang, Helen Lai-Wa Chan. A dual frequency ultrasonic transducer based on BNBT-6/epoxy 1-3 composite.Materials Science and Engineering B, 2003, 99: 147-150
    [97] 党长久,李明轩.1-3型压电复合材料.应用声学,1995,14(1):2-7
    [98] Robert Y. Ting, Avner A. Shaulov, Wallace A. Smith. Piezoelectric properties of 1-3 composites of a calcium-modified lead titanate in epoxy resins. IEEE Ultrasonics Symposium, 1990: 707-710
    [99] 甘国友,严继康,孙加林,等.压电复合材料的现状与展望.功能材料,2000,31(5):456-463
    [100] H. P. Sarakus, K. A. Klicker and R. E. Newham. PZT-epoxy piezoelectric transducers: a simplified fabrication process, Mat. Res. Bull, 1980, 16: 677-680
    [101] Y. Ohara, M. Miyayama and K. Koumoto et al., PZT-polymer piezoelectric composites: a design for an acceleration sensor. Sensors and Actrators, 1993, 36: 121-126
    [102] 李邓化,张良莹,姚熹.压电陶瓷相体积分数对1-3型压电复合材料性能的影响.电 子元件与材料,1999,18(4):24-26
    [103] 李邓化.1-3型压电复合材料和钹式压电复合换能器及其应用[博士学位论文].西安:西安交通大学,1999
    [104] Smith W A, Auld B A. Moldeling 1-3 composite piezoelectrics: thickness-mode oscillations. IEEE Tran U F F, 1991, 38(1): 40-47
    [105] Smith W A, Auld B A. Tailoring the properties of composite piezoelectric materials for medical ultrasonic transducers. IEEE Ultrasonics symposium, 1985: 642~647
    [106] Gordon H, John A. Unidimensional modeling of 1-3 composite transducers. J Acoust Soc Am, 1990, 88(2): 599-608
    [107] Bent A A. Piezoelectric fiber composites for structural actuation. [SM Thesis]. MIT, 1994
    [108] Hagood N W, Bent A A. Development of piezoelectric fiber composites for structural actuation. AIAA Paper No. 93-1717-cp, 1993
    [109] Feuillard G, Lethiec Q, Amazit Y, et al. Experimental determination of the surface acoustic wave properties of new fine grain piezoelectric cerarnica. J Appl Phys, 1993, 74(11): 6523-6529
    [110] Yoshikawa S, T Shrout. Multilayer piezoelectric actuators-structures and reliability. AIAA Paper No. 93-1711-cp. 1993
    [111] Hagood N W, Kindel R, Ghandi K, Gaudenzi P. Improveing transverse actuation of piezoceramics using inter-digitated surface electrodes. SPIE Paper No. 1917-25, 1993
    [112] 赵寿根,程伟.1-3型压电复合材料及其研究进展.力学进展,2002,32(1):57-65
    [113] Newnham R E, Skinner D P, Cross L E. Connectivity and piezoelectric pyroelectric composites. Mat. Res. Bull., 1978(13): 525-536
    [114] 杨凤霞,王四德,兰从庆.1-3型PZT/Polymer压电复合材料性能分析.压电与声光,2001,23(1):49-55
    [115] 万建国.压电复合材料及其在智能材料结构中的应用研究[博士学位论文].南京:南京航空航天大学,1997
    [116] 李金田.压电传感器与前置放大器的配接.传感器技术,2004,23(1):54-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700