压电智能镗杆振动控制的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镗削加工处于半封闭状态,刀杆悬伸较长,刀具的后刀面和内孔的摩擦较大,切削系统易处于不稳定状态,极易发生振动。因此,对于镗杆在镗削过程中的振动控制就显得尤为重要和迫切。
     随着智能材料和智能自适应结构等现代结构材料的兴起,对结构进行振动的主动控制或主-被动混合控制在技术实现上进展迅速。鉴于机械加工领域对抑制切削振动的迫切需求和结构振动主动控制在工程领域巨大的应用空间,以及主、被动控制的有机结合可以更好地对振动进行有效控制,本文以镗削过程中刀具普遍存在的振动作为研究对象,结合切削系统本身的动力学特性,采用压电元件作为传感器和执行器,分别采用主动控制方法和主-被动混合控制方法对镗杆所产生的振动进行有效抑制。
     主动控制方法根据以振抑振的思想,将压电元件与镗杆结构相整合,通过调节外加主动电源的增益值来对镗杆的振动进行抑制。为了整合传统被动控制方法鲁棒性强、低能耗和控制效果稳定的优点,作者进而提出了一种整合R-L分流回路的主-被动振动混合控制系统。仿真和实验研究结果证明,这种方法能够对切削过程中镗杆所产生的振动进行有效抑制。
1 Introduction
     All objects which have elasticity and quality can be vibratile. Vibration and noise have the enormous influence on the performance of mechanical system, operator's physical and moral integrity as well as the processing quality, and so on; It's an important problem in the field of technology about how to prevent and control vibration effectively. Boring processing is at half seal condition, the boring bar extends longways, and the back surface of the cutter has a big friction with the inner hole, which can result in the non-steady state of the system and vibration easily. Therefore, it's very important and urgent to control the vibration in the course of the boring process.
     With the grow up of intelligent materials and intelligent adaptive structures, AVC and active-passive hybrid control techniques have a rapid development in the case of technical implementation. According to the imperious demands of supressing cutting vibrations and the giant developing space of AVC on the field of structures active vibraition control, for the sake of combining AVC with PVC and controlling cutting vibrations more effectively, this paper considered the common cutting process as the researching object and used AVC and APPN techniques respectively to supress the cutting vibrations of the boring bar integrated piezoelectric components as sensors and actuators. On the basis of using vibration to suppress vibration, the AVC technique integrated piezoelectric components with the boring bar, and suppressed the cutting vibration of boring bar to change the gains of vibration. The simulation and experiments results show that this method can control the low-frequency vibration of the boring bar during the cutting process. However, the obvious disadvantages of AVC technique will limit the robust performances of AVC system, and will disppate more energies. In order to solve above problems, the author proposed an active-passive hybrid control system integrated with RL shunting circuits, and analysized and estimated the vibration controlling performences with simulation experiments. This hybrid system can suppress the vibration more effectively on the premise of saving more energies. The simulating and experimenting results show that the APPN method will have a widerspread engineering application space because of the simple structures, less dissipation of energies and high robost properties.
     2 Piezoelectric equations and the sensor-driven model
     Piezoelectric effect was found by the Curie brothers in 1880. Pierre Curie was Early on the contact of pyroelectric crystal symmetry phenomenon and this allowed the two brothers not only found the existence of electric field under pressure, but also predicted that if a certain direction in the crystal pressure, it would produce the piezoelectric effect. Then, sphalerite, sodium chlorate, boron stone, tourmaline, quartz, calamine, topaz, tartaric acid, sucrose and potassium tartrate crystal (Rochelle salt), etc., were observed to have the piezoelectric effect. Inverse piezoelectric effect from the Lippman was foreseen under the first principle of thermodynamics, and in subsequent years confirmed by the Curie brothers.1884, Woldemar Voigt formally established the relationship between elastic modulus and electric vector by the crystal symmetry principle. Experiments confirmed that in all 32 class crystal,20/21 lack of symmetry of crystal class can produce the piezoelectric effect. Piezoelectric materials based on inverse piezoelectric effect, can be made into sensors and actuators to use.
     3 Design of intelligent boring bar model containing piezoelectric transducer
     Boring system generally can be simplified into a number of boundary conditions including a one-dimensional distributed structure. For bore lathe processing, since the boring bar does not rotate, the stiffness of the workpiece is much higher than the boring bar itself, and the boring bar's torsion resistance is far higher than the bending resistance. Therefore, Vibration System boring bar as a weak link in the main model, is simplified as a cantilever Euler-Bernoulli bending project (Figure 1).
     Figure 1 Vibration boring system dynamic model Boring vibration system dynamics model can be described as
     4 The build of Hybrid control system model
     Figure 2 is integrated with the RL shunt circuit of the piezoelectric intelligent boring bar main-passive hybrid control system diagram of the system by the boring bar structure of the matrix, piezoelectric sensors, piezoelectric actuators, active control, active voltage source and other components. It works as follows:the piezoelectric sensor paste the boring bar structure, used to detect the vibration of the system which will sense the signal after amplification by the charge voltage in the form passed to the controller, the controller will send its processed active voltage source, the final will be the high voltage in series with the RL shunt circuit to both ends of the piezoelectric actuator, which reacts in the boring bar, the actuator is configured to position the sensor with the principles of configuration are arranged in the boring bar of the root;at the same time, shunt circuit through the controller parameters in real time to adjust, and ultimately boring bar vibration on the main-passive hybrid control.
     Figure 2 active-passive hybrid control of piezoelectric intelligent boring bar diagram
     Hybrid control system dynamic equation shown in Figure 2 can be expressed in matrix form Hybrid control system dynamic equation shown in Figure 5.1 can be expressed in matrix form in which, q is the structure of the generalized displacement vector for the circuit in the charge, Ms, C, and s were boring bar structure of the mass, damping and stiffness matrix, L, R, and Kp were shunt circuit inductance, resistance and equivalent capacitance of piezoelectric elements for the mechanical structure and electric field coupling term, f is the cutting force, the control voltage. What is more,(χ2-χ1)is the length of the piezoelectric film,h31is piezoelectric constant,ε33 is the dielectric constant of piezoelectric ceramics.
     We completed the physical coordinates to modal coordinates transformation. Equation (2) is called the piezoelectric vibration boring bar's main-passive hybrid control model. The system describes a mode. The first one mode shunt circuit by the introduction of elections. It is noteworthy that the original system to increase the vibration absorber will cause the system to an additional degree of freedom. Take the characteristic function as a cantilever beam comparison function, the first i order generalized coordinates and first i modal coordinates (i=1,2,3,…,N) is very similar. More importantly, because the modal analysis generated by infinite-order mode in the optimization process is not applicable, in most cases, we need to truncate and approximate the model.
引文
[1]Research trends, Smart Materials Bulletin[J].2002,3:11-12.
    [2]Crawley, E.F., Intelligent structures for aerospace:aTechnology overview and assessment. AIAA Journal[J].1994,32(8):1689-1699.
    [3]D. Garg, M. Zikry, G. Anderson, Current and potential future research activities in adaptive structures:an ARO perspective, Journal of Smart Materials and Structures [J].2001(10):610-623.
    [4]Kahn S P,Wang K W. Structural vibration controls via piezoelectric materials with active-passive hybrid network Proc[J]. ASME-75(1994):187-189.
    [5]S.S. Mester, H. Benaroya. Periodic and near-periodic structures, Shock and Vibration[J].1995,2 (1):69-95.
    [6]S. Herold, D. Mayer, H. Hanselka. Transient simulation of adaptive structures, Journal of Intelligent Material Systems and Structures [J].15 (3):215-224.
    [7]H. Moradi, F. Bakhtiari-Nejad, M.R. Movahhedy.Tuneable vibration absorber design to suppress vibrations:An application in boring manufacturing process, Journal of Sound and Vibration [J].2008,318:93-108.
    [8]A. Preumont. Vibration Control of Active Structures, second ed., Kluwer Academic Publishers, Dordrecht, The Netherlands[M].2001.
    [9]Agnes G Active/passive piezoelectric vibration suppression Proc. Conf. on Smart Structures and Materials, Proc[P].1994,SPIE 2193 24-3.
    [10]Hughes, P. Passive Dissipation of Energy in Large Space Structures[J].Guid. and Contr,3:380-382.
    [11]Zak, A., Krawczuk.M., Ostachowicz.W. Vibration of a laminated composite plate with closing delamination,Structural Damage Assessment Using Advanced Signal Processing Procedures, Proceedings of DAMAS 9 [M].University College, Dublin, Ireland.1999:17-26.
    [12]刘春颖.镗杆振动的主动最优控制仿真研究[C].吉林大学硕士学位文,2007.
    [13]邱志成.智能结构及其在振动主动控制中的应用[J].航天控制,2002,4.
    [14]李俊宝,吕刚.智能桁架结构振动控制中压电主动构件的研究:(三)压电主动构件动力学建模.压电与声光[J].1998,20(4):237-241.
    [15]Kajiwara K, Hayatu M, Imaoka S. Large scale active micro-vibration control system using piezoelectric actuators applied t semiconductor manufacturing equipment[J]. JSME,1997,63:3735-3742.
    [16]Young Kyu Kang,Hyun Chul Park,Jaehwan Kim,Seung-Bok Choi. Interaction of active and passive vibration control of laminated composite beams with piezoceramic sensors/actuators. Department of Mechanical Engineering [M].Inha University,Yonghun-dong Incheon:402-751
    [17]W.-C. Xie, S.T. Ariaratnam. Vibration mode localization in disordered cyclic structures, I:single substructure mode [J] Journal of Sound and Vibration,1996,189 (5):625-645.
    [18]Staszewski, W.J. Biemans, C.Boller, C.Tomlinson, G.R., Impact damage detection in composite structures:recent advances, Structural Health Monitoring [J].2000, Stanford University, Palo Alto, California:754-763.
    [19]I. Lazoglu, F. Atabey, Y. Altintas. Dynamics of boring processes:part iii-time domain modeling, International Journal of Machine Tcols Manufacture [J].2002,42:1567-1576
    [20]S.J. Elliott. Mobility analysis of active vibration control systems, Adaptronics and Smart Structures. Basies, Materials, Design, and APPlications, Springer Publishing house Berlin Heidelberg [J].1999, ISBN:3540614842.
    [21]Shiuh-Jer Huang. Active Optimal Vibration Control for a Lumped System. Computers & Structures[J].1994,51 (6).
    [22]Habib H Sh, Tqwfiq S S, Said WK. A Microprocessor-Based Time Optimal Control for Reduction of Torsional Vibration. Journal of Sound and Vibration[J].1995,180(1).
    [23]Min-Hung Hsiao. An Optimal Modal-Space Controller for Structural Damping Enhancements [J]. Preceedings of the American Con.Conf. Baltimore, Maryland,1999.
    [24]Meirovitch L. Control of distributed structures. Large space structures:dynamics and control. Spinger-Verlag Berlin Heidelberg[J].1988:195-212.
    [25]Y.H.Lin, CL.chu. A New Design for Independent Modal Space Control of General Dynamic Systems. Journal of Sound and Vibration[J].1995,180(2)
    [26]Zhou K, Doyle J C, Glover K. Robust and Optimal Control (Englewood Cliffs, NJ:Prentice-Hall)[J].1996.
    [27]P. Handel, P. Tichavsky. Adaptive estimation for periodic signal enhancement and tracking[J]. International Journal of Adaptive Control and Signal Processing,1994,8:447-456.
    [28]Sujatha Sugavanarn. Modeling and control design of smart structures bonded with piezoceramic actuators and sensors[D]. Phd dissertation of FU,1996:5-10.
    [29]R.J. Bernhard, Hall,J.D.Jones. Inter-Noise 92[J].Adaptive-passive noise control,1992:427-430.
    [30]Doyle J C, Glover K, Khargonekar, Francis B.A. State IEEE space solution to standard H2 and H∞ control problems Trans. Automat[C]. Control 34831-4.
    [31]王波。电压式压电智能结构振动控制方法改进的研究[D].重庆大学博士学位论文,2004:38-40.
    [32]Chung L L, Abdel-rohman M. Experiments on active control of seismic structures. Journal of Engineering Mechanics[J].1988,114(2):241-256.
    [33]Janoeha,H. Adaptronics and Smart Structures. Basies, Materials, Design, and APPlications,Springer Publishing house Berlin Heidelberg[J].1999,ISBN: 3540614842.
    [34]李岩,杨大智等.形状记忆合金智能复合材料系统的发展[J].功能料,2000,31(6):561~564.
    [35]Edward F.Crawley. Intelligent structures for aerospace:a technology overview and assessment. AIAAjournal[J].1994,32(8):1689~1699.
    [36]王树彬,韩杰才,杜善义。压电陶瓷/聚合物复合材料的制备工艺及其性能研究进展[J].功能材料,1999,30(2):113~117.
    [37]陶宝祺,梁大开,王征等。智能复合材料综述[J].遥测技术,1992,11(4):7-22.
    [38]常力元。功能材料及其应用[M].北京:治金工业出版社,1992.
    [39]陶宝祺。智能材料结构[M].北京:国防工业出版社,1997.
    [40]Kamjanovic D,Newnham R E. Electrostrictive and Piezoelectric materials for actuator application. Journal of Intelligent Material Systems and Structures [J]. 1992,3(2):190~208.
    [41]张福学。现代压电学[M].科学出版社,2001.
    [42]侯健。压电类智能结构振动主动控制研究[D].哈尔滨:哈尔滨工程大学,2002.
    [43]庞俊恒。基于压电元件的振动被动控制技术研究[D].南京:南京理工大学,2004.
    [44]Forward,R.L. Electronic Damping of Vibrations in Optical Structures [J]. Applied Optics,18(5):690-697.
    [45]Forward,R.L, Swigert, C.J. Electronic Damping of Orthogonal Bending Modes in a Cylindrical Mast. J.Spacecraft and Rockets[J].18(1):5-17.
    [46]N. W. HAGOOD, A. H. VON FLOTOW. Damping of structural vibrations with piezoelectric materials and passive electrical networks. Journal of Sound and vibration 146[J].1991:243-268.
    [47 Hollkamp JJ. Multimodal passive vibration suppression with piezoelectric materials and resonant shunts. Journal of Intelligent Material Systems and Structures[J].1994,5:49-57.
    [48]Ahmadian M, DeGuilio AP. Recent advances in the use of piezoceramics for vibration suppression[J]. The Shock and Vibration Digest,2001,33(1):15-22.
    [49]L.-T. Bruton. RC-Active Circuits:Theory and Design, Prentice-Hall [J].1980.
    [50]A.M. Cox, G.S. Agnes. A statistical analysis of space structure mode localization, Proceedings of the 1999 AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit[C].1999, 4:3123-3133.
    [51]Giovanni Caruso. A Critical Analysis of Electric Shunt Circuits Employed in Piezoeleetric Passive Vibration Damping. Smart Mater Struct[J].2001,10:1059-1068.
    [52]A. H. Von Flotow, A.Beard. Adaptive tuned vibration absorbers:tuning laws, tracking agility, sizing, and physical implementations. Proceedings of NOISE-CON 94 (Ft. lauderdale, FL)[J].437-455.
    [53]D. Guyomar, A. Badel, E. Lefeuvre, C. Richard. Toward energy harvesting using active materials and conversion improvement by nonlinear processing, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [J].2005,52(4): 584-595.
    [54]A. Badel, D. Guyoniar, E. Lefeuvre, C. Richard. Efficiency enhancement of a piezoelectric energy-harvesting device in pulsed operation by synchronous charge inversion, Journal of Intelligent Material Systems and Structures[J].2005,16 (10):889-901.
    [55]E. Lefeuvre, A. Badel, C. Richard, D. Guyomar. Piezoelectric energy harvesting device optimization by synchronous electric charge extraction, Journal of Intelligent Material Systems and Structures[J].2005,16 (10):865-876.
    [56]M. M. ElMadany, A. El-Tamimi. On a subclass of nonlinear passive and semi-active damping for; vibration isolation[J]. Computers & Structures,1990, 36(5):921-931.
    [57]K. Yamada, T. Kobori. Control Algorithm for Estimating Future Response of Active Variable Stiffness Structure.Earthquake[J]. Engineering and Structural Dynamics,1995,24:1085-1099.
    [58]T. Kobori. Shaking Table Experiment of Multi-Story Seismic Response Controlled Structure with Active Variable Stiffness (AVS) System[C]. The 8th Japan Earthquake Engineering Simposium,1990.
    [59]T. Kobori, M. Takahashi, T. Nasu, N. Niwa, K.Ogasawara. Seismic Response Controlled Structure with Active Variable Stiffness System[J]. Earthquake Engineering and Structural Dynamics,1993,22:925-941.
    [60]C.L. Davis, G.A. Lesieutre. An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness [N].Journal of Sound and Vibration,2000,232:601-617.
    [61]刘季等.变刚度半主动结构振动控制的研究[J].地震工程与工程振动,1997,1.
    [62]阎维明,周福霖,谭平.土木工程结构主动控制的研究进展[J].世界地震工程,1997,2.
    [63]D. Hrovat, P. Barak, M. Rabins. Semi-Active Versus Passive or Active Tuned Mass Dampers for Structural Control.[J].Engineering Mechanics, ASCE, 1983,109(3).
    [64]J.M. Kelly, K. Hasegawa. Application of a Mass Damping System to Bridge Structures. Report NO. UCB/EERC 92/12[R]. Center.Berkeley, CA,Earthquake Engineering Research,1992.
    [65]Lou TYK, Lutes LD, Li JJ. Active Tuned Liquid Damper for Structural Control[C]. Proceedings of First World Conference on Structural Control, 1994,TP1:70-79.
    [66]L.A. MIANZO. M.Sc.Thesis, Pennsylvania State University.An adaptable vibration absorber to minimize steady state and start-up transient vibrations-an analytical and experimental study[D].
    [67]J.J Hollkamp, T.F Starchville. A self tuning piezoelectric vibration absorber[C].Proceedings of the 24th AIAA Structures, Structural Dynamics, and Materials Conference, No. AIAA-94-1970.
    [68]权渭锋,毛剑琴,李超,李帆.智能结构与智能控制在振动主动控制中的应用[J].信息与电子工程,2004,2,3:232-237.
    [69]S.O.Reza Moheinani. A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers. IEEE transactions on control system technology[J],2001,11 (4):482-494.
    [70]Park CH,Inman D.J.Enhanced Piezoelectric ShuntDesign[J].Shock and Vibration,2003,35(10):127-13.
    [71]Fleming A.J,Behrens S,Moheimani S.O.R. Synthetic Impedance for Implementation ofPiezoelectric Shunt-damping Circuits [J].Electronics Letters, 2000,36(18):1525-1526.
    [72]Ha Sung, K. Keilers. Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators [J]. AIAA Journal.1992, 30(3):772-780.
    [73]Wenwu Cao, Harley. Smart materials and structures [J]. Proceeding of national Academic Science. USA,1999:1013-1024.
    [74]I.S.Grewal,W.Szyszkowski. Optimal vibration control of continuous structures by FEM:Part Ⅱ-the computer implementation[J]. Communications in Numeriacal Methods in Engineering,2002,18:869-876.
    [75]M.I.Friswell, S.D.Garvey, J.E.T. Penny. Model reduction usingDynamic and iterated IRS Techniques [J]. Journal of sound and Vibration,1995,186(2):311-323.
    [76]G.L.Bala.Control Design for variation in structural natural frequencies[J].control and Dynamics,1995,18(2):325-332.
    [77]张景绘.动力学系统建模[M].国防工业出版社,2000:ISBN:7-118-02117-2.
    [78]傅志方,华宏星.模态分析理论与应用[M].上海交通大学出版社,2000.
    [79]袁文伯.工程力学手册[M].煤炭工业出版社,1988.
    [80]劳尔.工程中的有限元法[M].科学出版社,1991.
    [81]高德平.机械工程中的有限单元法[M].西北工业大学出版社,1993.
    [82]王助成,邵敏.(第二版)有限单元法基本原理和数值方法[M].清华大学出版社,1997.
    [83]李德堡,陆秋海.实验模态分析及其应用[M].科学出版社,2001,ISBN:7-03-008507-8.
    [84]Edward F, Crawley,Javier de Luis[J]. Use of Piezoelectric Actuators as Elements of Intelligent Structures. AIAA Journal,1987,25(10):1373-1385.
    [85]Tzou H S, Gadre M. Theoretical analysis of a multi-layered thin shell couple with piezoelectric shell actuators for distributed vibration controls[N]. Journal of Sound and Vibration,1989,132(3):433-450.
    [86]吴克恭,闫云聚,姜节胜.智能梁和板结构中埋入压电材料的深度和压电材料厚度的优化研究[J].应用力学学报,2003-20-3.:123-127.
    [87]吴克恭,姜节胜.基于在线识别与全维状态观测技术的埋入压电片复合梁的主动控制研究[J].航空学报,2003,24(5):431—434
    [88]闫云聚,姜节胜,顾松年.智能复合材料结构应用发展前景[J].测控技术, 1996,15(4).
    [89]Bailey, T., Hubbard Jr. J.E. Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam[J]. J.Guid. and Contr,8(5):605-611.
    [90]Lee, C.k, Moon, F.C. Laminated Piezopolymer Plates for Torsion and Bending Sensors and Actuators [J]. J.Acoust.Soc.Am,85(6):2432-2439.
    [91]Lee, C.k, Moon, F.C. Modal Sensors/Actuators [J]. J.Appl.Mech, 57(6):434-441.
    [92]Miller, S., Hubbard Jr.J.E. Theoretical and Experimental Analysis of Spatially Distributed Sensors on Lightly Damped Beam Structures[R]. Charles Stark Draper Laboratories, Cambridge,MA,No.C-5953.
    [93]S. Chen, Z. Cao, A new method for determining locations of the piezoelectric sensor/actuator for vibration control of intelligent structures[N].Journal of Intelligent Material Systems and Structures,2000,11:108-115.
    [94]C. Inniss, T. Williams. Sensitivity of the zeros of flexible structures to sensor and actuator location[J].IEEE Transactions on Automatic Control,2000,45 (1):157-160.
    [95]F. Pourki. Distributed controllers for flexible structures using piezo-electric actuator/sensors[C].Proceedings of the 32nd Conference on Decision and Control,1993,8:1367-1370.
    [96]A.J.Fleming, S. Behrens, S.O.R. Moheimani. Optimization and implementation of multimode piezoelectric shunt damping systems[J].IEEE/ASME Transactions on Mechatronics,2002,7 (1):87-94.
    [97]S. Kalaycioglu, D. Silva. Minimization of vibration of spacecraft appendages during shape control using smart structures [J].Journal of Guidance, Control, and Dynamics,2000,23 (3):558-561.
    [98]H.S. Tzou, C.I. Tseng. Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems:a piezoelectric finite element approach[J]Journal of Sound and Vibration,1990,138 (1):17-34.
    [99]G. Wang, N.M. Wereley. Spectral finite element analysis of sandwich beams with passive constrained layer damping, Transactions of the ASME[J].Journal of Vibration and Acoustics,2002,124:376-386.
    [100]M.-C. Weng, X. Lu, D.L. Trumper. Vibration control of flexible beams using sensor averaging and actuator averaging methods [J].IEEE Transactions on Control Systems Technology,2002,10 (4):568-577.
    [101]Crawley, E.F, Lazarus, K.B. Induced Strain Actuation of Isotropic and Anisotropic Plates[J]. AIAA,28(4):717-724.
    [102]Baz,A., Poh, S. Performance of an Active Control System with Piezoelectric Actuators[J].Sound and Vibration,126(2):327-343.
    [103]Hanagud, S., Won, C.C., Obal, M.W. Optimal Placement of Piezoceramic Sensors and Actuators[C].Proceedings of the 7th American Control Conference, Atlanta, GA,3,1884-1889.
    [104]Fanson,J.L, Cughey T.K.Positive Position Feedback Control for Large Space Structures[J]. AIAA Journal,28(4);717-724.
    [105]Baz A M, Ro S. The Concept and Performance of Active Constrained Layer Damping Treatment[J]. Sound and Vibration,28(3):18-21.
    [106]Sung C K,Chen Y C. Vibration control of the Elastic dynamic response of high-speed flexible linkage mechanisms[J]. ASME J Vibration and acoustics, 1991,113:14-21.
    [107]Meirovitch L, Baruh H. A comparison of control techniques for large flexible systems[J]. Journal of Guidance.1983,6(4):302-310.
    [108]S.O.R.Moheimani. Minimizing the out-of bandwidth dynamics in the model of reverberant system:Implication on Spatial H∞ control [J]. Automatica,2000,36: 1023-1033.
    [109]Alan R D C. An application of genetic algorithms to active vibration control [J].J of Intel Master Systems and Struct,2:472-481.
    [110]顾仲权.振动主动控制中低阶控制器的优化设计[J].振动工程学报,1990,3(3):1—8.
    [111]谭善光,汪希宣.结构强迫振动最优响应和模态主动控制[J].振动工程学报,1989,2(4):76-81.
    [112]L. Faravelli, T. Yao. Use of adaptive networks in fuzzy control of civil structures [J].Microcomputers in Civil Engineering,1996,11:67-76.
    [113]A.Ofri, W.Tanchum, H. Guterman. Active Control for Large Space Structures by Fuzzy Logic Controllers[J].IEEE Press, Silver Spring, MD,1996:515-518.
    [114]M.Jamshidi.Large-Scale Systems:Modeling, Control, and Fuzzy Logic[M].Prentice Hall, Englewood Cliffs, NJ,1996.
    [115]J.-S. Jang. ANFIS:Adaptive-network-based fuzzy inference system [J]. IEEE Transactions on System, Man, and Cybernetics,1993,23 (3):665-685.
    [116]C.F. Juang, C.-T. Lin, Noisy speech processing by recurrently adaptive fuzzy filters[J].IEEE Transactions on Fuzzy Systems,2001,9 (1):139-152.
    [117]Narendra K S. Identification and Control of Dynamical Systems Using Neural Networks [J]. IEEE Transactions On Neural Networks, Vol.1. Mar 1990, 4-27.
    [118]Elsley R K. A Learning Architecture for Control Based on Back-Propagation Neutral Networks[J]. IEEE Int. Conf. on Neutral Networks,1988:587-594.
    [119]Etxbarria V. Adaptive Control of Discrete Systems Using Neural Networks [J]. IEEE Proc. Control Theory Applications,1994,141 (4).
    [120]Yang S M. Vibration Control of Smart Structures by Using Neural Networks. Transactions of the ASME[J].Journal of Dynamic Systems, Measurement, and Control,1997,119:34-39.
    [121]W. Liao, K. Wang. Characteristics of enhanced active constrained layer damping treatments with edge elements,Part 1:finite element model and experimental validation[J]. American Society of Mechanical Engineers Journal of Vibration and Acoustics 1998,120:886-893.
    [122]W. Liao, K. Wang. Characteristics of enhanced active constrained layer damping treatments with edge elements Part 2:system analysis[J].American Society of Mechanical Engineers Journal of Vibration and Acoustics,1998,120:894-900.
    [123]Y. Liu, Y.K. Wang. Active-passive hybrid constrained layer for structural damping augmentation[J]. American Society of Mechanical Engineers Journal of Vibration and Acous tics,2000,122:254-262.
    [124]J. Tang, Y. Liu, K. Wang. Semi-active and active-passive hybrid structural damping treatments via piezoelectric materials [J]. Shock and Vibration Digest,2000,32:189-200.
    [125]Q.Liu.Improved helicopter aeromechanical stability analysis using segmented constrained layer damping and hybrid optimization [J]. Journal of Intelligent Material Systems and Structures,2000,11:492-500.
    [126]A. Chattopadhyay, Q. Liu, H. Gu. Vibration reduction in rotor blades using active composite box beam [J].American Institute of Aeronautics and Astronautics Journal,2000,38:1125-1131.
    [127]A. Baz. Robust control of active constrained layer damping[J]. Journal of Sound and Vibration,1998,211:467-480.
    [128]A. Baz, S. Poh. Performance characteristics of the magnetic constrained layer damping[J]. Journal of Shock and Vibration,2000,7:81-90.
    [129]A. Baz. Spectral fnite element modeling of wave propagation in rods using active constrained layer damping[J].Journal of Smart Materialsand Structures,2000,9:372-377.
    [130]P. Huang, P. Reinhall, I. Shen, J. Yellin. Thickness deformation of constrained layer damping-an experimenta evaluation[J].American Society of Mechanical Engineers Journal of Vibration and Acoustics,2001:213-223.
    [131]杨智春,崔海涛,孙浩。压电分流阻尼控制悬臂梁振动的实验研究[J].机械科学与技术,2005,5:526-528.
    [132]王建军,李其汗。具有分支电路的可控压电阻尼减振技术[J].力学进展,2003,33(3):389-403.
    [133]Kawai, H. Piezoelectric Properties of Polyvinylidene Flouride[J].Appl.Mech., 57(6):434-441.
    [134]张福学.现代压电学[M].科学出版社,2001.
    [135]杨大智.智能材料与结构[M].上海:上海交通大学出版社,2001.
    [136]黄尚廉.智能结构—工程学科萌生的一场革命压电与声光[J].1993,15(1):13-15.[137]江冰,李兴丹,吴代华.Smart结构及其应用[J].力学进展,1994,24(3):353-361.
    [138]王矜奉,姜祖桐,石瑞大.压电振动[M].北京科学出版社,1989.
    [139]Cady,W.G. Piezoelectricity[M].Dover, New York,1.
    [140]杨生元,黄文浩.关于压电致动器的动力学和致动作用力[J].压电与声光,1997,19(6):381-384.
    [141]Rao S.S, Sunar M. Piezoelectricity and its use in disturbance sensing and control of flexible structures:a survey[J]. Appl Mech Rev,1994,47(4):113-123.
    [142]徐荣桥.结构分析的有限元法与MATLAB程序设计[M].人民交通出版社,IBSN:7-114-05916-7.
    [143]Zienkiewicz O.C. The Finite Element Method[M].Third Edition. McGraw-Hill Inc.,1997.
    [144]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [145]Kwon Y.W., Bang H. The Finite Element Mehthod Using MATLAB, CRC Press[M]. Florida:Inc. Boca Raton,1997.
    [146]龙驭球,龙志飞,岑松.新型有限元论[M].北京:清华大学出版社,‘2004.
    [147]黄永安,李文成,高小科。Matlab7.0/Simulink6.0应用实例仿真与高效算法开发。清华大学出版社,2008.
    [148]A.J. Fleming, S.Behrens,S.O.R.Moheimani.Optimization and implementation of multimode piezoelectric shunt damping systems[J].IEEE/ASME Transactions on Mechatronics,2002,7 (1):87-94.
    [149]G. Wang, N.M. Wereley, Spectral finite element analysis of sandwich beams with passive constrained layer damping[J]. Journal of Vibration and Acoustics-Transactions of the ASM,2002,124:376-386.
    [150]J. Lin, F.L. Lewis. Enhanced measurement and estimation methodology for flexible link arm control [J]. Journal of Robotic Systems,1994,11 (5):367-385.
    [151]J. Lin, F.L. Lewis. Two-time scale fuzzy logic controller of flexible link robot arm[J].Fuzzy Sets and Systems,2003,139 (1):125-149.
    [152]J.Lin. A hierarchical fuzzy logic controller for flexible link robot arms during constrained motion tasks[J].IEE Proceedings-Control Theory and Applications,2003,150(4):355-364.
    [153]M.S.Tsai, K.W. Wang. On the structural damping characteristics of active piezoelectric actuators with passive shunt[J].Journal of Sound and Vibration,1999,221 (1):1-22.
    [154]Zhou K, Doyle J C and Glover K 1996 Robust and Optimal Control (Englewood Cliffs, NJ:Prentice-Hall)
    [155]ClarkW.W. Vibration Control with State-switched PiezoelectricMaterials[J].Journalof IntelligentMaterialSystems and Structures, 2000,11(4):262-271.
    [156]CorrL R,ClarkW W. Comparison of Low-frequency Piezoelectric Switching ShuntTechniques forStructuralDamping[J]. SmartMaterials and Structures,2002, 11(2):370-376.
    [157]R.A. Morgan, K.W. Wang, An active-passive piezoelectric absorber for structural vibration control under harmonic excitationswith time-varying frequency. Journal of vibration and acoustics [J],2002,124(1):77-89.
    [158]马治国,闻邦春,李道奎。含压电片复合材料层合板的高阶计算模型[J].复合材料学报,2005,22(1):164-170.
    [159]高坚新,沈亚鹏。有限长压电层合简支板自由振动的三维精确解[J].力学学报,2009,5:168-177.
    [160]朱建国,骆英,柳祖亭。基于压电致动器的有限元分析[J].江苏大学学报,2004,25(3):273-276.
    [161]朱灯林,吕蕊,俞洁。压电智能悬臂梁的压电片位置、尺寸及控制融合优化设计[J].机械工程学报,2009,45(2):262-267.
    [162]孙东昌,张洪华,吴宏鑫。压电智能梁振动控制中致动片优化布置与实验[J].中国空间科学技术,1999(6):46-52.
    [163]Neil D.Sims. Vibration absorbers for chatter suppression:A new analytical tuning methodology[J]. Journal of Sound and Vibration,2006,10:1~16.
    [164]Tewani S G, Stephens L S, Rouch K E. Control of machining chatter by use of active elements. Proc. Symp. Adv. Manufact. University of Kentucky,1988,31.
    [165]Klein R G, Nachtigal C L.The application of active control to improve boring bar performance[J]. J. Dyn. Syst. Meas. Control, Trans. ASME 97,1975:175~183.
    [166]Tewani S G., Rouch K E, Walcott B L. A finite element analysis of a boring bar using active dynamic absorber for active vibration control. Proc. ASME Winter Annual Meeting, Atlanta, Georgia,1991,173.
    [167]Battaini L R.Fuzzy control of Structural Vibration,an Active Mass System Driven by a Fuzzy Controller.Earthquke engineering and Structural Dynamics,1998,27(11):1267-1276.
    [168]Ruzicka, J.E。 Structural Damping[J]. ASME Colloquium on Structural Damping,1959, New orleans, LA.
    [169]Hong。 Active Control of Adaptive Flexible Structures Using Piezoelectric Smart Sensors and Actuators[D]. Ph.D Thesis, Pennsylvania State University.
    [170]M.S Tsai, K.W Wang。 A coupled robust control/optimization approach for active-passive hybrid piezoelectric networks[J]. Smart Materials and Structures,2002,11:389-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700