电驱动与溶液驱动形状记忆聚合物混合体系及其本构方程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
形状记忆聚合物材料与形状记忆合金和形状记忆陶瓷相比较,具有许多优异的性能,如其最大形状恢复应变可达到100%以上、密度低、制备工艺简单、形状恢复温度可调节和生产制造成本低等。这些优势使形状记忆聚合物材料的应用前景特别广阔,目前它已经在航空航天、汽车、通讯和仿生医学等重要领域有了初步的应用。因此形状记忆聚合物材料的研究是目前智能材料与结构领域内的最热点之一。然而目前热敏性形状记忆聚合物的形状记忆效应驱动通常是通过直接加热的方式实现,这一驱动方式的驱动效率很低,并且在实施过程中也存在许多不方便。另一方面,由于热敏性形状记忆聚合物材料做为一种新兴的智能材料,其发展的历史相对较短,研究者对它的理论认识还不够全面,也不深刻,导致不能彻底分析并认识隐藏在材料宏观表象之后的微观机理。这些问题的存在,严重地限制了形状记忆聚合物的深入发展和应用。在这样的背景下,本论文提出并从实验方面实现混杂导电纤维填充型形状记忆聚合物纳米复合材料(固-固混合体系)和nanopaper复合型形状记忆聚合物纳米复合材料的电致驱动方式,发现并证实了溶剂和形状记忆聚合物混合体系(固-液混合体系)的溶液驱动方式,以及从理论方面推导并解释了上述形状记忆聚合物混合体系的热力学本构方程。
     本文第三章研究的内容是混杂导电纤维填充型形状记忆聚合物纳米复合材料和碳纳米纸复合型形状记忆聚合物纳米复合材料。采用电子扫描电镜、偏光显微镜、示差扫描量热仪、动态机械性能热分析仪、静态力学性能测试系统、四点探针电阻测量方法和Van der Pawu四点电阻测量方法系统地研究电致驱动形状记忆聚合物纳米复合材料的微观结构、玻璃化转变温度、热力学行为和电学属性。进而通过驱动实验,验证纳米复合材料的电致驱动形状记忆效应,并采用红外成像仪等设备记录了电致驱动形状记忆效应的形状恢复行为和温度场分布。然后根据实验结果分析并总结材料成分种类、含量以及其电学属性对电致驱动形状记忆聚合物纳米复合材料形状记忆效应的影响规律。
     在第四章的研究内容,通过引入塑性效应理论、高分子溶液理论、橡胶弹性理论和松弛理论等系统地提出并阐述“热敏性形状记忆聚合物的溶液驱动形状记忆效应”概念。进而采用苯乙烯基形状记忆聚合物作为试验对象,实验上证实热敏性苯乙烯基形状记忆聚合物的溶剂驱动形状记忆效应。期间发现并分别实现N, N-二甲基甲酰胺溶剂的化学极化效应驱动形状记忆效应和甲苯溶剂的物理溶胀增塑效应驱动形状记忆效应。采用热失重分析仪、示差扫描量热仪、动态机械性能热分析仪和红外光谱分析仪等设备研究并分析溶液驱动形状记忆聚合物的热力学行为和化学结构演变规律。总结溶液驱动形状记忆效应的作用机理是溶剂分子通过扩散作用渗透到聚合物材料中,被吸收的溶剂分子对聚合物网络结构产生增塑作用。增塑效应可以降低聚合物网络结构内部分子链段之间的相互作用力,提升聚合物分子链段的柔顺性和运动能力,进而与聚合物分子产生化学的或物理的相互作用,从而间接地降低聚合物材料的转变温度。当聚合物的转变温度降低至室温时,固定在形状记忆聚合物分子链段内部的弹性应变能得以释放,形状记忆效应因此触发。
     对于热敏性形状记忆聚合物,其形状记忆行为遵循松弛理论及其Eyring方程。从Eyring方程可知,形状记忆效应不仅受温度的影响,同时也受聚合物网络内聚能(或化学势)的影响,并且只决定于这两个影响因素。在第五章的研究内容中,通过改变形状记忆聚合物网络化学势的方式对热敏性形状记忆聚合物的形状记忆行为进行分析和研究。在聚合物与其固体或液体溶剂混合过程中,混合体系的熵函数和自由能函数等热力学参数会发生改变。由此联立混合过程中的热力学方程和松弛方程,可定量地获得聚合物网络的化学势在混合过程中受溶剂(或聚合物)在混合体系的体积百分含量、聚合物分子与溶剂分子的摩尔体积比和Flory-Huggins相互作用参数的影响规律。进而引入自由能方程,从理论方面推导并解释形状记忆聚合物混合体系,在不同受力状态下关于聚合物的化学势-应变和混合体系的应力-应变本构方程。
Shape memory polymers (SMPs) offer a number of potential technical advantages that compared with its counterparts, namely shape memory alloys and shape memory ceramics, including high recoverable strain (more than 100%), low density, ease of processing and the ability to tailor the recovery temperature, programmable and controllable recovery behavior, and most important, low cost. These amazing advantages enable such materials to have a high innovation potential in application. The shape memory effect in SMPs can be utilized in many fields, from aerospace engineering, automobile, communications to biomedicine and many important fields. Although SMPs have found a few applications, they have not fully reached their technological potential. Largely due to that the actuation of shape recovery in thermal-responsive SMPs is normally driven by external heat. Another important issue is that there is a few of researches aimed at more complex shape memory behaviors resulting from lack of theoretical development and a short history of SMPs being as a novel smart materials. The mechanism behind these features can not be explored and discovered. As a result, the development and application of SMPs is seriously limited.
     On this motivation, the first aim of this project is to demonstrate the electro- activated shape memory effect of SMPs nanocomposites by blending hybrid filler and carbon nanopaper, respectively. In subsequence, solution-driven SMPs have been discovered and achieved on mixing with solvent. Finally, a thermodynamic constitutive equation is deduced and constructed to theoretically depict the shape memory behaviors of SMP composites or blends.
     The present work firstly studies the electro-activated shape memory behaviors of SMP nanocomposites by blending hybrid filler or carbon nanopaper in the third chapter of the dissertation. The morphology, glass transition temperature, thermomechanical and electrical properties of the SMP nanocomposites have been studied by the scanning electron microscope (SEM), optic microscope (OP), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), static mechanical test frame with a series of digital controllers, four-point probe measurement method and Van der Pawn method, respectively. The shape recovery of SMP nanocomposite driven by electrically resistive Joule heating is therefore demonstrated and recorded. And an infrared video camera is used to monitor the temperature distribution and shape recovery simultaneously. Based on these experimental results, I analyze and discuss the correlations among the component type, fraction, electrical properties and shape memory behavior of SMP composite.
     In chapter 4, the plasticizing effect, theory of polymer solution, rubber elastic theory and relaxation theory are employed to systemically prove that the thermal-responsive SMP can have solution-driven shape memory effect. For the styrene-based SMP, the demonstration of chemo-responsive shape memory behavior has been conduct on mixing with N,N-dimethylformamide (DMF) solvent through chemically conjugated interaction. Alternatively, it also can be carried out on mixing with toluene solvent through physical swelling effect. After being immersed into solvent, the thermomechanical behaviors and change in chemical structure of SMP are performed on thermal gravimetric analysis (TGA), DSC, DMTA and Fourier transform infrared spectroscopy (FTIR). In summary, the mechanism behind these new features is the imbibed solvent molecules have a plasticizing effect on the polymer network in the form of diffusion. The plasticizing effect makes the interactive forces among tangled polymer molecules depressed, resulting in the flexility and motion capability of polymer molecules improved. The solvent molecules then have a chemical or physical interaction with the polymer molecules. All these interactions between solvent molecules and polymer molecules will inductively make the transition temperature of polymer reduced. When the switching temperature of SMP arrives at the room temperature or lower, the shape memory effect of SMP is therefore induced, resulting from the stored strain energy is released in polymer molecules. As a result, the SMP will relax to its original shape from the temporary (or deformed) shape.
     For the thermo-responsive SMP, the shape memory effect obeys with the relaxation theory and its Eyring equation. It indicates that the shape memory effect is only determined by two parameters, the temperature and internal cohesive energy (namely chemical potential). The present chapter 5 aims at the shape memory effect of SMP induced by inductively lowering the chemical potential instead of temperature heating. Based on the solution theory of polymer and thermodynamic of polymer solution, there will be changes in entropy and free-energy functions, as well as other related thermal parameters, when a polymer is on mixing with a solvent or solid. In combination of thermodynamic equation of polymer solution and Eyring equation, we can qualitative separate the effect of volume fraction of solvent molecule (or polymer molecule), molar volume ratio of polymer molecule to solvent molecule and Flory-Huggins solubility parameter on the chemical potential of SMP. Finally, the free-energy equations of polymer solution are employed to construct the polymer’s chemical potential-stretch and blend’s stress- strain constitutive equations, which can be used to theoretically describe the behaviors of SMP blends in respect to chemo-mechanical couplings.
引文
1 A. V. Srinivasan, D. M. McFarland. Shape Memory Alloys in Smart Structures. Cambridge, Cambridge University Press. 2001: 26~72
    2 C. Liang, C. A. Rogers, E. Malafeew. Investigation of Shape Memory Polymers and Their Hybrid Composites. Journal of Intelligent Materials Systems and Structures. 1997, 8(4): 380~385
    3 C. Liu, H. Qin, P. T. Mather. Review of Progress in Shape-Memory Polymer. Journal of Material Chemistry. 2007, 17(16): 1543~1558
    4 M. V. Gandhi, B. S. Thompson. Smart Materials and Structures. London, Chapman & Hall. 1992: 212~253
    5 K. Otsuka, C. M. Wayman. Shape Memory Materials. New York, Cambridge University Press. 1998: 134~158
    6 F. Li, W. Zhu, X. Zhang, C. Zhao, M. Xu. Shape Memory Effect of Ethylene-Vinyl Acetate Copolymer. Journal of Applied Polymer Science. 1999, 71(7): 1063~1070
    7 H. M. Jeong, S. Y. Lee, B. K. Kim. Shape Memory Polyurethane Containing Amorphous Reversible Phase. Journal of Materials Science. 2000, 35(7): 1579~1583
    8 A. Lendlein, A. M. Schmidt, R. Langer. AB-Polymer Network Based on Oligo (Epsilon-Caprolactone) Segment Showing Shape-Memory Properties. Proceedings of the National Academy of Sciences of the United States of America. 2001, 98(3): 842~847
    9 X. Lan, Y. J. Liu, H. B. Lu, X. H. Wang, J. S. Leng. Fiber Reinforced Shape-Memory Polymer Composite and Its Application in a Deployable Hinge. Smart Materials and Structures. 2009, 18: 024002
    10 A. Lendlein, R. Langer. Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications. Science. 2002, 296(5573): 1673~1676
    11 E. Hornbogen. Comparison of Shape Memory Metals and Polymers. Advanced Engineering Materials. 2006, 8(1-2): 101~106
    12 J. S. Leng, S. Y. Du. Shape Memory Polymer and Multifunctional Nanocomposites. Oxon, CRC Press Taylor/Francis. 2010: 28~42
    13 B. Yang. Influence of Moisture in Polyurethane Shape Memory Polymers andTheir Electrical Conductive Composites. PhD Thesis, Nanyang Technological University. 2005: 12~17
    14 F. Yang, S. Zhang, J. C. M. Li. Impression Recovery of Amorphous Polymers. Journal of Electronic Materials. 1997, 26(7): 859~862
    15 J. Karger-Kocsis. Polypropylene: Copolymers and Blends. London, Chapman & Hall. 1991: 43~47
    16 S. Hayashi, S. Kondo, P. Kapadia, E. Ushioda. Room Temperature Functional Shape-Memory Polymers. Plastic Engineering. 1995, 51(2): 29~31
    17 G. Baer, T. S. Wilson, D. L. Mathews, D. J. Maitland. Shape-Memory Behavior of Thermally Stimulated Polyurethane for Medical Applications. Journal of Applied Polymer Science. 2007, 103(6): 3882~3892
    18 J. L. Hu, F. L. Ji, Y. W. Wong. Dependency of the Shape Memory Properties of a Polyurethane upon Thermomechanical Cyclic Conditions. Polymer International. 2005, 54(3): 600~605
    19 S. H. Park, J. W. Kim, S. H. Lee, B. K. Kim. Temperature-Sensitive Amorphous Polyurethanes. Journal of Macromolecular Science Part B-Physics. 2004, 43(2): 447~458
    20 B. C. Chun, T. K. Cho, M. H. Chong, Y. C. Chung. Structure-Property Relationship of Shape Memory Polyurethane CrossLinked by a Polyethyleneglycol Spacer between Polyurethane Chains. Journal of Materials Science. 2007, 42(21): 9045~9056
    21 G. Fei, Y. Shen, H. Wang, Y. Shen. Effects of Polydimethylsiloxane Concentration on Properties of Polyurethane/Polydimethylsiloxane Hybrid Dispersions. Journal of Applied Polymer Science. 2006, 102(6): 5538~5544
    22 B. S. Lee, B. C. Chun, Y. C. Chung, K. II. Sul, J. W. Cho. Structure and Thermomechanical Properties of Polyurethane Block Copolymers with Shape Memory Effect. Macromolecules, 2001, 34(18): 6431~6437
    23 J. H. Yang, B. C. Chun, Y. C. Chung, J. W. Cho, B. G. Cho. Vibration Control Ability of Multilayered Composite Material Made of Epoxy Beam and Polyurethane Copolymer with Shape Memory Effect. Journal of Applied Polymer Science. 2004, 94(1): 302~307
    24 C. Park, J. Y. Lee, B. C. Chun, Y. C. Chung, J. W. Cho, B. G. Cho. Shape Memory Effect of Poly(ethylene terephthalate) and Poly(ethylene glycol) Copolymer Cross-Linked with Glycerol and Sulfoisophthalate Group and its Application to Impact-Absorbing Composite Material. Journal of AppliedPolymer Science. 2004, 94(1): 308~316
    25 W. M. Huang, B. Yang, Y. Zhao, Z. Ding. Thermo-Moisture Responsive Polyurethane Shape Memory Polymer and Composites: A Review. Journal of Materials Chemistry. 2010, 20: 3367~3381
    26 J. Kaursoin, A. K. Agrawal. Melt Spun Thermoresponsive Shape Memory Fibers Based on Polyurethanes: Effect of Drawing and Heat-Setting on Fiber Morphology and Properties. Journal of Applied Polymer Science. 2006, 103(4): 2172~2182
    27 D. I. Cha, H. Y. Kim, K. H. Lee, Y. C. Jung, J. W. Cho, B. C. Chun. Electrospun Nonwovens of Shape-Memory Polyurethane Block Copolymers. Journal of Applied Polymer Science. 2005, 96(2): 460~465
    28 H. M. Jeong, B. K. Ahn, B. K. Kim. Miscibility and Shape Memory Effect of Thermoplastic Polyurethane Blends with Phenoxy Resin. European Polymer Journal. 2001, 37(11): 2245~2252
    29 Y. Chen, X. Z. Yang, M. Xu, F. Li. Molecular Dynamics Simulation of the Relaxation of a Fully Extended Polyethylene Chain. Chinese Journal of Polymer Science. 1999, 17(4): 315~322
    30 X. Luo, X. Zhang, M. Wang, D. Ma, M. Xu, F. Li. Thermally Stimulated Shape-Memory Behavior of Ethylene Oxide-Ethylene Terephthalate Segmented Copolymer. Journal of Applied Polymer Science. 1997, 64(12): 2433~2440
    31 I. Bellin, S. Kelch, R. Langer, A. Lendlein. Polymeric Triple-Shape Materials. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103(48): 18043~18047
    32 H. M. Jeong, B. K. Ahn, B. K. Kim. Water Vapor Permeability of Shape Memory Polyurethane with Amorphous Reversible Phase. Journal of Polymer Science Part B-Polymer Physics. 2000, 38(23): 3009~3017
    33 H. M. Jeong, B. K. Ahn, B. K. Kim. Temperature Sensitive Water Vapour Permeability and Shape Memory Effect of Polyurethane with Crystalline Reversible Phase and Hydrophilic Segments. Polymer International. 2000, 49(12): 1714~1721
    34 S. S. Lee, H. M. Jeong, J. Y. Jho, T. O. Ahn. Miscibility of Poly(ethylene terephthalate)/Poly(estercarbonate) Blend. Polymer. 2000, 41(5): 1773~1782
    35 S. I. Han, B. H. Gu, K. H. Nam, S. J. Im, S. C. Kim, S. S. Im. Novel Copolyester-Based Ionomer for a Shape-Memory Biodegradable Material. Polymer. 2007, 48(7): 1830~1834
    36 Y. Zhu, J. L. Hu, K. W. Yeung, Y. Q. Liu, H. M. Liem. Influence of Ionic Groups on the Crystallization and Melting Behavior of Segmented Polyurethane Ionomers. Journal of Applied Polymer Science. 2006, 100(6): 4603~4613
    37 Y. Zhu, J. L. Hu, K. W. Yeung, K. F. Choi, Y. Q. Liu, H. M. Liem. Effect of Cationic Group Content on Shape Memory Effect in Segmented Polyurethane Cationomer. Journal of Applied Polymer Science. 2007, 103(1): 545~556
    38 G. Rabani, H. Luftmann, A. Kraft. Synthesis and Characterization of Two Shape-Memory Polymers Containing Short Aramid Hard Segments and Poly(ε-caprolactone) Soft Segments. Polymer. 2006, 47(12): 4251~4260
    39 N. Naga, G. Tsuchiya, A. Toyota. Synthesis and Properties of Polyethylene and Polypropylene Containing Hydroxylated Cyclic Units in the Main Chain. Polymer. 2006, 47(2): 520~526
    40 F. Li, J. Y. Wang, T. F. Xie, D. J. Wang, J. Tang, X. Y. Tang. Synthesis and Study of a New Polyorganophosphazene. Journal of Applied Polymer Science. 2001, 80(9): 1446~1451
    41 M. Durr, A. Biedermann, Z. Hu, U. Hofer, T. F. Heinz. Probing High-Barrier Pathways of Surface Reactions by Scanning Tunneling Microscopy. Science. 2002, 296(5574): 1838~1841
    42 V. Skakalova, V. Lukes, M. Breza. Shape Memory Effect of Dehydrochlorinated Crosslinked Poly(vinyl chloride). Macromolecular Chemistry and Physics. 1997, 198(10): 3161~3172
    43 G. Zhu, G. Liang, Q. Xu, Q. Yu. Shape-Memory Effects of Radiation Crosslinked Poly(epsilon-caprolactone). Journal of Applied Polymer Science. 2003, 90(6): 1589~1595
    44 C. C. Li, G. Zhu, Z. Y. Li. Effects of Rosin-Type Nucleating Agent on Polypropylene Crystallization. Journal of Applied Polymer Science. 2002, 83(5): 1069~1073
    45 F. Li, J. Feng, R. X. Zhou. Synthesis and Characterization of Novel Biodegradable Poly(p-dioxanone-co-ethyl ethylene phosphate)s. Journal of Applied Polymer Science. 2006, 102(6): 5507~5511
    46 M. Z. Wang, F. Li, Q. H. Yang, H. M. Cheng. Advances in Synthesizing and Preparing Carbon Nanotubes from Different Carbon Sources. New Carbon Materials. 2003, 18(4): 250~264
    47 Y. W. Chang, J. K. Mishra, J. H. Cheong, D. K. Kim. Thermomechanical Properties and Shape Memory Effect of Epoxidized Natural Rubber Crosslinkedby 3-amino-1,2,4-triazole. Polymer International. 2007, 56(5): 694~698
    48 I. A. Rousseau, P. T. Mather. Shape Memory Effect Exhibited by Smectic-Cliquid Crystalline Elastomers. Journal of the American Chemical Society. 2003, 125(50): 15300~15301
    49 C. P. Buckley, C. Prisacariu, A. Caraculacu. Novel Triol-Crosslinked Polyurethanes and Their Thermorheological Characterization as Shape-Memory Materials. Polymer. 2007, 48(5): 1388~1396
    50 L. T. Yan, B. H. Guo, J. Xu, X. M. Me. Study Diffusion Effects on Chain Extension Reactions Based on the Reptation Theory. Polymer. 2006, 47(10): 3696~3704
    51 W. Chen, C. Y. Zhu, X. R. Gu. Thermosetting Polyurethanes with Water-Swollen and Shape Memory Properties. Journal of Applied Polymer Science. 2002, 84(8): 1504~1512
    52 A. Lendlein, H. Y. Jiang, O. Junger, R. Langer. Light-Induced Shape-Memory Polymers. Nature. 2005, 434(7035): 879~882
    53朱光明.形状记忆聚合物及其应用.化学工业出版社. 2002, 6: 196~202
    54 M. J. Duncan, M. F. Metzeger, D. Schumann, A. Lee, T. S. Wilson. Photothermal Properties of Shape Memory Polymers Micro-Actuators for Treating Stroke. Lasers in Surgery and Medicine. 2002, 30(1): 1~11
    55 W. S. IV, P. R. Buckley, T. S. Wilson, J. M. Loge, K. D. Maitland, D. J. Maitland. Fabrication and Characterization of Cylindrical Light Diffusers Comprised of Shape Memory Polymer. Journal of Biomedical Optics. 2008, 13(2): 024018
    56 H. Koerner, G. Price, N. A. Pearce, M. Alexander, R. A. Vaia. Remotely Actuated Polymer Nanocomposites-Stress-Recovery of Carbon Nanotube Filled Thermoplastic Elastomer. Nature Materials. 2004, 3(6): 115~120
    57 J. S. Leng, X. L. Wu, Y. J. Liu. Infrared Light-Active Shape Memory Polymer Filled with Nanocarbon Particles. Journal of Applied Polymer Science. 2009, 114(4): 2455~2460
    58 J. W. Cho, J. W. Kim, Y. C. Jung, N. S. Goo. Electroactive Shape-Memory Polyurethane Composites Incorporating Carbon Nanotubes. Macromolecular Rapid Communications. 2005, 26(5): 412~416
    59 N. G. Sahoo, Y. C. Jung, N. S. Goo, J. W. Cho. Conducting Shape Memory Polyurethane-Polypyrrole Composites for an Electroactive Actuator.Macromolecular Materials and Engineering. 2005, 290(11): 1049~1055
    60 J. S. Leng, X. Lan, Y. J. Liu, S. Y. Du. Electroactive Thermoset Shape Memory Polymer Nanocomposite Filled with Nanocarbon Powders. Smart Materials and Structures. 2009, 18(7): 074003
    61 J. S. Leng, X. Lan, Y. J. Liu, S. Y. Du, W. M. Huang, N. Liu, S. J. Phee, Q. Yuan. Electrical Conductivity of Thermoresponsive Shape-Memory Polymer with Embedded Micro Sized Ni Powder Chains. Applied Physics Letters. 2008, 92(1): 014104
    62 J. S. Leng, W. M. Huang, X. Lan, Y. J. Liu, S. Y. Du. Significantly Reducing Electrical Resistivity by Forming Conductive Ni Chains in a Polyurethane Shape-Memory Polymer/Carbon Black Composite. Applied Physics Letters. 2008, 92(20): 204101
    63 R. Barrett, R. Taylor, P. N. Keller, M. S. Lake. Design of a Solar Array to Meet the Standard Bus Specification for Operation Responsive Space. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu. 2007: 2332(1)~(11)
    64 A. M. Schmidt. Electromagnetic Activation of Shape-Memory Polymer Networks Containing Magnetic Nanoparticles. Macromolecular Rapid Communication. 2006, 27(14): 1168~1172
    65 B. Yang, W. M. Huang, C. Li, C. M. Lee, L. Li. On the Effect of Moisture in a Polyurethane Shape Memory Polymer. Smart Materials and Structures. 2004, 13: 191~195
    66 W. M. Huang, B. L. An, C. Li, Y. S. Chen. Water-Driven Programmable Polyurethane Shape Memory Polymer: Demonstration and Mechanism. Applied Physics Letters. 2005, 86(11): 114105
    67 B. Yang, W. M. Huang, C. Li, L. Li, J. H.Chor. Qualitative Separation of the Effect of Carbon Nanopowder and Moisture on the Glass Transition Temperature of Polyurethane Shape Memory Polymer. Scripta Materialia. 2005, 53(1): 105~107
    68 B. Yang, W. M. Huang, C. Li, L. Li. Effect of Moisture on the Thermomechanical Properties of a Polyurethane Shape Memory Polymer. Polymer. 2006, 47(4): 1348~1356
    69 S. J. Chen, J. L. Hu, C. W. Yuen, L. K. Chan. Novel Moisture-Sensitive Shape Memory Polyurethanes Containing Pyridine Moieties. Polymer. 2009, 50(19): 4424~4428
    70 H. Tobushi, H. Hayashi, S. Kojima. Mechanical-Properties of Shape Memory Polymer of Polyurethane Series-Basic Characteristics of Stress-Strain-Temperature Relationship. JSEM International Journal Series I-Solid Mechanics Strength of Materials. 1992, 35-I(3): 296~302
    71 H. Tobushi, E. Yamada, H. Hayashi. Thermomechanical Properties in a Thin Film of Shape Memory Polymer of Polyurethane Series. Smart Materials and Structures. 1996, 5: 483~491
    72 H. Tobushi, T. Hashimoto. Thermomechanical Constitutive Modeling in Shape Memory Polymer of Polyurethane Series. Journal of Intelligent Materials Systems and Structures. 1997, 8(8): 711~718
    73 H. Tobushi, T. Hashimoto, N. Ito, S. Hayashi, E. Yamada. Shape Fixity and Shape Recovery in a Film of Shape Memory Polymer of Polyurethane Series. Journal of Intelligent Materials Systems and Structures. 1998, 9(2): 127~136
    74 H. Tobushi, N. Ito, K. Takata, S. Hayashi. Thermomechanical Constitutive Modeling of Polyurethane-Series Shape Memory Polymer. Materials Science Forum. 2000, 327: 343~346
    75 H. Tobushi, K. Okumura, S. Hayashi, N. Ito. Thermomechanical Constitutive Model of Shape Memory Polymer. Mechanics of Materials. 2001, 33(10): 545~554
    76 Y. P. Liu. Thermomechanical Behavior of Shape Memory Polymer. PhD Thesis, University of Colorado. 2004: 86~96
    77 Y. C. Chen, D. C. Lagoudas. A Constitutive Theory for Shape Memory Polymer: Part I Large Deformations. Journal of the Mechanics and Physics of Solids. 2008, 56(5): 1752~1765
    78 Y. C. Chen, D. C. Lagoudas. A Constitutive Theory for Shape Memory Polymer: Part II A Linearized Model for Small Deformations. Journal of the Mechanics and Physics of Solids. 2008, 56(5): 1766~1778
    79 Q. Meng, J. Hu. A Review of Shape-Memory Polymer Composites and Blends. Composites Part A-Applied Science and Manufacturing. 2009, 40(11): 1661~1672
    80 Y. C. Jung, H. J. Yoo, Y. A. Kim, J. W. Cho, M. Endo. Electroactive Shape Memory Performance of Polyurethane Composite Having Homogeneously Dispersed and Covalently Crosslinked Carbon Nanotubes. Carbon. 2010, 48(5): 1598~1603
    81 M. Drubetski, A. Siegmann, M. Narkis. Electrical Properties of Hybrid CarbonBlack/Carbon Fiber Polypropylene Composites. Journal of Material Science. 2007, 42: 1~8
    82 N. C. Das, T. K. Chaki, D. Khastgir, A. Chakraborty. Electromagnetic Interference Shielding Effectiveness of Conductive Carbon Black and Carbon Fiber-Filled Composites Based on Rubber and Rubber Blends. Advanced in Polymer Technology. 2001, 20(3): 226~236
    83 W. H. Di, G. Zhang, J. Q. Xu, Y. Peng, X. J. Wang, Z. Y. Xie. Positive-Temperature-Coefficient/Negative-Temperature-Coefficient Effect of Low-Density Polyethylene Filled with a Mixture of Carbon Black and Carbon Fiber. Journal of Polymer Science Part B-Polymer Physics. 2003, 41(23): 3094~3101
    84 S. Iijima. Helical Microtubules of Graphitic Carbon. Nature (London). 1991, 354: 56~58
    85 M. P. Manoharan, A. Sharma, A. V. Desai, M. A. Haque, C. E. Bakis, K. W. Wang. The Interfacial Strength of Carbon Nanofiber Epoxy Composite Using Single Fiber Pullout Experiments. Nanotechnology. 2009, 20(29): 295701
    86 C. Li, E. T. Thostenson, T. W. Chou. Effect of Nanotube Waviness on the Electrical Conductivity of Carbon Nanotube-based Composites. Composite Science Technology. 2008, 68(6): 1445~1452
    87 C. Yu. Thermal Contact Resistance and Thermal Conductivity of a Carbon Nanofiber. Journal of Heat Transfer. 2006, 128(3): 234~239
    88 K. A. Williams, P. T. M. Veenhuizen, B. G. Torre, R. Eritja, C. Dekker. Nanotechnology: Carbon Nanotubes with DNA Recognition. Nature (London). 2002, 420(6917): 761~767
    89 A. S. Shirinyan, M. Wautelet. Phase Separation in Nanoparticles. Nanotechnology. 2004, 15(12): 1720~1731
    90 W. B. Choi. Aligned Carbon Nanotubes for Nanoelectrics. Nanotechnology. 2004, 15(10): S512~S516
    91 E. Prunele. Time Evolution of Wave Packets on Nanostructures. Journal of Physics A: Mathematical Generation. 2005, 38(22): 4843~4858
    92 J. Gou, S. O. Braint, H. Gu, G. Song. Damping Augmentation of Nanocomposites Using Carbon Nanofiber Paper. Journal of Nanomaterials. 2006, 2006(1): 1~7
    93 J. Gou. Single-Walled Nanotube Bucky Paper and Nanocomposites. Polymer International. 2006, 55(11): 1283~1288
    94 N. A. Koratkar, B. Wei, P. M. Ajayan. Carbon Nanotube Films for DampingApplications. Advanced Materials. 2002, 14(13-14): 1283~1288
    95 N. A. Koratkar, B. Wei, P. M. Ajayan. Multifunctional Structural Reinforcement Featuring Carbon Nanotube Films. Composite Science and Technology. 2003, 63(11): 1525~1531
    96 Z. Zhao, J. Gou. Improved Fire Retardancy of Thermoset Composite Modified with Carbon Nanofibers. Science and Technology of Advanced Materials. 2009, 10(1): 015005
    97 J. Gou, T. Yong, F. Liang, Z. F. Zhao, D. Firsich, J. Fielding. Carbon Nanofiber Paper for Lightning Strike Protection of Composite Materials. Composites Part B-Engineering. 2010, 41(2): 192~198
    98 X. J. He, J. H. Du, Z. Ying, H. M. Cheng, X. J. He. Positive Temperature Coefficient Effect in Multiwalled Carbon Nanotube/High-Density Polyethylene Composites. Applied Physics Letters. 2005, 86(6): 062112
    99 M. Morton. Solution Theory of Polymer. Weinheim, Wiley-VCH, 1987: 206~215
    100 J. E. Mark, B. Erman. Rubberlike Elasticity-A Molecular Primer. New York, Wiley-Interscience, 1988: 102~105
    101 M. Behl, A. Lendlein. Shape-Memory Polymers. Materials Today. 2007, 10(4): 20~28
    102 L. Sun, W. M. Huang. Thermo/Moisture Responsive Shape-Memory Polymer for Possible Surgery/Operation inside Living Cells in Future. Materials and Design. 2010, 31(5): 2684~2689
    103 D. E. Hudgin. Rubber Elasticity. New York, Marcel Dekker, Inc. 2000: 103~116
    104 M. J. He, W. X. Chen, X. X. Dong. Polymer Physics. Fudan Press, 2000: 114~131
    105周博,刘彦菊,冷劲松.苯乙烯基形状记忆聚合物热力学行为的有限元分析.高分子学报. 2009, 6:.525~529
    106 C. D. Liu. Preparation and Investigation of Tailored Shape Memory Polymers. PhD Thesis, University of Connecticut. 2004: 71~75
    107 M. Y. Razzaq, M. Anhalt, L. Frormann, B. Weidenfeller. Mechanical Spectroscopy of Magnetite Filled Polyurethane Shape Memory Polymers. Materials Science and Engineering-A. 2007, 471(1-2): 57~62
    108 A. Kumar, R. K. Gupta. Fundamentals of Polymer Engineering. Marcel Dekker,Inc., 2003: 255~277
    109 P. J. Flory. Principles of Polymer Chemistry. New York, Cornell University Press, 1953: 235~276
    110 X. Zhao, Z. Suo. Method to Analyze Electromechanical Stability of Dielectric Elastomers. Applied Physics Letters. 2007, 91(6): 061921
    111 W. Hong, X. H. Zhao, Z. G. Suo. Large Deformation and Electrochemistry of Polyelectrolyte Gels. Journal of the Mechanics and Physics of Solid. 2010, 58(4): 558~577
    112 W. Hong, Z. Liu, Z. Suo. Inhomogeneous Swelling of a Gel in Equilibrium with a Solvent and Mechanical Load. International Journal of Solids and Structures. 2009, 46(17): 3282~3289
    113 C. M. Hansen. The Three Dimensional Solubility Parameter-Key to Paint Component Affinities II.- Dyes, Emulsifiers, Mutual Solubility and Compatibility, and Pigments. Journal of Paint Technology. 1967, 39(511): 505~510

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700