基于具有电化学响应性的包结络合作用的超分子杂化水凝胶及大分子自组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子自组装是新型功能材料制备的一种“自下而上”的战略,同时,由于组装过程的复杂性和组装体的结构常具有多层次特点,分子自组装成为当前备受关注和充满挑战的重大科学问题之一。在过去的十多年中,我们课题组提出并发展了“非共价键合胶束(NCCM)"的概念,利用氢键相互作用系统地研究了性质互补的聚合物对的自组装行为。近年来,我们又将超分子化学中的主-客体间的分子识别作用引入到大分子自组装的领域中,不仅拓展了NCCM的研究范围,更深化了我们对非共价键在自组装中作用的认识。本论文的研究工作是在本课题组已有研究工作的基础上开展的,主要是利用主体分子环糊精(CD)和客体分子二茂铁(Fc)之间的包结络合作用,特别是其氧化-还原可逆性,在构筑具有电化学活性的超分子交联点、制备具有氧化-还原敏感性的超分子水凝胶,以及诱导聚合物胶束化等方面开展研究。本论文主要分为以下几个部分:
     1.具有电化学响应性的超分子交联点及其水凝胶研究
     一直以来,在智能聚合物水凝胶的研究工作中,大多数的兴趣都集中在温度和pH敏感性的研究,而氧化-还原响应性则很少被涉及。Fc具有可逆的单电子氧化还原敏感性,其还原态Fc分子可与p-CD形成稳定的包结络合物。在本章中,我们采用了一种简单有效的方法,即通过CD和Fc之间的包结络合作用,在CD稳定的CdS量子点(CD@QD)表面成功地引入了可聚合双键。所得超分子结构能够做为交联点与N'N-二甲基丙烯酰胺(DMA)单体共聚制备超分子杂化水凝胶(Fc-Gel),因此被称做“超分子交联点(Fc-SCL)"。Fc还赋予了该结构良好的电化学响应性。随着Fc-SCL含量的增加,Fc-Gel的力学性能有所增强。此外,该凝胶还具有良好的荧光性质。实验表明,在凝胶形成过程中,CD和Fc之间的包结络合起了关键的交联作用,因此这种凝胶是一种由超分子作用诱导的有机-无机杂化水凝胶。
     2.具有电化学响应性的温度/氧化双敏感水凝胶的制备
     在前一部分工作的基础之上,本部分研究将包结络合作用限定在量子点表面和官能化的聚合物端基上,并由此设计构建了新型的温度和电化学双敏感水凝胶。我们首先设计合成了一种新型的Fc修饰的RAFT链转移剂,并通过活性自由基聚合制备了端基带有Fc的嵌段共聚物Fc-(DMA-b-NIPAM),随后通过Fc和CD的包结络合作用将Fc-(DMA-b-NIPAM)引入到CD@QD表面,得到了星型聚合物超分子结构Fc-HIC。由于Fc的存在,该结构具有电化学响应性。对Fc-HIC溶液加热即可获得凝胶。水凝胶的形成主要依靠了PNIPAM的疏水聚集和Fc与CD的包结络合的协同作用,其“溶胶-凝胶”转变温度可通过动态流变实验获得。向凝胶中加入氧化剂K3Fe(CN)6之后,Fc被氧化成阳离子状态的Fc+,从CD空腔内脱落,导致凝胶转变为可流动的溶胶。这一凝胶解离过程同样可通过加入竞争客体分子金刚烷酰羧酸钠(ADA)来实现。由于ADA与CD的包结络合作用更强,可以取代Fc,与CD形成更稳定的络合物,从而导致凝胶的解离。凝胶的解离亦可通过流变实验确认。另一方面,这种凝胶还具有良好的温度可逆性,通过升温-降温循环,可以实现“溶胶-凝胶”的可逆转变。
     3.基于主客体包结络合和氢键双重作用的聚合物胶束化研究
     我们课题组过去研究的重点是基于单一的非共价相互作用,即氢键或包结络合作用的聚合物自组装行为,尚未涉及关于双重相互作用共同控制自组装体形貌的研究。在本部分中,我们采用含有Fc的单体(Fc-M-2)与甲基丙烯酸甲酯(MMA)共聚,并将该聚合物与含p-CD侧基的聚丙烯酸(PAA-CD)在水溶液中组装,构筑了由MMA/PAA氢键作用和Fc/CD包结络合作用双重诱导的NCCM。当聚合物中的Fc含量较高时,所得胶束呈球形,并且可以被竞争客体分子所解离。减少共聚物中Fc基团的含量,即增强包结络合作用与氢键的相对贡献,还可观察到聚合物组装体由球形胶束向三维网状结构的转变。
     4.基于包结络合作用构建粒子稳定的聚合物胶体的初步研究
     传统的维持聚合物胶体稳定性的方法是通过小分子表面活性剂或以亲溶剂的线形高分子来实现的。在本章中,我们建立了一种新型的制备粒子稳定的聚合物胶体的新途径。我们采用巯基环糊精稳定的金纳米粒子CD@AuNP来稳定疏水的聚2-丙烯酰氧乙基二茂铁甲酸酯(PFc)聚合物。在水相中,疏水性的PFc收缩聚集,由于CD与Fc之间的包结络合作用,亲水性的CD@AuNP富集在PFc疏水微区的外层,限制了PFc的进一步聚集,并形成了由CD@AuNP稳定的聚合物胶体球。DLS和TEM显示所得的胶体粒子为球形,并且大小均一,尺寸分布较窄。通过这种方法所制得的胶束粒子稳定性很好,可在水溶液中稳定存放数周。
Molecular self-assembly is a "bottom-up" strategy to fabricate new functional materials. It has been considered as one of the most attractive and challenging scientific fields because of the complexity of the assembly process as well as the hierarchical structures of the resultant assemblies. In the past decade, our group first proposed and developed a new "block copolymer-free strategy" leading to "NonCovalently Connected Micelles" (NCCMs), in which self-assembly behavior of pairs of complementary polymers induced by hydrogen bonds were systematically investigated. Recently, we introduced host-guest interactions of supramolecular chemistry as the driving force for macromolecular self-assembly. This work not only opened a new research aspect of NCCM, but also helped us better understand the role of non-covalent interactions in macromolecular self-assembly. Based on the previous research work in our group, this thesis focuses on the fabrication of a electrochemically responsive "supra-crosslink" and supramolecular hybrid hydrogel, as well as polymeric micelles and colloids using the inclusion complexation between cyclodextrin (CD) and ferrocene (Fc) derivatives as the driving force. The contents of this thesis are as follows:
     1. Supramolecular hydrogels constructed by electrochemically responsive supra-crosslink.
     The majority of current research on responsive polymeric hydrogels is focusing on thermal and/or pH sensitive hydrogels, while those responsive to redox stimulus are still rare. It is known that Fc undergoes a reversible one-electron oxidation at a low potential, and this reduced-state molecule can form a stable inclusion complex withβ-CD. In this part, a novel electrochemically responsive supra-crosslink (Fc-SCL) was designed and prepared by incorporating Fc monomer (Fc-M) to the surface ofβ-CD stabilized CdS quantum dots (CD@QD) through theβ-CD/Fc inclusion complexation. A supramolecular hydrogel (Fc-Gel), which retained the fluorescent properties of QD, was successfully prepared by in situ polymerization of Fc-SCL with N,N'-dimethylacrylamide (DMA). The inclusion complexation betweenβ-CD and Fc played a crucial role during the formation of this supramolecular hybrid hydrogel, i.e. Fc-Gel. In addition, according to the results of dynamic rheology, an apparent increase of elastic modulus (G') of Fc-Gel with increasing of Fc-SCL content was observed.
     2. Dual responsive supramolecular hydrogel with electrochemical activity.
     Based on the results from last section, the CD/Fc inclusion complex pair has been further employed for connecting the surface of QD and well-designed block copolymers, then a novel hydrogel with both thermal and electrochemical responses was designed. For this purpose, a Fc-modified RAFT chain transfer agent was synthesized. From which, block copolymer of Fc-(PDMA-b-PNIPAM) with Fc at the end was obtained by living radical polymerization. The copolymer was introduced to the surface of QD via inclusion complexation to form a "star-shape" suprastructure Fc-HIC with electrochemical responses. Hydrogel formed when the aqueous solution of Fc-HIC was heated upon the LCST of PNIPAM. The hydrophobic aggregation of PNIPAM as well as the inclusion complexation on QD surface cooperatively contributed to the formation of hydrogel. When K3Fe(CN)6 was added, Fc was transformed to its oxidized state Fc+, then the inclusion complex was dissociated, and the hydrogel turned to sol. This transition can also be achieved by adding a competitive guest, i.e. a water-soluble adamantane derivative (ADA). Because the inclusion complexation between ADA and P-CD was much stronger than that of Fc, a new complex of ADA/β-CD formed instead of Fc/β-CD. The dissociation of the hydrogel can be further confirmed by rheology measurements. Meanwhile, this supramolecular hydrogel showed satisfactory thermal reversible sol-gel transition, which can be controlled by heating-cooling cycles.
     3. Polymeric micelles driven by simultaneous host-guest interaction and hydrogen bonding.
     Our group focused on the study of polymer micelles driven by a single kind of interaction, for example, hydrogen bond or host-guest inclusion complexation. In this section, we try to explore the morphology transition of macromolecular self-assembles governed by two kinds of non-covalent interactions simultaneously. Random copolymers were made of methyl methacrylate (MMA) and Fc-containing monomer (Fc-M-2) by ATRP. Then the copolymer self-assembled into stable NCCMs with cyclodextrin-grafted poly(acrylic acid) (PAA-g-CD) in aqueous solutions through both hydrogen bonding and inclusion complexation. With a high Fc content in the copolymer, spherical micelles were obtained and could be further dissociated by addition of a competitive guest. By decreasing the Fc content, i.e. to increase the relative contribution of hydrogen bond, the morphology transition from spherical micelle to network structure was observed.
     4. Polymer colloids stabilized by inorganic nanoparticles based on inclusion complexation.
     The conventional methods to stabilize polymer colloids are achieved by using low-molecular-weight surfactants or solvophilic linear polymers. In this part, a new way to stabilize polymer colloids was suggested by using inorganic nanoparticles. Typically, gold nanoparticles covered by CDs (CD@AuNPs) were employed. The Fc-containing hydrophobic polymer (PFc) collapsed in aqueous solution, but formed stabilized particles under the aid of CD@AuNPs as a result of inclusion complexation between Fc from the polymer and CD on the inorganic particle surface. The results of DLS and TEM measurements showed that the spherical colloid particles were uniform with a narrow size distribution. In addition, the hybrid colloids achieved by this method kept stable for several weeks without precipitation.
引文
[1]Lehn J.-M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chem. Int. Ed., 1989,27(1):89-112.
    [2]Whitesides G. M., Mathias J. P., Seto C. T. Molecular Self-Assembly and Nanochemistry-A Chemical Strategy for the Synthesis of Nanostructures. Science, 1991,254,1312.
    [3]Whitesides G. M., Grzybowshki B. Self-Assembly at All Scales. Science,2002, 295,2418.
    [4]Singh R., Maru V. M., Moharir P. S. Complex Chaotic Systems and Emergent Phenomena. J. Nonlinear Sci.,1998,8,235.
    [5]Harada A. Cyclodextrin-Based Molecular Machines. Acc.Chem. Res.,2001,34(6): 456-464.
    [6]Szejtli J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev.,1998,98(5):1743-1753.
    [7]童林荟.环糊精化学—基础与应用.北京:科学出版社,2001:10-11.
    [8]刘育,尤长城,张衡益,超分子化学:合成受体的分子识别与组装.天津:南开大学出版社,2001.
    [9]Szejtli J., Osa T. Comprehensive Supramolecular Chemistry. Pergamon:Oxford UK,1996.
    [10]Bender M. L., Komiyama M. Cyclodextrin Chemistry. NY:Springer-Verlag, 1978.
    [11]Fromming K. H. Szejtli J. Cyclodextrins in Pharmacy. Netherlands:Kluwer Academic Press,1994.
    [12]Khan A. R., Forgo P., Stine K. J., D'Souza V. T. Methods for Selective Modifications of Cyclodextrins. Chem. Rev.,1998,98(5):1977-1996.
    [13]Connors K. A. The stability of Cyclodextrin Complexes in Solution. Chem. Rev., 1991,97(5):1325-1358.
    [14]Engeldinger E., Armspach D., Matt D., Capped Cyclodextrins. Chem. Rev.,2003, 703(11):4147-4174.
    [15]Hapiot F., Tilloy S., Monflier E. Cyclodextrins as Supramolecular Hosts for Organometallic Complexes. Chem. Rev.,2006,106(3):767-781.
    [16]Wenz G., Han B. H., Muller A. Cyclodextrin Rotaxanes and Polyrotaxanes. Chem. Rev.,2006,106(3):782-817.
    [17]Rekharsky M. V., Inoue Y. Complexation Thermodynamics of Cyclodextrins. Chem. Rev.,1998,98(5):1875-1917.
    [18]Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev.,1998,98(5):1743-1753.
    [19]Schneider H. J., Hacket F., Rudiger V. NMR Studies of Cyclodextrins and Cyclodextrin Complexes. Chem. Rev.,1998,98(5):1755-1785.
    [20]Saenger W. Cyclodextrin Inclusion Compounds in Research and Industry. Angew. Chem. Int. Ed.,1980,19(5):344-362.
    [21]Nelson G., Patonay G., Warner I. M. Fluorescence Lifetime Study of Cyclodextrin Complexes of Substituted Naphthalenes. Appl. Spectroscopy,1987, 41(7):1235-1238.
    [22]Isnin R., Salam C., Kaifer A. E. Bimodal Cyclodextrin Complexation of Ferrocene Derivatives Containing N-alkyl Chains of Varying Length. J. Org.Chem., 1991,56(1):35-41.
    [23]Harada A., Takahashi S. Preparation and Properties of Inclusion-Compounds of Cyclodextrins with Organotransition Metal-complexes. J. Macromol. Sci-Chem.,1989, 26(2-3):373-380.
    [24]Palepu R., Reinsborough V. C. β-Cyclodextrin Inclusion of Adamantane Derivatives in Solution. Aust. J. Chem.,1990,43(12):2119-2123.
    [25]Ueno A., Suzuki I., Osa T. Host-Guest Sensory Systems for Detecting Organic Compounds by Pyrene Excimer Fluorescence. Anal. Chem.,1990,62(22):2461-2466.
    [26]De la pena A. M., Ndou T., Zung J. B., Warner I. M. Stoichiometry and Formation-Constants of Pyrene Inclusion Complexes with β-Cyclodextrin and y-Cyclodextrin. J. Phys. Chem.,1991,95(8):3330-3334.
    [27]Vogtle F., Muller W. M. Complexes of y-Cyclodextrin with Crown Ethers, Cryptands, Coronates, and Cryptates. Angew. Chem. Int. Ed.,1979,18(8):623-624.
    [28]Saenger W. Cyclodextrin Inclusion Compounds in Research and Industry. Angew. Chem. Int. Ed.,1980,19(5):344-362.
    [29]Harada A., Li J., Kamachi M. Preparation and Properties of Inclusion Complexes of Poly(ethylene glycol) with a-cyclodextrin. Macromolecules,1993,26(21):5698-5703.
    [30]Kawaguchi Y., Nishiyama T., Okada M., Harada A. Kamachi M. Complex Formation of Poly(epsilon-caprolactone) with Cyclodextrins. Macromolecules,2000, 33(12):4472-4477.
    [31]Harada A., Okada M., Li J., Kamachi M. Preparation and Characterization of Inclusion Complexes of Poly(propylene glycol) with Cyclodextrins. Macromolecules, 1995,25(24):8406-8411.
    [32]Harada A., Okada M. Complex Formation between Hydrophobic Polymers and Methylated Cyclodextrins. Oligo(ethylene) and Poly(propylene). Polym. J.,1999, 31(11):1095-1098.
    [33]Harada A., Li J., Kamachi M. Complex-Formation between Poly(methyl Vinyl ether) and y-Cyclodextrin. Chem. Lett.,1993, (2):237-240.
    [34]Okumura H., Okada M., Kawaguchi Y., Harada A. Complex Formation between Poly(dimethylsiloxane) and Cyclodextrins:New Pseudo-polyrotaxanes Containing Inorganic Polymers. Macromolecules,2000,33(12):4297-4298.
    [35]Harada A., Suzuki S., Okada M, Kamachi M. Preparation and Characterization of Inclusion Complexes of Polyisobutylene with Cyclodextrins. Macromolecules, 1996,29(17):5611-5614.
    [36]Asanuma H., Kakazu M., Shibata M., Hishiya T., Komiyama, M. Molecularly Imprinted Polymer of β-Cyclodextrin for the Efficient Recognition of Cholesterol. Chem. Commun.,1997, (20):1971-1972.
    [37]Harada A., Kamachi M. Complex-Formation between Poly(ethylene glycol) and a-Cyclodextrin. Macromolecules,1990,23(10):2821-2823.
    [38]Zhao S. P., Zhang L. M., Ma D. Supramolecular Hydrogels Induced Rapidly by Inclusion Complexation of Poly(epsilon-caprolactone)-Poly(ethylene glycol)-Poly(epsilon-caprolactone) Block Copolymers with a-cyclodextrin in Aqueous Solutions. J. Phys. Chem.B,2006,110(25):12225-12229.
    [39]Li J., Li X., Zhou Z. H., Ni X. P., Leong K. W. Formation of Supramolecular Hydrogels Induced by Inclusion Complexation between Pluronics and a-cyclodextrin. Macromolecules,2001,34(21):7236-7237.
    [40]Zhu X. Y., Chen L., Yan D. Y., Chen Q., Yao Y. F., Xiao Y., Hou J., Li J. Y. Supramolecular Self-assembly of Inclusion Complexes of a Multiarm Hyperbranched Polyether with Cyclodextrins. Langmuir,2004,20(2):484-490.
    [41]Sabadini E., Cosgrove T. Inclusion Complex Formed between Star-Poly(ethylene glycol) and Cyclodextrins. Langmuir,2003,19(23):9680-9683.
    [42]Sabadini E., Cosgrove T., Taweepreda W. Complexation between a-Cyclodextrin and Poly(ethylene oxide) Physically Adsorbed on the Surface of Colloidal Silica. Langmuir,2003,19(11):4812-4816.
    [43]Guo M. Y., Jiang M., Pispas S., Yu W., Zhou C. X. Supramolecular Hydrogels Made of End-Functionalized Low-Molecular-Weight PEG and a-Cyclodextrin and Their Hybridization with SiO2 Nanoparticles through Host-Guest Interaction. Macromolecules,2008,41(24):9744-9749.
    [44]Wang Z. M, Chen Y. M. Supramolecular Hydrogels Hybridized with Single-Walled Carbon Nanotubes. Macromolecules,2007,40(9):3402-3407.
    [45]Zu S.-Z., Han B.-H. Aqueous Dispersion of Graphene Sheets Stabilized by Pluronic Copolymers:Formation of Supramolecular Hydrogel. J. Phys. Chem. C, 2009,113(31):13651-13657.
    [46]Jing B., Chen X., Wang X. D., Zhao Y. R., Qiu H. Y. Sol-Gel-Sol Transition of Gold Nanoparticle-Based Supramolecular Hydrogels Induced by Cyclodextrin Inclusion. Chem. Phys. Chem.,2008,9(2):249-252.
    [47]Ma D., Xie X., Zhang L. M. A Novel Route to In-Situ Incorporation of Silver Nanoparticles into Supramolecular Hydrogel Networks. J. Polym. Sci., Part B:Polym. Phys.,2009,47(7):740-749.
    [48]Ma D., Zhang L. M. Fabrication and Modulation of Magnetically Supramolecular Hydrogels. J. Phys. Chem. B.,2008,112(20):6315-6321.
    [49]Huh K. M., Ooya T., Lee W. K., Sasaki S., Kwon I. C, Jeong S. Y., Yui N. Supramolecular-Structured Hydrogels Showing a Reversible Phase Transition by Inclusion Complexation between Poly(ethylene glycol) Grafted Dextran and a-Cyclodextrin. Macromolecules,2001,34(25):8657-8662.
    [50]Choi H. S., Kontani K., Huh K. M., Sasaki S., Ooya T., Lee W. K., Yui N. Rapid Induction of Thermoreversible Hydrogel Formation Based on Poly(propylene glycol)-Grafted Dextran Inclusion Complexes. Macromol. Biosci.,2002,2(6):298-303.
    [51]Huh K. M., Cho Y. W., Chung H., Kown I. C., Jeong S. Y., Ooya T., Lee W. K., Sasaki S. Supramolecular Hydrogel Formation Based on Inclusion Complexation between Poly(ethylene glycol)-Modified Chitosan and a-cyclodextrin. Macromol. Biosci.,2004,4(2):92-99.
    [52]Li J., Loh X. J. Cyclodextrin-Based Supramolecular Architectures:Syntheses, Structures, and Applications for Drug and Gene Delivery. Adv. Drug Del. Rev.,2008, 60(9):1000-1017.
    [53]Kidowaki M., Zhao C. M., Kataoka T., Ito K. Thermoreversible Sol-Gel Transition of an Aqueous Solution of Polyrotaxane Composed of Highly Methylated a-Cyclodextrin and Polyethylene Glycol. Chem. Commun.,2006, (39):4102-4103.
    [54]Karino T., Okumura Y., Zhao C. M., Kidowaki M., Kataoka T., Ito K., Shibayama M. Sol-gel Transition of Hydrophobically Modified Polyrotaxane. Macromolecules,2006,39(26):9435-9440.
    [55]Kataoka T., Kidowaki M., Zhao C. M., Minamikawa H., Shimizu T., Ito K. Local and Network Structure of Thermoreversible Polyrotaxane Hydrogels Based on Poly(ethylene glycol) and Methylated a-Cyclodextrins. J. Phys. Chem. B,2006, 110(48):24377-24383.
    [56]Duan Q., Miura Y., Narumi A., Shen X. D., Sato S.-I., Satoh T., Kakuchi T. Synthesis and Thermoresponsive Property of End-Functionalized Poly(N-isopropylacrylamide) with Pyrenyl Group. J. Poly. Sci. Part A,2006,44:1117-1124.
    [57]Wintgens V., Charles M., Allouache F., Amiel C. Triggering the Thermosensitive Properties of Hydrophobically Modified Poly(N-isopropylacrylamide) by Complexation with Cyclodextrin Polymers. Macromol. Chem. Phys.,2005,206(18):1853-1861.
    [58]Kretschmann O., Choi S. W., Miyauchi M., Tomatsu I., Harada A., Ritter H. Switchable Hydrogels Obtained by Supramolecular Cross-Linking of Adamantyl-Containing LCST Copolymers with Cyclodextrin Dimers. Angew. Chem. Int. Ed., 2006,45(26):4361-4365.
    [59]Lee S. C., Choi H. S., Ooya T., Yui N. Block-Selective Polypseudorotaxane Formation in PEI-b-PEG-b-PEI Copolymers via pH Variation. Macromolecules,2004, 37(20):7464-7468.
    [60]Liu Y.-Y., Fan X.-D., Kang T., Sun L. A Cyclodextrin Microgel for Controlled Release Driven by Inclusion Effects. Macromol. Rapid. Commun.,2004,25(22): 1912-1916.
    [61]Choi H. S., Yui N. Design of Rapid Assembling Supramolecular Systems Responsive to Synchromized Stimuli. Prog. Polym. Sci.,2006,31(2):121-144.
    [62]Huang J., Ren L. X., Chen Y. M. pH-Temperature-Sensitive Supramolecular Micelles Based on Cyclodextrin Polyrotaxane. Polym. Int.,2008,57(5):714-721.
    [63]Wan P. B., Chen Y. Y., Xing Y. B., Chi L. F., Zhang X. Combining Host-Guest Systems with Nonfouling Material for the Fabrication of a Biosurface:Toward Nearly Complete and Reversible Resistance of Cytochrome c. Langmuir,2010,26(15): 12515-12517.
    [64]Wan P. B., Wang Y. P., Jiang Y. G., Xu H. P., Zhang X. Fabrication of Reactivated Biointerface for Dual-Controlled Reversible Immobilization of Cytochrome c.Adv. Mater.,2009,21(43):4362-4365.
    [65]Yuan R. X., Shuai X. T. Supramolecular Micellization and pH-Inducible Gelation of a Hydrophilic Block Copolymer by Block-Specific Threading of α-Cyclodextrin. J. Poly. Sci.,Part B:Polym. Phys.,2008,46(8):782-790.
    [66]Tomatsu I., Hashidzume A., Harada A. Photoresponsive Hydrogel System Using Molecular Recognition of a-Cyclodextrin. Macromolecules,2005,38(12):5223-5227.
    [67]Zheng P. J., Hu X., Zhao X. Y., Li L., Tam K. C. Gan L. H. Photoregulated Sol-Gel Transition of Novel Azobenzene-Functionalized Hydroxypropyl Methylcellulose and Its a-Cyclodextrin Complexes. Macromol. Rapid. Commun.,2004,25(5):678-682.
    [68]Wang Y. P., Ma N., Wang Z. Q., Zhang X. Photocontrolled Reversible Supramolecular Assemblies of an Azobenzene-Containing Surfactant with α-Cyclodextrin. Angew. Chem. Int. Ed.,2007,46(16):2823-2826.
    [69]Wang Y. P., Zhang M., Moers C, Chen S. L. Xu H. P., Wang Z. Q., Zhang X., Li Z. B. Block Copolymer Aggregates with Photo-Responsive Switches:Towards a Controllable Supramolecular Container. Polymer,2009,50(20):4821-4828.
    [70]Jog P. V., Gin M. S. A Light-Gated Synthetic Ion Channel. Org Lett.,2008, 10(17):3693-3696.
    [71]Ferris D. P., Zhao Y. G., Khashab, N. M., Khatib H. A., Stoddart J. F., Zink J. I. Light-Operated Mechanized Nanoparticles. J. Am. Chem. Soc.,2009,131(5):1686-1688.
    [72]Liu Z., Jiang M. Reversible Aggregation of Gold Nanoparticles Driven by Inclusion Complexation, J. Mater. Chem.,2001,17(40):4249-4254.
    [73]Wan P. B., Jiang Y. G., Wang Y. P., Wang Z. Q., Zhang X. Tuning Surface Wettability through Photocontrolled Reversible Molecular Shuttle. Chem. Commun., 2008,(44):5710-5712.
    [74]Tomatsu I., Hashidzume A., Harada A. Contrast Viscosity Changes upon Photoirradiation for Mixtures of Poly(acrylic acid)-Based a-Cyclodextrin and Azobenzene Polymers. J. Am. Chem. Soc.,2006,128 (7):2226-2227.
    [75]Pouliquen G., Amiel C, Tribet C. Photoresponsive Viscosity and Host-Guest Association in Aqueous Mixtures of Poly-Cyclodextrin with Azobenzene-Modified Poly(acrylic)acid. J. Phys. Chem. B.,2007,111(20):5587-5595.
    [76]Liao X. J., Chen G. S., Liu X. X., Chen W. X., Chen F. E., Jiang, M. Photoresponsive Pseudopolyrotaxane Hydrogels Based on Competition of Host-Guest Interactions. Angew. Chem. Int. Ed,2010,49(26):4409-4413.
    [77]Liao X. J., Chen G. S., Jiang M. Pseudopolyrotaxanes on Inorganic Nanoplatelets and Their Supramolecular Hydrogels. Langmuir,2011,27(20):12650-12656.
    [78]Zhao Y. L., Stoddart J. F. Azobenzene-Based Light-Responsive Hydrogel System. Langmuir,2009,25(15):8442-8446.
    [79]Peng K., Tomatsu I., Kros A. Light Controlled Protein Release from a Supramolecular Hydrogel. Chem. Commun.,2010,46(23):4094-4096.
    [80]Zou J., Tao F. G., Jiang M. Optical Switching of Self-Assembly and Disassembly of Noncovalently Connected Amphiphiles. Langmuir,2007,23(26): 12791-12794.
    [81]Zou J., Guan B., Liao X. J., Jiang M. Tao F. G. Dual Reversible Self-Assembly of PNIPAM-Based Amphiphiles Formed by Inclusion Complexation. Macromolecules,2009,42(19):7465-7473.
    [82]Jin Q. A., Liu G. Y., Liu X. S., Ji J. Photo-Responsive Supramolecular Self-Assembly and Disassembly of an Azobenzene-Containing Block Copolymer. Soft Matter,2010,6(21):5589-5595.
    [83]Kuad P., Miyawaki A., Takashima Y., Yamaguchi H., Harada A. External Stimulus-Responsive Supramolecular Structures Formed by a Stilbene Cyclodextrin Dimer. J. Am. Chem. Soc.,2007,129(42):12630-12631.
    [84]Lahav M., Ranjit K. T., Katz E., Willner I. A β-Amino-Cyclodextrin Monolayer-Modified Au Electrode:A Command Surface for the Amperometric and Microgravimetric Transduction of Optical Signals Recorded by a Photoisomerizable Bipyridinium-Azobenzene Diad. Chem. Commun.,1997, (3):259-260.
    [85]Cromwell W. C, Bystrom K., Eftink M. R. Cyclodextrin Adamantanecarboxylate Inclusion Complexes-Studies of the Variation in Cavity Size. J. Phys. Chem.,1985,89(2):326-332.
    [86]Dorokhin D., Tomczak N., Han M. Y., Reinhoudt D. N., Velders A. H., Vancso G. J. Reversible Phase Transfer of (CdSe/ZnS) Quantum Dots between Organic and Aqueous Solutions. Acs.nano.,2009,3(3):661-667.
    [87]Park C., Lee I. H., Lee S., Song Y., Rhue M., Kim C. Cyclodextrin-Covered Organic Nanotubes Derived from Self-Assembly of Dendrons and Their Supramolecular Transformation. PNAS.,2006,103(5):1199-1203.
    [88]Deng W., Yamaguchi H., Takashima Y., Harada A. Construction of Chemical-Responsive Supramolecular Hydrogels from Guest-Modified Cyclodextrins. Chem. Asian J.2008,3(4):687-695.
    [89]Tamesue S., Takashima Y., Yamaguchi H., Shinkai S., Harada, A. Photochemically Controlled Supramolecular Curdlan/Single-Walled Carbon Nanotube Composite Gel:Preparation of Molecular Distaff by Cyclodextrin Modified Curdlan and Phase Transition Control. Eur. J. Org. Chem.,2011, (15):2801-2806.
    [90]Sabapathy R. C., Bhattacharyya S., Cleland W. E., Hussey C. L. Host-Guest Complexation in Self-Assembled Monolayers:Inclusion of a Monolayer-Anchored Cationic Ferrocene-Based Guest by Cyclodextrin Hosts. Langgmuir,1998,14(14): 3797-3807.
    [91]Beulen M. W. J., Bugler J., Lammerlink B., Geurts F. A. J., Biemond, E. M. E. F., van Leerdam K. G. C., van Veggel F. C. J. M., Engbersen J. F. J., Reinhoudt D. N. Self-Assembled Monolayers of Heptapodant β-Cyclodextrins on Gold. Langmuir, 1998,14(22):6424-6429.
    [92]Rojas M. T., Koniger R., Stoddart J. F.. Kaifer A. E. Supported Monolayers Containing Preformed Binding-Sites. Synthesis and Interfacial Binding Properties of a Thiolated β-Cyclodextrin Derivative. J. Am. Chem. Soc.,1995,117(1):336-343.
    [93]Liu J., Alvarez J., Ong W., Roman E., Kaifer A. E. Tuning the Catalytic Activity of Cyclodextrin-Modified Palladium Nanoparticles through Host-Guest Binding Interactions. Langmuir,2001,17(22):6762-6764.
    [94]Liu J., Mendoza S., Roman E., Lynn M. J., Xu R. L., Kaifer A. E. Cyclodextrin-modified gold nanospheres. Host-Guest Interactions at Work to Control Colloidal Properties.J.Am. Chem. Soc.,1999,121(17):4304-4305.
    [95]Chen M., Diao G. W. Electrochemical Study of Mono-6-thio-β-Cyclodextrin/Ferrocene Capped on Gold Nanoparticles:Characterization and Application to the Design of Glucose Amperometric Biosensor. Talanta,2009,80(2): 815-820.
    [96]D. L. Rica R., Fratila R. M., Szarpak A., Huskens J., Velders A. H. Multivalent Nanoparticle Networks as Ultrasensitive Enzyme Sensors. Angew. Chem. Int. Ed, 2011,50(25):5704-5707.
    [97]Wilkinson G. The Structure of Iron Bis-cyclopentadienyl. J. Am. Chem. Soc., 1952,74(8):2125-1952.
    [98]Chauhan R., Trivedi M., Bahadur L., Kumar A. Application of pi-Extended Ferrocene with Varied Anchoring Groups as Photosensitizers in TiO2-Based Dye-Sensitized Solar Cells (DSSCs). Chem-Asian J.,2011,6(6):1525-1532.
    [99]Chen S., Lu J. X., Sun C. D., Ma H. M. A Highly Specific Ferrocene-Based Fluorescent Probe for Hypochlorous Acid and Its Application to Cell Imaging. Analyst,2010,135(3):577-582.
    [100]Nishikitani Y., Uchida S., Asano T., Minami M., Oshima S., Ikai K., Kubo T. Photo- and Electrochemical Properties of Linked Ferrocene and Viologen Donor-Acceptor-Type Molecules and Their Application to Electrochromic Devices. J. Phys. Chem. Soc.,2008,112(11):4372-4377.
    [101]Van Staveren D. R., Metzler-Nolte N. Bioorganometallic Chemistry of Ferrocene. Chem. Rev.,2004,104(12):5931-5985.
    [102]Miller J. S. et. al.. Molecular/Organic Ferromagnets. Science,1988,240:40.
    [103]Long N. J. Organometallic Compounds for Nolinear Optics-the Search for En-light-Enment. Angew. Chem. Int. Ed.,1995,34(1):21-38.
    [104]Harada A., Takahashi S. Preparation and Properties of Cyclodextrin-Ferrocene Inclusion Complexes. J. Chem. Soc., Chem. Commun.,1984, (10):645-646.
    [105]Isnin R., Salam C., Kaifer A. E. Biomodal Cyclodextrin Complexation of Ferrocene Derivatives Containing n-Alkyl Chains of Varing Length. J. Org. Chem., 1991,56(1):35-41.
    [106]Matsue T., Evans D. H., Osa T., Kobayashi N. Electron-Transfer Reactions Associated with Host-Guest Complexation. Oxidation of Ferrocenecarboxylic Acid in the Presence of β-Cyclodextrin. J. Am. Chem. Soc.,1985,107, (12):3411-3417.
    [107]Matsue T., Kato T., Akiba U., Osa T. Acceleration Effect of β-Cyclodextrin on Electrocatalytic Oxidation of Nadh by Ferrocenecarboxylic Acid. Chem. Lett.,1986, (6):843-846.
    [108]Kobayashi N., Osa T. Inclusion of Ferrocenecarboxylic Acid and Its Carboxylate Anion by P-Cyclodextrin as Observed by Induced Circular-Dichroism. Chem. Lett.,1986, (3):421-424.
    [109]Isnin R., Kaifer A. E. Novel Class of Asymmetric Zwitterionic Rotaxanes Based on a-Cyclodextrin. J. Am. Chem. Soc.,1991,113(21):8188-8190.
    [110]Thiem H. J., Brandl M., Breslow R. Molecular Modeling Calculations on the Acylation of β-Cyclodextrin by Ferrocenylacrylate Esters. J. Am. Chem. Soc.,1988, 110(26):8612-8616.
    [111]Schmitz S., Ritter H. Unusual Solubility Properties of Polymethacrylamides as a Result of Supramolecular Interactions with Cyclodextrin. Angew. Chem. Int. Ed., 2005,44(35):5658-5661.
    [112]Cho S. Y., Allcock H. R. Synthesis of Adamantyl Polyphosphazene-Polystyrene Block Copolymers, and (3-Cyclodextrin-Adamantyl Side Group Complexation. Macromolecules,2009,42(13):4484-4490.
    [113]Zuo F., Luo C, Ding X., Zheng A., Cheng X., Peng Y. Redox-Responsive Inclusion Complexation between β-Cyclodextrin and Ferrocene-Functionalized Poly(N-isopropylacrylamide) and Its Effect on the Solution Properties of this Polymer. Supramol. Chem.,2008,20(6):559-564.
    [114]Zhu L. Z., Shangguan Y. G., Sun Y. X., Ji J., Zheng Q. Rheological Properties of Redox-Responsive, Associative Ferrocene-Modified Branched Poly(ethylene imine) and Its Modulation by β-Cyclodextrin and Hydrogen Peroxide. Soft Matter,2010, 6(21):5541-5546.
    [115]Castro R., Cuadrado I., Alonso B., Casado C. M., Mor'an M., Kaifer A. E. Multisite Inclusion Complexation of Redox Active Dendrimer Guests. J. Am. Chem. Soc.,1997,119 (24):5760-5761.
    [116]Nijhuis C. A., Yu F., Knoll W., Huskens J., Reinhoudt D. N. Multivalent Dendrimers at Molecular Printboards:Influence of Dendrimer Structure on Binding Strength and Stoichiometry and Their Electrochemically Induced Desorption. Langmuir,2005,21(17):7866-7876.
    [117]Nijhuis C. A., Huskens J., Reinhoudt D. N. Binding Control and Stoichiometry of Ferrocenyl Dendrimers at a Molecular Printboard. J. Am. Chem. Soc.,2004, 126(39):12266-12267.
    [118]Gonzalez B., Casado C. M., Alonso B., Cuadrado I., Moran M., Wang Y., Kaifer A. E. Synthesis, Electrochemistry and Cyclodextrin Binding of Novel Cobaltocenium-Functionalized Dendrimers. Chem. Commun.,1998, (23):2569-2570.
    [119]Takada K., Diaz D. J., Abruna H. D., Cuadrado I., Gonzalez B., Casado C. M., Alonso B., Moran M., Losada J. Cobaltocenium-Functionalized Poly(propylene imine) Dendrimers:Redox and Electromicrogravimetric Studies and AFM Imaging. Chem. Eur. J.,2001,7(5):1109-1117.
    [120]Conzalez B., Cuadrado I., Casado C. M., Alonso B., Pastor C. J. Reaction of (Chlorocarbonyl) Metallocenes of Iron and Cobalt with 1,4-Diaminobutane:Synthesis of a Heterobimetallic Ferrocene-Cobaltocenium Complex. Organometallies,2000, 19(25):5518-5521.
    [121]Casado C. M., Conzalez B., Cuadrado I., Alonso B., Moran M., Losada J. Mixed Ferrocene-Cobaltocenium Dendrimers:The Most Stable Organometallic Redox Systems Combined in a Dendritic Molecule. Angew. Chem. Int. Ed.,2000, 39(12):2135-2138.
    [122]Conzalez B., Cuadrado I., Alonso B., Casado C. M., Moran M., Kaifer A. Mixed Cobaltocenium-Ferrocene Heterobimetallic Complexes and Their Binding Interactions with β-cyclodextrin. A Three-state, Host-Guest System under Redox Control. Orgamometallics,2002,21(17):3544-3551.
    [123]Beulen M. J. W., Bugler J., De Jong M. R., Lammerink B., Huskens J., Schonherr Vancso G. J., Boukamp B. A., Wieder H., Offenhauser A., Knoll W., Van Veggel F. C. J. M., Reinhoudt D. N. Host-Guest Interactions at Self-Assembled Monolayers of Cyclodextrins on Gold. Chem. Eur. J.,2000,6(7):1176-1183.
    [124]Onclin S., Mulder A., Huskens J., Ravoo B. J., Reinhoudt D. N. Molecular Printboards:Monolayers of β-Cyclodextrins on Silicon Oxide Surfaces. Langmuir, 2004,20(13):5460-5466.
    [125]Nijhuis C. A., Sinha J. K., Wittstock G., Huskens J., Ravoo B. J., Reinhoudt D. N. Controlling the Supramolecular Assembly of Redox-Active Dendrimers at Molecular Printboards by Scanning Electrochemical Microscopy. Langmuir,2006,22 (23):9770-9775.
    [126]Dong T. Y., Chang C. K., Cheng C. H., Lee S. H., Lai L. L., Chiang M. Y. N., Lin K. J. Intramolecular Electron Transfer In Mixed-Valence Biferrocenium Salts Containing Heteroatoms:Preparation, Structure, and Fe-57 Mossbauer Characteristics. Organometallics,1997,16(26):5816-5825.
    [127]Nishihara H., Murata M. Electron Transfer in Ferrocene-Containing pi-Conjugated Polymers. J. lnorg. Organomet. Pol. Mater.,2005,15(l):147-156.
    [128]Nijuis C. A., Dolatowska K. A., Ravoo B. J., Huskens J., Reinhoudt D. N. Redox-Controlled Interaction of Biferrocenyl-Terminated Dendrimers with β-Cyclodextrin Molecular Printboards. Chem. Eur. J.,2007,13(1):69-80.
    [129]Dubacheva, G., Van Der Heyden, A., Dumy, P., Kaftan, O., Auzely-Velty, R., Coche-Guerente, L., Labbe, P. Electrochemically Controlled Adsorption of Fc-Functionalized Polymers on β-CD-Modified Self-Assembled Monolayers. Langmuir, 2010,26(17):13976-13986.
    [130]Xu, L. Q., Wan, D., Gong, H. F. F., Neoh, K. G., Kang, E. T., Fu, G. D., One-Pot Preparation of Ferrocene-Functionalized Polymer Brushes on Gold Substrates by Combined Surface-Initiated Atom Transfer Radical Polymerization and "Click Chemistry". Langmuir,2010,26(19):15376-15382.
    [131]Tsuchiya K., Sakai H., Saji T., Abe M. Electrochemical Reaction in an Aqueous Solution of a Ferrocene-Modified Cationic Surfactant Mixed with an Anionic Surfactant. Langmuir,2003,19(22):9343-9350.
    [132]Sakai H., Imamura H., Kondo Y., Yoshino N., Abe M. Reversible Control of Vesicle Formation Using Electrochemical Reaction. Colloids Surf., A,2004,232(2-3): 221-228.
    [133]Aydogan N., Aldis N. Tuning Surface Tension and Aggregate Shape via a Novel Redox Active Fluorocarbon-Hydrocarbon Hybrid Surfactant. Langmuir,2006, 22(5):2028-2033.
    [134]Li Q. H., Chen X., Jing B., Zhao Y. R., Ma F. M. Redox Switched Transition of Vesicles Self-Assembled from AOT and Ferrocene Derivative Molecules. Colloids Surf., A,2010,355(1-3):146-150.
    [135]Zhang H. C., An W., Liu Z. N., Hao A. Y., Hao J. C., Shen J., Zhao X. H. Redox-Responsive Vesicles Prepared from Supramolecular Cyclodextrin Amphilies. Carbohydr. Res.,2010,345(1):87-96.
    [136]An W., Zhang H. C., Sun L. Z., Hao A. Y., Hao J. C., Xin F. F. Reversible Vesicles Based on One and Two Head Supramolecular Cyclodextrin Amphiphile Induced by Methanol. Carbohydr. Res.,2010,345(7):914-921.
    [137]Yan Q., Yuan J. Y., Cai Z. N., Xin Y., Kang Y., Yin Y. W. Voltage-Responsive Vesicles Based on Orthogonal Assembly of Two Homopolymers. J. Am. Chem. Soc., 2010,132(27):9268-9270.
    [138]严军林,刘静,陈希,房喻.基于主客体作用的多重刺激响应型超分子水凝胶的制备及性能.高等学校化学学报.2008,29(1):124-129.
    [139]Liu J., Yan J. L., Yuan X. W., Liu K. Q., Peng J. X., Fang Y. A Novel Low-Molecular-Mass Gelator with a Redox Active Ferrocenyl Group:Tuning Gel Formation by Oxidation. J. Colloid Interface Sci.,2008,318(48):397-404.
    [140]Tomatsu T., Hashidzume A., Harada A. Redox-Responsive Hydrogel System Using the Molecular Recognition of β-Cyclodextrin. Macromol. Rapid. Commun., 2006,27(4):238-241.
    [141]Angelos S., Yang Y.-W., Khashab N. M., Stoddart J. F., Zink J. I. Dual-Controlled Nanoparticles Exhibiting AND Logic. J. Am. Chem. Soc.,2009, 131(32):11344-11346.
    [142]Park C., Lee K., Kim C. Photoresponsive Cyclodextrin-Covered Nanocontainers and Their Sol-Gel Transition Induced by Molecular Recognition. Angew. Chem. Int. Ed.,2009,48(7):1275-1278.
    [143]Zhao Y. L., Li Z. X., Kabehie S., Botros Y. Y., Stoddart J. F., Zing J. I. pH-Operated Nanopistons on the Surfaces of Mesoporous Silica Nanoparticles. J. Am. Chem. Soc.,2010,132(37):13016-13025.
    [144]Angelos S., Khashab N. M, Yang Y. W., Trabollsi A., Khatib H. A., Stoddart J. F., Zink J. I. pH-Clock-Operated Mechanized Nanoparticles. J. Am. Chem. Soc.,2009, 131(36):12912-12914
    [145]Angelos S., Yang Y. W., Patel K., Stoddart J. F., Zink J. I. pH-Responsive Supramolecular Nanovalves Based on Cucurbit[6]uril Pseudorotaxanes. Angew. Chem. Int. Ed.,2008,47(12):2222-2226.
    [146]Thomas C. R., Ferris D. P., Lee J.-H., Choi E., Cho M. H., Kim E. S., Stoddart J. F., Shin J.-S., Cheon J., Zink J. I. Noninvasive Remote-Controlled Release of Drug Molecules in Vitro Using Magnetic Actuation of Mechanized Nanoparticles. J. Am. Chem. Soc.,2010,132(31):10623-10625.
    [147]Khashab N. M., Trabolsi A., Lau Y. A., Ambrogio M. W., Friedman D. C., Khatib H. A., Zink J. I., Stoddart J. F. Redox- and pH-Controlled Mechanized Nanoparticles. Eur. J. Org. Chem.,2009, (11):1669-1673.
    [148]Chen Y.-F., Banerjee I. P., Yu L. T., Djalali R., Matsui H. Attachment of Ferrocene Nanotubes on β-Cyclodextrin Self-Assembled Monolayers with Molecular Recognitions. Langmuir,2004,20(20):8409-8413.
    [149]Nijhuis C. A., Ravoo B. J., Huskens J., Reinhoudt D. N. Electrochemically Controlled Supramolecular Systems. Coord. Chem. Rev.,2007,251(13-14):1761-1780.
    [150]Ko Y. H., Kim E., Hwang I., Kim K. Supramolecular Assemblies Built with Host-Stabilized Charge-Transfer Interactions. Chem. Commun.,2007, (13):1305-1315.
    [151]Jeon W. S., Kim H. J., Lee C., Kim K. Control of the Stoichiometry in Host-Guest Complexation by Redox Chemistry of Guests:Inclusion of Methylviologen in Cucurbit[8]uril. Chem. Commun.,2002, (17):1828-1829.
    [152]Morzoian A., Kaifer A. E. Reactive Pseudorotaxanes:Inclusion Complexation of Reduced Viologens by the Hosts β-cyclodextrin and Heptakis(2,6-di-O-methyl)-β-cyclodextrin. Chem. Eur. J.,1997,3(7):1052-1058.
    [153]Lee, J. W., Samal, S., Selvapalam, N., Kim, H.-J, Kim, K. Cucurbituril Homologues and Derivatives:New Opportunities in Supramolecular Chemistry. Acc. Chem. Res.,2003,36(8):621-630.
    [154]Jeon W. S., Moon K., Park S. H., Chun H., Ko Y. H., Lee J. Y., Lee E. S., Samal S., Selvapalam N., Rekharsky M. V., Sindelar V., Sobransingh D., Inoue Y., Kaifer A. E., Kim K. Complexation of Ferrocene Derivatives by the Cucurbit[7]uril Host:A Comparative Study of the Cucurbituril and Cyclodextrin Host Families. J. Am. Chem. Soc.,2005,127(37):12984-12989.
    [155]Kim K., Selvapalam N., Oh D. H. Cucurbiturils-a New Family of Host Molecules. Incl. Phenom.2004,50(1-2):31-36.
    [156]Kim K. Mechanically Interlocked Molecules Incorporating Cucurbituril and Their Supramolecular Assemblies. Chem. Soc. Rev.,2002,31(2):96-107.
    [157]Issacs L., Park S.-K., Liu S., Ko Y. H., Selvapalam N., Kim Y., Kim H., Zavalij P. Y., Kim G. H., Lee H. S., Kim K. The Inverted Cucurbit[n]uril Family. J. Am. Chem. Soc.,2005,127(51):18000-18001.
    [158]Kim D., Kim E., Lee J., Hong S., Sung W., Lim N., Park C. G., Kim K. Direct Synthesis of Polymer Nanocapsules:Self-Assembly of Polymer Hollow Spheres through Irreversible Convalent Bond Formation. J. Am. Chem. Soc.,2010,132(28): 9908-9919.
    [159]Kim E., Kim D., Jung H., Lee J., Paul S., Selvapalam N., Yang Y., Lim N., Park C. G., Kim K. Facile, Template-Free Synthesis of Stimuli-Responsive Polymer Nanocapsules for Targeted Drug Delivery. Angew. Chem. Int. Ed.,2010,49(26): 4405-4408.
    [160]Liu L., Zhao N., Scherman O. A., Ionic liquids as Novel Guests for Cucurbit[6]uril in Neutral Water. Chem Commun.,2008, (9):1070-1072.
    [161]Jiao D. Z., Biedermann F., Scherman O. A. Size Selective Supramolecular Cages from Aryl-Bisimidazolium Derivatives and Cucurbit[8]uril. Org. lett.,2011, 13(12):3044-3047.
    [163]Biedermann F., Rauwald U., Cziferszky M., Williams K. A., Gann L. D., Guo B. Y., Urbach A. R., Bielawshi C. W., Scherman O. A. Benzobis(imidazolium)-Cucurbit[8]uril Complexes for Binding and Sensing Aromatic Compounds in Aqueous Solution. Chem. Eur. J.,2010,16(46):13716-13722.
    [164]Rauwald U., Barrio J. D., Loh X. J., Scherman O. A. "One-demand" Control of Thermoresponsive Properties of Poly(N-isopropylacrylamide) with Cucurbit[8]uril Host-Guest Complexes. Chem. Commun.,2011,47(21):6000-6002.
    [165]Gadde S., Batchelor E. K., Weiss J. P., Ling Y. H., Kaifer A. E. Control of H- and J-Aggregate Formation via Host-Guest Complexation Using Cucurbituril Hosts. J. Am. Chem. Soc.,2008,130(50):17114-17119.
    [166]Ogoshi T., Masuda K., Yamagishi T. A., Nakamoto Y. Side-Chain Polypseudorotaxanes with Heteromacrocyclic Receptors of Cyclodextrins (CDs) and Cucurbit[7]uril (CB7):Their Contrast Lower Critical Solution Temperature Behavior with a-CD, y-CD, and CB7. Macromolecules,2009,42(21):8003-8005.
    [167]Tuncel D., Steinke J. H. G. Catalytic Self-Threading:A New Route for the Synthesis of Polyrotaxanes. Macromolecules,2004,37(2):288-302.
    [168]Munteanu M., Choi S. W., Ritter H. Cyclodextrin-Click-Cucurbit[6]uril: Combi-Receptor for Supramolecular Polymer Systems in Water. Macromolecules, 2009,42(12):3887-3891.
    [169]Tian F., Cheng N., Nouvel N., Geng J., Scherman O. A. Site-Selective Immobilization of Colloids on Au Substates via a Noncovalent Supramolecular "Handcuff. Langmuir,2010,26(8):5323-5328.
    [170]Tian F., Cziferszky M., Jiao D. Z., Wahlstrom K., Geng J., Scherman O. A. Peptide Separation through a CB[8]-Mediated Supramolecular Trap-and-Release Process. Langmuir,2011,27(4):1387-1390.
    [171]Jeon Y. J., Bharadwai P. K., Choi S. W., Lee J. W., Kim K. Supramolecular Amphiphiles:Spontaneous Formation of Vesicles Triggered by Formation of a Charge-Transfer Complex in a Host. Angew. Chem. Int. Ed.,2002,41(23):4474-4476.
    [172]Geng J., Biedermann F., Zayed J. M., Tian F., Scherman O. A. Supramolecular Glcopolymers in Water:A Reversible Route Toward Multivalent Carbohydrate-Lectin Conjugates Using Cucurbit[8]uril. Macromolecules,2011,44(11):4276-4281.
    [173]Coulston R. J., Jones S. T., Lee T. C, Appel E. A., Scherman O. A. Supramolecular Gold Nanoparticle-Polymer Composites Formed in Water with Cucurbit[8]uril. Chem. Commun.,2011,47(1):164-166.
    [174]Ko H. Y., Kim E., Hwang I., Kim K. Supramolecular Assemblies Built with Host-Stabilized Charge-Transfer Interactions. Chem. Commun.,2007, (13):1305-1315.
    [175]Jeon W. S., Kim E., Ko Y. H., Hwang I., Lee J. W., Kim S. Y., Kim H. J., Kim K. Molecular Loop Lock:A Redox-Driven Molecular Machine Based on a Host-Stablized Charge-Transfer Complex. Angew. Chem. Int. Ed,2005,44(1):87-91.
    [176]Yu S. Y., Azzam T., Bouiller I., Eisenberg A. "Breathing" Vesicles. J. Am. Chem. Soc.,2009,131(30):10557-10566.
    [177]Moffitt M., Khougaz K., Eisenberg A. Micellization of Ionic Block Copolymers. Ace. Chem. Res.,1996,29(2):95-102.
    [178]江明,Esienberg A.,刘国军,张希等著.大分子自组装,第四章,高分子胶束化的新途径研究.北京:科学出版社,2006,P71-107.
    [179]Chen D. Y., Jiang M. Strategies for Constructing Polymeric Micelles and Hollow Spheres in Solution via Specific Intermolecular Interactions. Acc. Chem. Res., 2005,38(6):494-502.
    [180]Guo M. Y., Jiang M. Non-Covalently Connected Micelles (NCCMs):the Origins and Development of a New Concept. Soft Matter,2009,5(3):495-500.
    [181]Bronich T. K., Keifer P. A., Shlyakhtenko L. S., Kabanov A. V. Polymer Micelle with Cross-Linked Ionic Core. J. Am. Chem. Soc.,2005,127(23):8236-8237.
    [182]Murthy V. S., Cha J. N., Stucky G. D., Wong M. S. Charge-Driven Flocculation of Poly(L-lysine)-Gold Nanoparticle Assemblies Leading to Hollow Microspheres. J. Am. Chem. Soc.,2004,126(16):5292-5299.
    [183]Gu C. F., Chen D. Y., Jiang M. Short-Life Core-Shell Structured Nanoaggregates Formed by the Self-Assembly of PEO-b-PAA/ETC(1-(3-Dimethylaminopropyl)-3-Ethylcarbodiinide Methiodide) and Their Stabilization. Macromolecules,2004,37(4):1666-1669.
    [184]Gohy, J. F. Metallo-Supramolecular Block Copolymer Micelles. Coord. Chem. Rev.,2009,253(17-18):2214-2225.
    [185]Guillet P., Fustin C. A., Lohmeijer, B. G. G., Schubert U. S., Gohy J. F. Study of the Influence of the Metal-Ligand Complex on the Size of Aqueous Metallo-Supramolecular Micelles. Macromolecules,2006,39(16):5484-5488.
    [186]Levins A. D., Moughton A. O., O'Reilly R. K. Synthesis of Hollow Responsive Functional Nanocages Using a Metal-Ligand Complexation Strategy. Macromolecules,2008,41(10):3571-3578.
    [187]Mugemana C., Guillet P., Hoeppener S., Schubert U. S., Fustin C. A., Gohy J. F. Metallo-Supramolecular Diblock Copolymers Based on Heteroleptic Cobalt(III) and Nickel(Ⅱ) Bis-Terpyridine Complexes. Chem. Commun.,2010,46(8):1296-1298.
    [188]Moughton A. O., O'Reilly R. K. Noncovalently Connected Micelles, Nanoparticles, and Metal-Functionalized Nanocages Using Supramolecular Self-Assembly. J. Am. Chem. Soc.,2008,130(27):8714-8725.
    [189]Wang J., Jiang M. Polymeric Self-Assembly into Micelles and Hollow Spheres with Multiscale Cavities Driven by Inclusion Complexation. J. Am. Chem. Soc.,2006, 128(11):3703-3708.
    [190]Ren, S. D., Jiang, M. Noncovalently Connected Micelles Based on a β-Cyclodextrin-Containing Polymer and Adamantane End-Capped Poly(epsilon-caprolactone) via Host-Guest Interactions. J. Polym. Sci., Part A:Polym. Chem.,2009, 47(17):4267-4278.
    [191]Zou J., Tao F. G., Jiang M. Optical Switching of Self-Assembly and Disassembly of Noncovalently Connected Amphiphiles. Langmuir,2007,23(26): 12791-12794.
    [1]赵三平,徐卫林.环糊精超分子水凝胶.化学进展,2010,22(5):916-926.
    [2]严军林,刘静,陈希,房喻.基于主客体作用的多重刺激响应型超分子水凝胶的制备及性能.高等学校化学学报,2008,29(1):124-129.
    [3]黄进,任丽霞,范红蕾,陈永明.环糊精包合作用诱导聚合物自组装的研究进展.中国科学(B辑:化学),2009,39(4):301-314.
    [4]Chen Y., Pang X. H., Dong C. M. Dual Stimuli-Responsive Supramolecular Polypeptide-Based Hydrogel and Reverse Micellar Hydrogel Mediated by Host-Guest Chemistry. Adv. Funct. Mater.,2010,20(4):579-586.
    [5]Zhang X. L., Huang J., Chang P. R., Li J. L., Chen Y. M., Wang D. X., Yu J. H., Chen J. H. Structure and Properties of Polysaccharide Nanocrystal-Doped Supramolecular Hydrogels Based on Cyclodextrin Inclusion. Polymer,2010,51(19): 4398-4407.
    [6]Ren L. X., He L. H., Sun T. C., Dong X., Chen Y. M., Huang J., Wang C. Dual-Responsive Supramolecular Hydrogels from Water-Soluble PEG-Grafted Copolymers and Cyclodextrin. Macromol. Biosci.,2009,9(9):902-910.
    [7]Kidowaki M., Zhao C. M., Kataoka T., Ito K. Thermoreversible Sol-Gel Transition of an Aqueous Solution of Polyrotaxane Composed of Highly Methylated a-Cyclodextrin and Polyethylene Glycol. Chem. Commun.,2006, (39):4102-4103.
    [8]Lee S. C., Choi H. S., Ooya T., Yui N. Block-Selective Polypseudorotaxane Formation in PEI-b-PEG-b-PEI Copolymers via pH Variation. Macromolecules,2004, 37(20):7464-7468.
    [9]Tomatsu I., Hashidzume A., Harada A. Contrast Viscosity Changes upon Photoirradiation for Mixtures of Poly(acrylic acid)-Based a-Cyclodextrin and Azobenzene Polymers. J. Am. Chem. Soc.,2006,128 (7):2226-2227.
    [10]Isnin R., Salam C., Kaifer A. E. Bimodal Cyclodextrin Complexation of Ferrocene Derivatives Containing N-Alkyl Chains of Varying Length. J. Org. Chem., 1991,56(1):35-41.
    [11]Tomatsu I., Hashidzume A., Harada A. Photoresponsive Hydrogel System Using Molecular Recognition of a-Cyclodextrin. Macromolecules,2005,38(12):5223-5227.
    [12]Zhao Y. L., Stoddart J. F. Azobenzene-Based Light-Responsive Hydrogel System. Langmuir,2009,25(15):8442-8446.
    [13]Liao X. J., Chen G. S., Liu X. X., Chen X. W., Chen F. E., Jiang M. Photoresponsive Pseudopolyrotaxane Hydrogels Based on Competition of Host-Guest Interactions. Angew. Chem. Int. Ed,2010,49(26):4409-4413.
    [14]Ogoshi T., Takashima Y., Yamaguchi H., Harada A. Chemically-Responsive Sol-Gel Transition of Supramolecular Single-Walled Carbon Nanotubes (SWNTs) Hydrogel Made by Hybrids of SWNTs and Cyclodextrins. J. Am. Chem. Soc.,2007, 129(16):4878-4879.
    [15]Tamesue S., Takashima Y., Yamaguchi H., Shinkai S., Harada A. Photochemical ly Controlled Supramolecular Curdlan/Single-Walled Carbon Nanotube Composite Gel:Preparation of Molecular Distaff by Cyclodextrin Modified Curdlan and Phase Transition Control. Eur. J. Org. Chem.,2011, (15):2801-2806.
    [16]Guo M. Y., Jiang M., Pispas S., Yu W., Zhou C. X. Supramolecular Hydrogels Made of End-Functionalized Low-Molecular-Weight PEG and a-Cyclodextrin and their Hybridization with SiO2 Nanoparticles through Host-Guest Interaction. Macromolecules,2008,41(24):9744-9749.
    [17]Guo M. Y., Jiang M. Supramolecular Hydrogels with CdS Quantum Dots Incorporated by Host-Guest Interactions. Macromol. Rapid. Commun.,2010,31(19): 1736-1739.
    [18]Liu J. H., Chen G. S., Guo M. Y, Jiang M. Dual Stimuli-Responsive Supramolecular Hydrogel Based on Hybrid Inclusion Complex (HIC). Macromolecules,2010,43(19):8086-8093.
    [19]Liao X. J., Chen G. S., Jiang M. Pseudopolyrotaxanes on Inorganic Nanoplatelets and Their Supramolecular Hydrogels. Langmuir,2011,27(20):12650-12656.
    [20]Liu J. H., Chen G. S., Jiang M. Supramolecular Hybrid Hydrogels from Non-Covalently Functionalized Grapheme with Block Copolymers. Macromolecules,2011, 44(19):7682-7691.
    [21]Tomczak N., Janczewski D., Han M. Y., Vancso G. J. Desiginer Polymer-Quantum Dot Architectures. Prog. Polym. Sci.,2009,34(5):393-430.
    [22]Chan W. C. W., Maxwell D. J., Gao X. H., Bailey R. E., Han M. Y., Nie S. M. Luminescent Quantum Dots for Multiplexed Biological Detection and Imaging. Curr. Opin. Biotech.,2002,13(1):40-46.
    [23]刘建云,黄乾明,王显祥,杨群峰,陈华萍.量子点在生物分析与医学诊断中的研究与应用.化学进展,2010,22(6):1068-1076.
    [24]来守军,关晓琳.量子点的聚合物表面修饰及其应用.化学进展,2011,23(5):941-950.
    [25]Li J., Hong X., Liu Y., Li D., Wang Y. W., Li J. H., Bai Y. B., Li T. J. Highly Photoluminescent CdTe/Poly(N-Isopropylacrylamide) Temperature-Sensitive Gels. Adv. Mater.,2005,17(2):163-166.
    [26]Kuang M., Wang D. Y., Bao H. B., Gao M. Y., Mohwald H., Jiang M. Fabrication of Multicolor-Encoded Microspheres by Tagging Semiconductor Nanocrystals to Hydrogel Spheres. Adv. Mater.,2005,17(3):267-270.
    [27]Chang S. Y., Liu L., Asher S. A. Preparation and Properties of Tailored Morphology, Monodisperse Colloidal Silica Cadmium-Sulfide Nanocomposites. J. Am. Chem. Soc.,1994,116(15):6139-6744.
    [28]Feng C., Shen Z., Yang D., Li Y. G., Hu J. H., Lu G. L., Huang X. Y. Synthesis of Well-Defined Amphiphilic Graft Copolymer Bearing Poly(2-Acryloyloxyethyl Ferrocenecarboxylate) Side Chains via Successive SET-LRP and ATRP. J. Polym. Sci., Part A:Polym. Chem.,2009,47(17):4346-4357.
    [29]Rojas M. T., Koniger R., Stoddart J. F., Kaifer A. E. Supported Monolayers Containing Preformed Binding-Sites-Synthesis and Interfacial Binding-Properties of a Thiolated β-Cyclodextrin Derivative. J. Am. Chem. Soc.,1995,117(1):336-343.
    [30]Palaniappan K., Hackney S. A., Liu J. Supramolecular Control of Complexation-Induced Fluorescence Change of Water-Soluble, β-Cyclodextrin-Modified CdS Quantum Dots. Chem. Commun.,2004, (23):2704-2705.
    [31]Shenhar R., Rotello V. M. Nanoparticles:Scaffolds and Building Blocks. Ace. Chem. Res.,2003,36(7):549-561.
    [32]Liu J., Mendoza S., Roman E., Lynn M. J., Xu R. L., Kaifer A. E. Cyclodextrin-Modified Gold Nanospheres. Host-Guest Interactions at Work to Control Colloidal Properties. J. Am. Chem. Soc,1999,121(17):4304-4305.
    [33]Liu J., Alvarez J., Ong W., Kaifer A. E. Network Aggregates Formed by C-60 and Gold Nanoparticles Capped with y-Cyclodextrin Hosts. Nano Lett.,2001,1(2): 57-60.
    [34]Thomas K. G., Kamat P. V. Chromophore-Functionalized Gold Nanoparticles. Acc.Chem. Res.,2003,36(12):888-898.
    [35]Liu J., Alvarez J., Ong W., Roman E., Lynn M. J., Kaifer A. E. Cyclodextrin-Modified Gold Nanospheres. Langmuir,2000,16(7):3000-3002.
    [36]Liu J., Alvarez J., Ong W., Roman E., Kaifer A. E. Phase Transfer of Hydrophilic, Cyclodextrin-Modified Gold Nanoparticles to Chloroform Solutions. J. Am. Chem. Soc.,2001,123(45):11148-11154.
    [37]Chen C. Y., Cheng C. T., Lai C. L, Wu P. W., Wu K. C., Chou P. T., Chou Y. H., Chiu H. T. Potassium Ion Recognition by 15-Crown-5 Functionalized CdSe/ZnS Quantum Dots in H2O. Chem. Commun.,2006, (3):263-265.
    [38]Li H. B., Qu F. G. Selective Inclusion of Polycyclic Aromatic Hydrocarbons (PAHs) on Calixarene Coated Silica Nanospheres Englobed with CdTe Nanocrystals. J. Mater. Chem.,2007,17(33):3536-3544.
    [39]Jin T., Fujii F., Sakata H., Tamura M., Kinjo M. Calixarene-Coated Water-Soluble CdSe-ZnS Semiconductor Quantum Dots that are Highly Fluorescent and Stable in Aqueous Solution. Chem. Commun.,2005, (22):2829-2831.
    [40]Jin T., Fujii F., Sakata H., Tamara M., Kinjo M. Amphiphilic Psulfonatocalix[4]Arene-Coated CdSe/ZnS Quantum Dots for the Optical Detection of the Neurotransmitter Acetylcholine. Chem. Commun.,2005, (34):4300-4302.
    [41]Jin T., Fujii F., Yamada E., Nodasaka Y., Kinjo M. Control of the Optical Properties of Quantum Dots by Surface Coating with Calix[n]Arene Carboxylic Acids. J. Am. Chem. Soc.,2006,128(29):9288-9289.
    [42]Palaniappan K., Xue C. H., Arumugam G., Hackney S. A., Liu J. Water-Soluble, Cyclodextrin-Modified CdSe-CdS Core-Shell Structured Quantum Dots. Chem. Mater.,2006,18(5):1275-1280.
    [43]Han C. P., Li H. B. Chiral Recognition of Amino Acids Based on Cyclodextrin-Capped Quantum Dots. Small,2008,4(9):1344-1350.
    [44]Steffens C., Kretschmann O., Ritter H. Influence of Cyclodextrin and Temperature on the Kinetics of Free Radical Polymerization of N-Adamantylacrylamide in Water. Macromol. Rapid Commun.,2007,28(5):623-628.
    [45]Kretschmann O., Ritter H. Copolymerization of Fluorinated Monomers with Hydrophilic Monomers in Aqueous Solution in Presence of Cyclodextrin. Macromol. Chem. Phys.,2006,207(11):987-992.
    [46]Choi S. W., Kretschmann O., Ritter H., Ragnoli M., Galli G. Novel Polymerization of Fluorinated 2-Vinylcyclopropane in Aqueous Solution via Cyclodextrin Complexes. Macromol. Chem. Phys.,2003,204(12):1475-1479.
    [47]Matsue T., Evans D. H., Osa T., Kobayashi N. Electron-Transfer Reactions Associated with Host Guest Complexation-Oxidation of Ferrocenecarboxylic Acid in the Presence of β-Cyclodextrin. J. Am. Chem. Soc.,1985,107(12):3411-3417.
    [48]Lin Y., Zhang J., Sargent E. H., Kumacheva, E. Photonic Pseudo-Gap-Based Modification of Photoluminescence from CdS Nanocrystal Satellites Around Polymer Microspheres in a Photonic Crystal. Appl. Phys. Lett.,2002,81(17):3134-3136.
    [49]Wang Y. W., Meng G. W., Zhang L. D., Liang C. H., Zhang J. Catalytic Growth of Large-Scale Single-Crystal CdS Nanowires by Physical Evaporation and Their Photoluminescence. Chem. Mater.,2002,14(4):1773-1777.
    [50]Zhan J. H., Yang X. G., Wang D. W., Li S. D., Xia Y N., Qian Y. T. Polymer-Controlled Growth of CdS Nanowires. Adv. Mater.,2000,12(18):1348-1351.
    [51]Premachandran R., Banerjee S., John V. T., McPherson G. L., Akkara J. A., Kaplan D. L. The Enzymatic Synthesis of Thiol-Containing Polymers to Prepare Polymer-CdS Nanocomposites. Chem. Mater.,1997,9(6):1342-1347.
    [52]Dorokhin D., Tomczrk N., Velders A. H., Reinhoudt D. N., Vancso J. Photoluminescence Quenching of CdSe/ZnS Quantum Dots by Molecular Ferrocene and Ferrocenyl Thiol Ligands. J. Phys. Chem., C.2009,113(43):18676-18680.
    [53]Cyr P. W., Tzolov M., Hines M. A., Manners I., Sargent E. H., Scholes G. D., Quantum Dots in a Metallopolymer Host:Studies of Composites of Polyferrocenes and CdSe Nanocrystals. J. Mater. Chem.,2003,13(9):2213-2219.
    [54]Chandler R. R., Coffer J. L., Atherton, S. J., Snowden, P. T. Addition of Ferrocene Derivatives to the Surface of Quantum-Confined Cadmium-Sulfide Clusters-Steady-State and Time-Resolved Photophysical Effects. J. Phys. Chem., 1992,96(6):2713-2717.
    [55]Khanna P. K., Singh, N. Light Emitting CdS Quantum Dots in PMMA:Synthesis and Optical Studies. J. Lumin.,2007,127(2):474-482.
    [1]Haraguchi K. Synthesis and Properties of Soft Nanocomposite Materials with Novel Organic/Inorganic Network Structures. Polym. J.,2011,43(3):223-241.
    [2]Wang Q., Mynar J. L., Yoshida M., Lee E., Lee M., Okuro K., Kinbara K., Aida T. High-Water-Content Mouldable Hydrogels by Mixing Clay and a Dendritic Molecular Binder. Nature,2010,463(7279):339-343.
    [3]Harada A., Kobayashi R., Takashima Y., Hashidzume A., Yamaguchi H. Macroscopic Self-Assembly through Molecular Recognition. Nat. chem.,2011,3(1): 34-37.
    [4]尚婧,陈新,邵正中.电场敏感的智能性水凝胶.化学进展,2007,19(9):1393-1399.
    [5]乔从德.聚乙二醇基智能水凝胶的研究进展.高分子通报,2010,(3):23-30.[6] Ahn S.-K., Kasi R. M., Kim S. C., Sharma N., Zhou Y. X. Stimuli-Responsive Polymer Gels. Soft Matter,2008,4(6):1151-1157.
    [7]Dong L., Agarwal A. K., Beebe D. J., Jiang H. R. Adaptive Liquid Microlenses Activated by Stimuli-Responsive Hydrogels. Nature,2006,442(3):551-554.
    [8]Soppimath K. S., Aminabhavi T. M., Dave A. M., Kumbar S. G., Rudzinshi W. E. Stimuli-Responsive "Smart" Hydrogels as Novel Drug Delivery Systems. Drug Dev. Ind. Pharm.,2002,28(8):951-974.
    [9]Gupta P., Vermani K., Garg S. Hydrogels:From Controlled Release to pH-Responsive Drug Delivery. Drug Discovery Today,2002,7(10):569-579.
    [10]Alarcon C. D. L., Pennadam S., Alexander C. Stimuli Responsive Polymers For Biomedical Applications. Chem. Soc. Rev.,2005,34(3):276-285.
    [11]Peng F., Li G. Z., Liu X. X., Wu S. Z., Tong Z. Redox-Responsive Gel-Sol/Sol-Gel Transition in Poly(acrylic acid) Aqueous Solution Containing Fe(Ⅲ) Ions Switched by Light. J. Am. Chem. Soc,2008,130(48):16166-16167.
    [12]Yu J. H., Fan H. L., Huang J., Chen J. H. Fabrication and Evaluation of Reduction-Sensitive Supramolecular Hydrogel Based on Cyclodextrin/Polymer Inclusion for Injectable Drug-Carrier Application. Soft Matter,2011,7(16):7386-7394.
    [13]严军林,刘静,陈希,房喻.基于主客体作用的多重刺激响应型超分子水凝胶的制备及性能.高等学校化学学报,2008,29(1):124-129.
    [14]Tomatsu T., Hashidzume A., Harada A. Redox-Responsive Hydrogel System Using the Molecular Recogmition of β-Cyclodextrin. Macromol. Rapid. Comm.,2006, 27(4):238-241.
    [15]Guo M. Y., Jiang M., Pispas S., Yu W., Zhou C. Y. Supramolecular Hydrogels Made of End-Functionalized Low-Molecular-Weight PEG and a-Cyclodextrin and Their Hybridization with SiO2 Nanoparticles through Host-Guest Interaction. Macromolecules,2008,41(24):9744-9749.
    [16]Liu J. H., Chen G. S., Guo M. Y. Dual Stimuli-Responsive Supramolecular Hydrogel Based on Hybrid Inclusion Complex (HIC). Macromolecules,2010,43(19): 8086-8093.
    [17]Lai J. T., Filla D., Shea R. Functional Polymers from Novel Carboxyl-Terminated Trithiocarbonates as Highly Efficient RAFT Agents. Macromolecules, 2002,35(18):6754-6756.
    [18]Lin Z. R. Organometallic Polymers with Ferromagnetic Properties. Adv. Mater., 1999,11(13):1153-1154.
    [19]Long N. J. Organometallic Compounds for Nonlinear Optics-the Search for En-Light-Enment. Angew. Chem. Int. Ed.,1995,34(1):21-28.
    [20]Katterle M., Nagel B., Warsinke, A. Enzyme Activity Control by Responsive Redoxpolymers. Langmuir,2007,23(12):6807-6811.
    [21]Baldoli C., Oldani C., Licandro E., Ramani P., Valerio A., Ferruti P., Falciola L. Mussini P. Ferrocene Derivatives Supported on Poly(N-Vinylpyrrolidin-2-One) (PVP):Synthesis of New Water-Soluble Electrochemically Active Probes for Biomolecules. J. Organomet. Chem.,2007,692(6):1363-1371.
    [22]Zhang Z. B., Yuan S. J., Zhu X. L., Neoh, K. G., Kang E. T. Enzyme-Mediated Amperometric Biosensors Prepared via Successive Surface-Initiated Atom-Transfer Radical Polymerization. Biosens. Bioelectron.,2010,25(5):1102-1108.
    [23]Hempenius M. A., Cirmi C., Song J., Vancso G. J. Synthesis of Poly(ferrocenylsilane) Polyelectrolyte Hydrogels with Redox Controlled Swelling. Macromolecules,2009,42(7):2324-2326.
    [24]Shi M., Li A.-L., Liang H., Lu J. Reversible Addition-Fragmentation Transfer Polymerization of a Novel Monomer Containing Both Aldehyde and Ferrocene Functional Groups. Macromolecules,2007,40(6):1891-1896.
    [25]Feng C., Shen Z., Yang D., Li Y. G., Hu J. H., Lu G. L., Huang X. Y. Synthesis of Well-Defined Amphiphilic Graft Copolymer Bearing Poly(2-acryloyloxyethyl Ferrocenecarboxylate) Side Chains via Successive SET-LRP and ATRP. J. Polym. Sci., Part A:Polym. Chem.,2009,47(17):4346-4357.
    [26]Kim B. Y., Ratcliff E. L., Armstrong N. R., Kowalewski T., Ryun J. Ferrocene Functional Polymer Brushes on Indium Tin Oxide via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir,2010,26(3):2083-2092.
    [27]Chiefari J., Chong Y. K., Ercole F., Kristina J., Jeffery J., Le T. P. T., Mayadunne R. T. A., Meijs G. F., Moad C. L., Moad G., Rizzardo E., Thang S. H. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer:The RAFT Process. Macromolecules,1998,31(16):5559-5562.
    [28]Zhou N. C., Zhang Z. B., Zhu J., Cheng Z. P., Zhu X. L. RAFT Polymerization of Styrene Mediated by Ferrocenyl-Containing RAFT Agent and Properties of the Polymer Derived from Ferrocene. Macromolecules,2009,42(12):3898-3905.
    [29]Turro N. J., Kuo P. L. A Fluorescence Probe Investigation of the Effect of Alkali-Metal Ions on the Micellar Properties of a Crown-Ether Surfactant. J. Phys. Chem.,1986,90(5):837-841.
    [30]朱蕙,刘世勇,潘全名,段宏伟,江明.窄分布两亲性嵌段共聚物的合成及其胶束化行为研究.高等学校化学学报,2002,23:138-142.
    [31]Boutris C., Chatzi E. G., Kiparissides C. Characterization of the LCST Behaviour of Aqueous Poly(N-Isopropylacrylamide) Solutions by Thermal and Cloud Point Techniques. Polymer,1997,38(10):2567-2570.
    [32]Khanna P. K., Singh N. Light Emitting CdS Quantum Dots in PMMA:Synthesis and Optical Studies. J. Lumin.,2007,127:474-482.
    [33]Matsue T., Evans D. H., Osa T., Kobayashi N. Electron-Transfer Reactions Associated with Host Guest Complexation-Oxidation of Ferrocenecarboxylic Acid in the Presence of Beta-Cyclodextrin. J. Am. Chem. Soc.,1985,107(12):3411-3417.
    [34]Harada A., Takahashi S. Preparation and Properties of Cyclodextrin-Ferrocene Inclusion Complexes. J. Am. Chem. Soc.,1984, (10):645-646.
    [35]Thiem H. J., Brandl M., Breslow R. Molecular Modeling Calculations on the Acylation of Beta-Cyclodextrin by Ferrocenylacrylate Esters. J. Am. Chem. Soc., 1988,110(26):8612-8616.
    [36]Isnin, R., Salam, C., Kaifer, A. E. Bimodal Cyclodextrin Complexation of Ferrocene Derivatives Containing N-Alkyl Chains of Varying Length. J. Org. Chem., 1991,56(1):35-41.
    [37]Zuo F., Luo C., Ding X., Zheng Z., Cheng X., Peng Y. Redox-Responsive Inclusion Complexation Between Beta-Cyclodextrin and Ferrocene-Functionalized Poly(N-Isopropylacrylamide) and its Effect on the Solution Properties of this Polymer. Supramol. Chem.,2008,20(6):559-564.
    [38]Zhang Z. Q., Yuan Y., Sun P., Su B., Guo J. D., Shao Y. H., Girault H. H. Study of Electron-Transfer Reactions across an Externally Polarized Water/1,2-Dichloroethane Interface by Scanning Electrochemical Microscopy. J. Phys. Chem. B, 2002,106(26):6713-6717.
    [39]Cromwell W. C. Cyclodextrin Adamantanecarboxylate Inclusion Complexes-Studies of the Variation in Cavity Size. J. Phys. Chem.,1985,89(2):326-332.
    [1]Chen D. Y., Jiang M. Strategies for Constructing Polymeric Micelles and Hollow Spheres in Solution via Specific Intermolecular Interactions. Acc. Chem. Res.,2005, 38(6):494-502.
    [2]Wang M., Zhang G. Z., Chen D. Y., Jiang M., Liu S. Y. Noconvalenty Connected Polymeric Micelles Based on a Homopolymer Pair in Solutions. Macromolecules, 2001,34(20):7172-7178.
    [3]Liu S. Y., Jiang M., Liang H. J., Wu C. Intermacromolecular Complexes Due to Specific Interactions.13. Formation of Micellelike Structure from Hydrogen Bonding Graft-like Complexes in Selective Solvents. Polymer,2000,41(24):8697-8702.
    [4]Liu S. Y., Pan Q. M., Xie J. W., Jiang M. Intermacromolecular Complexes Due to Specific Interactions.12. Graft-like Hydrogen Bonding Complexes Based on Pyridyl-Containing Polymers and End-Dunctionalized Polystyrene Oligomers. Polymer,2000, 41(18):6919-6929.
    [5]Duan H. W., Chen D. Y., Jiang M., Gan W. J., Li S. J., Wang M., Gong J. Self-Assembly of Unlike Homopolymers into Hollow Spheres in Nonselective Solvent. J. Am. Chem. Soc.,2001,123, (48):12097-12098.
    [6]Kuang M., Duan H. W., Wang J., Chen D. Y., Jiang M. A Novel Approach to Polymeric Hollow Nanospheres with Stabilized Structure. Chem Commun.,2003, (4): 496-497.
    [7]Duan H. W., Kuang M., Wang J., Chen D. Y., Jiang M. Self-Assembly of Rigid and Coil Polymers into Hollow Spheres in Their Common Solvent. J. Phys. Chem. B, 2004,108 (2):550-555.
    [8]Xie D., Jiang M., Zhang G. Z., Chen D. Y. Hydrogen-Bonded Dendronized Polymers and Their Self-Assembly in Solution. Chem. Eur. J.,2007,13(12):3346-3353.
    [9]Wang J., Kuang M., Duan H. W., Chen D. Y., Jiang M. pH-Dependent Multiple Morphologies of Novel Aggregates of Carboxyl-Terminated Polymide in Water. Eur. Phys. J. E,2004,15 (2):211-215.
    [10]Peng H. S., Chen D. Y., Jiang M. Self-Assembly of Formic Acid/Polystyrene-block-Poly(4-vinylpyridine) Complexes into Vesicles in a Low-Polar Organic Solvent Chloroform. Langmuir,2003,19(26):10989-10992.
    [11]Yu S. Y., Yao P., Jiang M., Zhang G. Z. Nanogels Prepared by Self-Assembly of Oppositely Charged Globular Proteins. Biopolymers,2006,83(2):148-158.
    [12]Wang J., Jiang M. Polymeric Self-Assembly into Micelles and Hollow Spheres with Multiscale Cavities Driven by Inclusion Complexation. J. Am. Chem. Soc.,2006, 128(11):3703-3708.
    [13]Ohashi H., Hiraoka Y., Yamaguchi T. An Autonomous Phase Transition-Complexation/Decomplexation Polymer System with a Molecular Recognition Property. Macromolecules,2006,39(7):2614-2620.
    [14]Liu Y. Y, Fan X. D., Gao L. Synthesis and Characterization of β-Cyclodextrin Based Functional Monomers and its Copolymers with N-isopropylacrylamide. Macromol. Biosci.,2003,3(12):715-719.
    [15]Wang J. S., Matyjaszewski K. Controlled Living Radical Polymerization-Halogen Atom-Transfer Radical Polymerization Promoted by a Cu(Ⅰ)Cu(Ⅱ) Redox Process. Macromolecules,1995,28(23):7901-7910.
    [16]Wang J. S., Matyjaszewski K. Controlled Living Radical Polymerization-Atom-Transfer Radical Polymerization in the Presence of Transition-Metal Complexes. J. Am. Chem. Soc.,1995,117(20):5614-5615.
    [17]Matyjaszewski K., Xia J. H. Atom Transfer Radical Polymerization. Chem. Rev., 2001,101 (9):2921-2990.
    [18]Kamigaito M., Ando T., Sawamoto M. Metal-Catalyzed Living Radical Polymerization. Chem. Rev.,2001,101(12):3689-3745.
    [19]Wang M., Jiang M., Ning F. L., Chen D. Y., Liu S. Y., Duan H. W. Block-Copolymer-Free Strategy for Preparing Micelles and Hollow Spheres:Self-Assembly of Poly(4-Vinylpyridine) and Modified Polystyrene. Macromolecules,2002,35(15): 5980-5989.
    [20]Palepu R., Reinsorough V. C. Beta-Cyclodextrin Inclusion of Adamantane Derivatives in Solution. Aust. J. Chem.,1990,43(12):2119-2123.
    [21]Isnin R., Salam C, Kaifer A. E. Bimodal Cyclodextrin Complexation of Ferrocene Derivatives Containing N-alkyl Chains of Varying Length. J. Org. Chem., 1991,56(1):35-41.
    [22]Saenger W. Cyclodextrin Inclusion-Compounds in Research and Industry. Angew.Chem. Int. Ed.,1980,19(5):344-362.
    [23]Cromwell W. C., Bystrom K., Eftink M. R. Cyclodextrin Adamantanecarboxylate Inclusion Complexes-Studies of the Variation in Cavity Size. J. Phys. Chem.1985,89(2):326-332.
    [24]Kaifer A. E. Electron transfer and molecular recognition in metallocene- containing dendrimers. Eur. J. Inorg. Chem.,2007, (32):5015-5027.
    [25]Cardona C. M., McCarley T. D., Kaifer A. E. Synthesis, electrochemical, and interactions with β-cyclodextrin of dendrimers containing a single Ferrocene subunit located "off-center ". J. Org. Chem.,2000,65(6):1857-1864.
    [26]Podkoscielny D, Hooley R. J., Rebek J., Kaifer A. E. Ferrocene Derivatives Included in a Water-Soluble Cavitand:Are They Electroinactive? Org. Lett.,2008, 10(13):2865-2868.
    [27]Podkoscielny D, Philip I, Gibb C. L. D., Gibb B. C., Kaifer A. E. Encapsulation of ferrocene and peripheral electrostatic attachment of viologens to dimeric molecular capsules formed by an octaacid, deep-cavity cavitand. Chem.. Eur. J.,2008,14(15): 4704-4710.
    [28]Philip I., Kaifer A. E. Noncovalent encapsulation of cobaltocenium inside resorcinarene molecular capsules. J. Org. Chem.,2005,70(5):1558-1564.
    [1]江明,Eisenberg A.,刘国军,张希等著.大分子自组装,第四章,高分子胶束化的新途径研究.北京:科学出版社,2006.P312.
    [2]Zhang H., Han J., Yang B. Structural Fabrication and Functional Modulation of Nanoparticle-Polymer Composites. Adv. Funct. Mater.,2010,20(10):1533-1550.
    [3]Wen F., Zhang Q. W., Wei G. W., Wang Y., Zhang J. Z., Zhang M. C., Shi L. Q. Synthesis of Noble Metal Nanoparticles Embeded in the Shell Layer of Core-Shell Poly(styrene-co-4-vinylpyridine) Micospheres and Their Application in Catalysis. Chem. Mater.,2008,20(6):2144-2150.
    [4]O'Neal D. P., Hirsch L. R., Halas N. J., Payne J. D., West J. L. Photo-Thermal Tumor Ablation in Mice Using Near Infrared-Absorbing Nanoparticles. Cancer Letter, 2004,209(2):171-176.
    [5]Mai Y. Y., Eisenberg A. Controlled Incorporation of Particles into the Central Portion of Vesicle Walls. J. Am. Chem. Soc.,2010,132(29):10078-10084.
    [6]Song J., Cheng L., Liu A. P., Yin J., Kuang M., Duan H. W. Plasmonic Vesicles of Amphiphilic Gold Nanocrystals:Self-Assembly and External-Stimuli-Triggered Destruction. J. Am. Chem. Soc.,2011,133(28):10760-10763.
    [7]Hickey R. J., Haynes A. S., Kikkawa J. M., Park S. J. Controlling the Self-Assembly Structure of Magnetic Nanoparticles and Amphiphilic Block-Copolymers: From Micelles to Vesicles. J. Am. Chem. Soc.,2011,133(5):1517-1525.
    [8]Li W. K., Liu S. Q., Deng R. H., Zhu J. T. Encapsulation of Nanoparticles in Block Copolymer Micellar Aggregates by Directed Supramolecular Assembly. Angew. Chem. Int. Ed,2011,50(26):5865-5868.
    [9]Liu J., Alvarez J., Ong W. Roman E., Kaifer A. E. Phase Transfer of Hydrophilic, Cyclodextrin-Modified Gold Nanoparticles to Chloroform Solutions. J. Am. Chem. Soc.,2001,123(45):11148-11154.
    [10]Liu J., Ong W., Roman E., Lynn M. J., Kaifer A. E. Cyclodextrin-Modified Gold Nanospheres. Langmuir,2000,16(7):3000-3002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700