VO_2薄膜制备及其应用性能基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
攀钢(集团)公司是我国最重要的钢铁钒钛基地,攀西地区蕴藏有丰富的钒钛磁铁矿资源,其中钒资源占全国的63%以上。三十多年来,攀钢(集团)公司利用钒钛磁铁矿资源生产了大量的钢材,以及大量的钒渣、V2O5、V2O3、钒铁等钒产品,使我国成为世界上主要的产钒国之一。但是,钒资源的综合利用程度还不够高,钒产品的种类还较少、产品档次和科技含量还比较低。因此研究开发新的、高科技含量的钒产品,从而进一步提高钒资源综合利用水平,是非常必要和迫切的。
    对功能材料VO2薄膜的研究倍受人们的关注。因为它的一个重要特性就是在较低温度(68℃)下发生金属—半导体相变(简称M-S相变),同时伴随光学性质和电学性质的突变。已有的研究中均以纯含钒原料来制备VO2薄膜,迄今为止,尚未见以工业V2O5为原料制备VO2薄膜的研究报道。在攀钢工业V2O5大量存在且价格较低的条件下,研究以它为原料来制备VO2薄膜,具有重大的现实意义。
    本研究得出了如下的研究结果(结论):
    (1)在实验室中打通了以片状工业V2O5晶体为原料、用改进无机溶胶-凝胶法制备V2O5溶胶-凝胶的工艺流程。制备V2O5溶胶的适宜工艺参数为:熔化V2O5的温度(800~900)℃、恒温时间(5~20)min;通过控制工艺参数来控制V2O5溶胶向凝胶的转变。该工艺参数为:溶胶中V2O5浓度须大于20 g/L,同时熔化V2O5的温度(800~900)℃,恒温时间(5~15)min。
     (2)选择旋涂法和浸涂法作为日常的涂膜方法,可完全满足涂膜试验的要求。采用旋涂法时,胶体粘度越大、转盘转数越小、衬底越靠近旋转中心,则薄膜厚度越大;采用浸涂法时,胶体粘度越大、密度越小,则薄膜厚度越大,反之则越小。适宜的凝胶粘度为(1.0~3.0) Pa·S。
     (3)改制和自制的涂膜装置以及研制的薄膜电阻-温度测量装置,均能满足常规实验要求,预期的效果较好。自制的浸涂法涂膜装置提拉速度为(1.5~3.0)mm/S;温度-电阻测量装置的主要性能指标为:使用温度范围为室温~150℃,温度控制精度为±1℃,升温速度(1~2)℃/min,降温速度约2℃/min,当启用冷却系统时,降温速度为(3~5)℃/min。
     (4)用H2还原法和N2热分解法由V2O5薄膜制取VO2薄膜,无论在理论上还是在工艺上都是可行的。在实验室中打通了N2热分解法和H2还原法制备VO2薄膜的工艺流程,在普通玻璃衬底和石英玻璃衬底上制备出了具有显著M-S相变特征的VO2薄膜,并得出了适宜的工艺参数。N2热分解法的适宜工艺参数为:热分解温度450℃,恒温时间(13~20) h,薄膜厚度10.4μm,N2流量1 L/min;H2还原法的适宜工艺参数为:薄膜厚度10.4μm,还原温度400℃,恒温时间(3~5)h,H2流量也
    
    
    为1 L/min。在同等条件下,采用H2还原法、以石英玻璃作衬底是较好的VO2薄膜制备条件。
    (5)由N2热分解法制备VO2薄膜的电阻突变数量级在普通玻璃衬底上最大可达2.2,在石英玻璃衬底上最大可达2.6;由H2还原法制得的VO2薄膜的电阻突变数量级在普通玻璃衬底上最大可达2.6,在石英玻璃衬底上最大可达3.2;VO2薄膜的电阻突变温度约为35℃,接近室温,比纯VO2晶体的理论相变温度(68℃)降低了约33℃。采用上述两种方法制备VO2薄膜的电阻突变数量级总体上达到了国内外用纯含钒原料、在非晶体衬底上VO2薄膜的电阻突变数量级水平。
    (6)VO2薄膜的电阻突变温度滞后((TMS)为(1~4)℃。制备方法、衬底材质和S值的大小对(TMS有较大影响。由H2还原法制得VO2薄膜的(TMS比N2热分解法的小;石英玻璃衬底上的(TMS比普通玻璃衬底上的小;S值较大时(TMS较小,反之则较大;在自然放置条件下、短时间内VO2薄膜可经受反复多次的M-S相变,其S值及(TMS几乎没有变化,但随放置时间的延长以及受周围环境气氛的影响而逐渐降低。
    (7)杂质可使VO2薄膜的电阻突变温度降低,同时又可使电阻突变数量级减小。单一的离子半径较大的杂质或多元的使晶体中键长总体上伸长的杂质,都可使VO2薄膜的电阻突变温度降低;掺入MoO3时VO2薄膜电阻率突变数量级随掺入量的增大而减小,可用推导出的理论公式来预测MoO3掺入量对VO2薄膜电阻突变数量级的影响;由于杂质总含量较多,以工业V2O5为原料制备VO2薄膜的电阻突变温度、电阻突变数量级分别低于、小于以分析纯V2O5为原料制备VO2薄膜的电阻突变温度和电阻突变数量级。
    (8)V2O5薄膜和VO2薄膜都会被自来水、H2SO4溶液和KOH溶液侵蚀,侵蚀形式既有脱落又有溶解。随烘干时间延长,V2O5薄膜的耐蚀时间大幅度延长;H2SO4溶液和KOH溶液的浓度越高,则两种薄膜的耐蚀时间越短,反之则越长;VO2薄膜在三种介质中的侵蚀形式均为溶解,其耐蚀时间随薄膜厚度的增大而延长。
PANGANG(group) company is the most important steel iron vanadium titanium base in our country, rich vanadium titanium magnetite resource are stored and vanadium resource storage are more than 63% of nation in PANXI area. In the past 30 years,PANGANG(group) company have produced plenty of steel material, vanadium slag, V2O5, V2O3, the alloy of vanadium iron and other vanadium product as raw material with vanadium titanium magnetite resource, and make China become a important country on produce vanadium in the world. But synthetical application level of vanadium resource is still lower, the kind of vanadium product is fewer comparatively and their contents of science technology and their rank are still lower in our country. Therefore, study and exploiture of new vanadium product with high content of science and technology for heighten on synthetical application level of vanadium resource further are very necessary and urgent.
    The study of function material VO2 thin film have gotten the very attention for it’s a important character, It occur metal-semiconductor phase transformation(M-S phase transformation) under lower temperature(68℃), at the same time, it's optical and electrical character occurs the sudden change. The study in the past for gotten VO2 thin film are all based on pure inclusive vanadium raw material, So far, do not discovered any research reports for gotten VO2 thin film are based on industrial V2O5 as raw material. Under this conditions that PANXI area have rich industrial V2O5 and its price is very cheap, So the study for gotten VO2 thin film are based on industrial V2O5 as raw material will be significant and realistic.
    The study results (conclusions) in this paper as following:
    (1) In laboratory have established a new technology process for gotten V2O5 sol-gel based on industrial V2O5 crystal as raw material by the reformative inorganic sol-gel method. Suitable technology parameter for gotten V2O5 sol as following: the temperature at melt of V2O5 is (800~900)℃, and the time of keep this temperature is (5~20) min; We can control the transformation from V2O5 sol to V2O5 gel by control the technology process parameter, these technology process parameters as following: the concentration of V2O5 in sol must be larger than 20 g/L, at the same time the temperature at melt of V2O5 is (800~900)℃ and the time of keep this temperature is (5~15)min.
    (2) Selected the spinning and dipping as daily method for preparation of film, it can satisfy requirement at experiment for preparation of films completely. By the spinning
    
    
    way, the viscosity of colloid is more bigger and the revolution number of turntable is more littler and substrate is more nearer to revolving center, then the thickness of thin film is more bigger. By the dipping way, the viscosity of colloid is more bigger and its density is more littler, the thickness of thin film is more bigger. Contrarily, they are more littler. The suitable gel viscosity is (1.0~3.0)Pa?S.
    (3)The covers colloid equipment by refit and homemade, the developmental resistance-temperature measure equipment, they are all satisfied to conventional experiment requirement, and anticipative effect is better. The pull speed of covers colloid equipment on dipping way by homemade is (1.5~3.0) mm/S; the major property index of temperature-resistance measurement set as following: applied temperature is from room temperature to 150℃, the control precision of temperature is ±1℃, ascending temperature speed is about (1~2) ℃/ min, degressive temperature speed is 2 ℃/ min, degressive temperature speed is (3~5) ℃/min when start using cooling system.
    (4) The methods for gotten VO2 thin films based on V2O5 thin films through the deoxidize process by H2 and the thermal decompose process by N2 are feasible not only in theoretics but also in technology. In the laboratory we have established technology process for preparation of VO2 thin film through the deoxidize process by H2 and the thermal decompose process by N2, VO2 thin films that own notable characteristic on M-
引文
[1] 攀枝花钒钛磁铁矿选矿烧结高炉冶炼试验资料汇编编写小组. 攀枝花钒钛磁铁矿选矿烧结高炉冶炼试验资料汇编[M]. 北京. 1978.
    [2] 廖世明. 柏谈论. 国外钒冶金(第1版)[M]. 北京. 冶金工业出版社. 1985.
    [3] 秦震. 陆祖雄. 黄振华. 攀枝花式钒钛磁铁矿成矿特征. 钒钛磁铁矿开发利用国际会议论文集. 中国四川攀枝花. 1989. 攀钢. 钢铁钒钛编辑部. 1989年11月. 78-92.
    [4] 文友. 钒的资源、应用、开发与展望. 稀有金属与硬质合金[J]. 1996. (124): 51-54.
    [5] 黄道鑫. 提钒炼钢(第1版)[M]. 北京. 冶金工业出版社. 2000.
    [6] Morin F J. Oxide which show a metal to insulator transition at the neel temperature [J]. Phys. Review. Letter.1959. (3): 34-36.
    [7] 查子忠. 王骐. 李学春等. VO2薄膜对TEACO2激光响应特性的实验研究[J]. 光学学报. 1996. 16(8): 1173-1176.
    [8] H Bialas. A Dillenz. H Downar. P Ziemann. Epitaxial relationships and electrical properties of vanadium oxide films [J]. Thin Solid Films. 1999.338: 60-69.
    [9] F C Case. Improved VO2 thin films for infrared switching [J]. Applied Optics, 1991,30(28):4119-4123.
    [10] Masaharu Fukuma. Sakea Zembutsu. Shintaro Miyazawa. Preparation of VO2 thin films and its direct optical bit recording characteristics [J]. Applied Optics. 1983.22(2): 265-268.
    [11] Moon-Hee Lee. Myoung-Geun Kim. RTA and stoichiometry effect on the thermochromism of VO2 thin films [J]. Thin Solid Films. 1996.286: 219-222.
    [12] M Sambi. G Sangiovanni. G Granozzi. Growth and the structure of epitaxial VO2 at the TiO2(110) surface [J]. Physical Review B.1997.55(12): 7850-7858.
    [13] P J Moller. Z S Li. T Egebjerg. M Sambi. G Granozzi. Synchrotron-radiation-induced photoemission study of VO2 ultrathin films deposited on TiO2(110)[J]. Surface Science. 1998.(402-404): 719-723.
    [14] Y Muraoka. Y Ueda. Z Hiroi. Large modification of the metal-insulator transition temperature in strained VO2 films grown on TiO2 substrates [J]. Journal of Physics and Chemistry of Solids.2002.63: 965-967.
    [15] Mark Borek. F Qian. V Nagabushman and R K Singh. Pulsed laser deposition of oriented VO2 thin films on R-cut sapphire substrates [J]. Appl.Phys.Lett.. 1993. 63(24):3288-3290.
    [16] Kim D H. Kwok H S. Pulsed Laser deposition of VO2 thin films [J]. Appl.Phys.Lett. 1994. 65(25):3188-3190.
    [17] M Nagashima. H Wada. AFM observation for the oxygen deficiency effect on the surface
    
    
    morphology of VO2 thin films. Journal of Crystal Growth. 1997.179: 539-545.
    [18] H J Schlag. W Scherber. New sputter process for VO2 thin films and examination with MIS-elements and C-V-measurements [J]. Thin Solid Films. 2000.366: 28-31.
    [19] R T Kivaisi. M Samiji. Optical and electrical properties of vanadium dioxide films prepared under optimized RF sputtering conditions [J]. Solar Energy Material and Solar Cell. 1999.57: 141-152.
    [20] P Jin. S Nakao. S Tanemura. T Bell. Characterization of mechanical properties of VO2 thin films on sapphire and silicon by ultra-microindentation [J]. Thin Solid Films. 1999. (343-344): 134-137.
    [21] Hidetoshi Kiyazaki. Masayuki Kamei. Itaru Yasui. Vanadium oxide thin films deposited onto Cu buffer layer by RF magnetron sputtering [J]. Thin Solid Films. 1999.(343-344): 168-170.
    [22] B Felde. W Niessner. D Schalch. A Scharmann. M Werling. Plasmon excitation in vanadium dioxide films [J]. Thin Solid Films. 1997.305: 61-65.
    [23] F Guinneton. L Sauques. J C Valmalette. Comparative study between nanocrystalline powder and thin film of vanadium dioxide VO2:electrical and infrared properties [J]. Journal of Physics and chemistry of Solid. 2001.62: 1229-1238.
    [24] J Verkelis. Z Bliznikas. K Breive. Vanadium oxide thin films and fixed-temperature heat sensor with memory [J]. Sensors and Actuators. 1998.A68: 338-343.
    [25] H L Chang. Y Gao. T J Zhang and D J Lam. Heteroepitaxy of TiO2,VO2 films and TiO2/VO2 multilayers grown on sapphire(1120) by metallo-organic chemical vapor deposition[J]. Thin Solid Films. 1992. 216: 4~7.
    [26] Remke R L. Walser R M.and Bene R W. The effect on interfaces on electronic switching in VO2 thin films [J]. Thin Solid Films. 1982. 97: 129-143.
    [27] Jacques Livage. Optical and electrical properties of vanadium oxides synthesized from alkoxides [J]. Coordination Chemistry Reviews. 1999.(190-192): 391-403.
    [28] Fabien Beteille. Leo Mazerolles. Jacques Livage. Microstructure and Metal-insulating transition of VO2 thin film [J]. Materials Research Bulletin. 1999.34(14-15): 2177-2184.
    [29] Speck K R. Hu H S-W. Sherwin M E. Potember R S. Vanadium dioxide films grown from vanadium tetra-isopropoxide by the sol-gel Process [J]. Thin Solid Films. 1988. 165: 317-322.
    [30] Kavanagh K L and Nagub H M. The preparation and characterization of VO2 thin films [J]. Thin Solid Films. 1982. (91): 231-240.
    [31] T J Hanlon. R E Walker. J A Coath. M A Richardson. Comparison between vanadium dioxide coatings on glass produced by sputtering, alkoxide and aqueous sol-gel methods [J]. Thin solid films.2002.405: 234-237.
    [32] 卢勇. 林理彬. 真空还原制备的VO2热致相变薄膜Raman光谱和红外光谱研究[J]. 功能材料. 2001. 32(6): 657-659.
    
    [33] 卢勇. 林理彬. 邹萍等. 1.7MeV电子束在VO2热致相变薄膜中引起的结构和光电性能的变化)[J]. 功能材料. 2001. 32(5): 525-528.
    [34] 卢勇. 林理彬. 葛玉凤等. 真空退火引起的VOx薄膜生长过程的变价问题研究[J]. 功能材料. 1997. 28(6): 609-611.
    [35] 吴召平.方平安. 二氧化钒薄膜在α-Al2O3衬底上的外延生长及其金属-半导体相变特性研究[J]. 无机材料学报. 1999. 14(5): 823-827.
    [36] 崔敬忠. 达道安. 姜万顺. VO2热致变色薄膜的结构和光电特性研究[J]. 物理学报. 1998.47 (3): 454-460.
    [37] 崔敬忠. 达道安. 姜万顺. 磁控溅射制备VO2热致变色薄膜的研究[J]. 真空与低温. 1997.3(3): 128-131.
    [38] 崔敬忠. 达道安. 邱家稳. 双靶磁控溅射制备掺W氧化钒薄膜的研究[J]. 真空与低温. 1999.5(2): 77-80.
    [39] Xingjian Yi. Changhong Chen. Luqin Liu. et al. A new fabrication method for vanadium dioxide thin films deposited by ion beam sputtering. Infrared Physics and Technology. 2003.44: 137-141.
    [40] 陆松伟. 侯立松. 干福熹. 氧化钒薄膜的成份及相转变的研究[J]. 硅酸盐学报. 1991. 19(2): 142-146.
    [41] 陆松伟. 侯立松. 干福熹. 浸渍法VO2薄膜的相转变[J]. 材料科学进展. 1991. 19(2): 142-146.
    [42] 陆松伟. 侯立松. 干福熹. 溶胶-凝胶法制备VOx薄膜的半导体-金属相转变[J]. 无机材料学报. 1990. 5(2): 175-180.
    [43] Lu Songwei. Hou Lisong. Gan Fuxi. Synthesis and phase transition of Cu+2 plus ion doped VO2 thin films [J]. Journal of Materials Science Letters. 1996.15(10): 856-857.
    [44] 刘正堂. VO2薄膜的主要制备工艺参数研究[J]. 功能材料. 1997. 29(1): 52-55.
    [45] Yin Dachuan. Xu Niankan. Zhang Jingyu. Zheng Xiulin. Vanadium dioxide films with good electrical switching property [J]. J.Phys.D. 1996. 29: 1051-1057.
    [46] 许念坎. 尹大川. 张晶宇.郑修麟.具有纳米结构的VO2相变薄膜[J]. 航空学报.1997.18(5): 607-610.
    [47] 许昱. 邱家稳. 赵印中等. VO2薄膜制备工艺及电阻开关特性研究[J]. 中国空间科学技术. 2001. (6): 62-67.
    [48] 赵康. 魏建锋. 孙军等. 溶胶凝胶法制备VO2薄膜的组织与性能研究[J]. 功能材料. 2002. 33(1): 84-85.
    [49] Yuan Ningyi. Li jinhua. Lin Chenglu. Valence reduction process from sol-gel V2O5 to VO2 thin films [J]. Applied Surface Science. 2002.191: 176-180.
    [50] 杨邦朝. 王文生. 薄膜物理与技术(第1版) [M]. 成都. 电子科技大学出版社. 1994.
    [51] 唐伟忠. 薄膜材料制备原理、技术及应用(第1版)[M]. 北京. 冶金工业出版社. 1998.73-104.
    
    [52] 李学丹. 万英超. 薄膜[J]. 真空与低温. 1992.11(1): 51-54.
    [53] 杨晨松. 徐廷献. 无机薄膜的制备技术[J]. 硅酸盐通报. 2003.2: 21-25.
    [54] 杨恢东. 王浩. 丁瑞钦. 纳米半导体薄膜制备技术[J]. 真空与低温. 1999. (5): 81-87.
    [55] 李美成. 脉冲激光薄膜制备技术[J]. 真空与低温. 2000. 6(2): 63-70.
    [56] 方国家. 刘祖黎. 王又青等. 脉冲准分子激光扫描沉积(PLD)高C轴取向V2O5/Si薄膜及结构分析[J]. 硅酸盐学报. 2001. 19(1): 13-17.
    [57] 彭英才. 薄膜的光化学气相沉积[J]. 真空与低温. 1991. 10(2): 20-27.
    [58] 王丽军. 金刚石薄膜CVD制备方法及其评述[J]. 真空与低温. 2000. 6(2): 80-85.
    [59] 黄传真. 艾兴. 侯志刚等. 溶胶-凝胶法的研究和应用现状[J]. 材料导报. 1997.11(3): 8-9,13.
    [60] 王春云 编译. 溶胶-凝胶法功能薄膜的成膜技术及其应用[J]. 化工新型材料. 2000.28(3): 26-29.
    [61] 丁星兆. 董远达. 溶胶—凝胶薄膜工艺及其应用[J]. 材料导报. 1993. (3): 32-35.
    [62] 孙继红. 范文浩. 吴东等. 溶胶-凝胶化学及其应用[J]. 材料导报. 2000. 14(4): 25-29.
    [63] 王歆. 庄志强. 齐雪君. 金属氧化物溶胶-凝胶法制备技术及其应用[J]. 材料导报. 2000. 14(11): 42-44.
    [64] 刘光华. 现代材料化学[M]. 上海. 上海科技出版社. 2000. 371-381.
    [65] 邵潭华 材料工程基础(第2版) [M]. 西安. 西安交通大学出版社. 2000. 310-317.
    [66] H Jerominek and F Picard. Vanadium dioxide films for optical switching and detection [J]. Opt. Eng. 1993. 32(9): 2092-2099.
    [67] Michael F. Becker A. Bruce Buckman and Rodger M. Femtosecond laser excitation of the semiconductor-metal phase transition in VO2 [J]. Appl.Phys.Lett. 1994. 65(12):1507-1512.
    [68] F C Case. Influence of ion beam parameters on the electrical and optical properties of ion-assisted reactively evaporated vanadium dioxide thin films [J]. J.Vac.Sci.Technol. 1987. A5(4): 1762-1766.
    [69] Chain E E. Optical properties of vanadium dioxide and vanadium pentoxide thin film [J]. Appl.Opt.. 1991. 30(19): 2782-2787.
    [70] J C Rakotoniaina. R Mokrani-Tamellin. J R Gavarri. The thermochromic vanadium dioxide [J]. Journal of Solid State Chemistry. 1993. 103: 81-93.
    [71] 单凡. 黄祥成. 二氧化钒薄膜的光学特性及应用前景[J]. 应用光学. 1996. 17(2): 39-42.
    [72] 刘金城. 鲁建业. 田雪松等. 二氧化钒薄膜研究的最新进展[J]. 哈尔滨工业大学学报. 2002.34(4): 570-572.
    [73] 陈长琦. 方应翠. 朱武等. 二氧化钒相变分析及应用[J]. 真空. 2001. (6): 9-13.
    [74] 卢亚雄. 张寿康. 二氧化钒多层膜的光阀作用[J]. 红外与激光技术. 1994. (1): 31-32.
    [75] 方应翠. 陈长琦. 朱武等. 二氧化钒在智能窗方面应用研究[J]. 真空. 2003.2: 16-18.
    
    [76] Moon-Hee Lee Jun-Seok. Cho. Better thermochromic glazing of windows with anti-reflection coating [J]. Thin Solid Films. 2000. 365(1): 5-6.
    [77] Moon-Hee Lee. Thermochromic glazing of windows with better luminous solar transmittance [J]. Solar Energy Materials and Solar Cell. 2002.71: 537-540.
    [78] 付伟. 激光致盲武器[J]. 光的世界1999. 12(2): 28-29.
    [79] 付伟. 对激光致盲的防护与对抗[J]. 现代军事. 1995. (3): 54-55.
    [80] 牛燕雄. 张雏. 周增惠. 低能激光武器的防护技术[J]. 光学技术. 1998. (1): 89-92.
    [81] 胡江华. 周建勋. 张保民. 战场激光防护技术[J]. 光学技术. 1995. (3): 36-39.
    [82] 施德恒. 许启富. 基于光学原理的激光防护镜近况[J]. 光学技术. 1999. (4): 16-20.
    [83] 白光. 吉禾. 用VO2反射镜对激光振荡脉冲前沿整形[J]. 激光与光电子学进展. 1999.10: 23-26.
    [84] Orr J S. Gordon H. Vanadium dioxide protective[R]. Report No: ADA212018. 1989.
    [85] 袁宁一. 李金华. 林成鲁. 氧化钒薄膜的结构、性能及制备技术的相关性[J]. 功能材料. 2001. 32(6): 572-575.
    [86] D Zintu. G Tosone. A Mercuri. Dual ion beam sputtering vanadium dioxide microbolometers by surface micromachining [J]. Infrared Physics and Technology. 2002.43: 245-250.
    [87] R J Herring. P E Howard. Design and performance of the ultra 320×240 uncooled focal plane array and sensor [J]. SPIE. 1996. 2746: 2-12.
    [88] I H Jerom. F Picard. N R Swart. et al. Micromachined uncooled VO2-based IR bolometer arrays [J]. SPIE. 1996. 2746: 60-71.
    [89] 陈长虹. 易新建. 熊笔峰. 基于VO2薄膜非致冷红外探测器光电响应研究[J]. 物理学报. 2001.50(3): 450-452.
    [90] Hakim M O. Babulanam S.M.and Granqvist C.G. Electromechnical properties of VO2 thin film on polyimide substrate [J]. Thin Solid Films. 1988. (158): L49-L52.
    [91] O P Konovalova. A I Sidorov. Interference systems of controllable mirrors based on vanadium dioxide for the spectral range 0.6-10.6μm.[J]. Journal of optical technology. 1999. 66(5): 13-21.
    [92] F Cardillo Case. Modifications in the phase transition properties of predeposited VO2 films [J]. J.Vac.Sci.Technol.. 1984. A2(4): 1509-1512.
    [93] Katsumi Kuwabara. Shoichi Lchikawa. Kohzo Sugiyama. Electrchromic display device with lnorganic Lon Exchanger [J].J Electrochem. Soc. 1988.135(10): 2432-2436.
    [94] Chain E E. Optical properties of vanadium dioxide and vanadium pentoxide thin film [J]. Appl.Opt.. 1991. 30(19): 2782-2787.
    [95] Nagashima M. Wada H. Near infrared optical properties of laser ablated VO2 thin films by ellipsometry[J]. Thin Solid Films. 1998. 312 (12): 61-65.
    
    [96] 张德珂. 材料科学基础(第1版)[M]. 北京. 机械工业出版社. 1998.
    [97] 杨绍利. 徐楚韶. 陈厚生等. 制备工艺参数对V2O5颗粒微观形貌的影响[J]. 硅酸盐学报. 2003. 31(3): 312-315,323.
    [98] 周祖康. 顾惕人等. 胶体化学基础[M]. 北京大学出版社,1996年12月第2版:318-322.
    [99] 邓昭镜. 超微粒及其聚集体(第1版)[M]. 重庆. 西南师范大学出版社. 1998.
    [100] 申泮文等. 无机化学丛书(第八卷)[M]. 北京. 科学出版社. 1998. 24-31.
    [101] 张立德. 牟季美. 纳米材料和纳米结构(第1版)[M]. 北京. 科学出版社. 2002. 97-102.
    [102] 张志昆. 崔作林. 纳米技术和纳米材料[M]. 北京. 国防工业出版社. 2000.
    [103] 向德辉. 钒催化剂[M]. 北京. 化学工业出版社. 1980. 31-34.
    [104] 周静. 陈文. 徐庆等. V2O5复合薄膜中氧原子的化学状态[J]. 功能材料(增刊). 2001. (10): 1451-1453.
    [105] 童茂松. 戴国瑞. 高鼎三等. V2O5薄膜的电学性质及其应用[J]. 材料导报. 2000. 14(10):36-38.
    [106] P. 哈森. 材料的相变[M]. 北京. 科学出版社. 1998.
    [107] (苏联)H.П. 利亚基舍夫等 著. 崔可忠 译. 钒及其在黑色冶金中的应用(第1版)[M]. 重庆. 科学技术文献出版社重庆分社. 1987.
    [108] 陈家祥 编著. 炼钢常用图表数据手册[M]. 北京. 冶金工业出版社. 1984. 548-587.
    [109] 梁英教 主编. 物理化学(第1版) [M]. 北京. 冶金工业出版社. 1989. 374-377.
    [110] O.库巴谢夫斯基等 著. 邱竹贤等 译. 冶金热化学(第1版) [M]. 北京. 冶金工业出版社. 1985.
    [111] 魏庆成. 冶金热力学(第1版) [M]. 重庆. 重庆大学出版社. 1998. 262-265.
    [112] 陈新民. 陈启元. 冶金热力学导论(第1版)[M]. 北京. 冶金工业出版社. 1986.
    [113] 高白云. V2O5熔化新工艺研究(硕士论文). 重庆. 重庆大学. 2000. 4-13.
    [114] 刘武汉. 多钒酸铵沉淀条件及工艺参数优化(硕士论文). 重庆. 重庆大学. 2000. 18-22.
    [115] 张向宇 等. 实用化学手册(第1版) [M]. 北京. 化学工业出版社. 1980. 674,681-683,1074.
    [116] 林宗寿. 无机非金属材料工学(第2版) [M]. 武汉. 武汉工业大学出版社. 1999. 255-274.
    [117] 陈春荣. 赵新乐 编著. 晶体物理与检测(第1版) [M]. 北京. 北京理工大学出版社. 1995.
    [118] 谢希文. 过梅丽. 材料科学基础(第1版) [M]. 北京. 北京航空航天大学出版社. 1999. 199-200.
    [119] 徐南平. 钢铁冶金实验技术和研究方法(第2版)[M]. 北京. 冶金工业出版社. 1995.
    [120] 高允颜 编. 正交及回归试验设计方法(第1版)[M]. 北京. 冶金工业出版社. 1988.
    [121] 孙荣恒. 黄雯莹. 伊亨云 编. 数理统计(第1版). 重庆. 重庆大学出版社. 1995.
    [122] 陈春荣. 赵新乐 编著. 晶体物理与检测(第1版) [M]. 北京. 北京理工大学出版社. 1995.
    [123] 冯铭芬 编著. 硅酸盐岩相学(第1版) [M]. 上海. 同济大学出版社. 1986.
    [124] Hakim M O. Babulanam S.M.and Granqvist C.G. Electrcomechnical properties of VO2 thin film
    
    
    on polyimide substrate [J]. Thin Solid Films. 1988. (158):L49-L52.
    [125] H Jerominek and F Picard. Vanadium dioxide films for optical switching and detection [J]. Opt.Eng. 1993. 32(9):2092-2099.
    [126] Glen A Nyberg and R A Buhrman. High optical contrast in VO2 thin film due to improved stoichiometry [J]. Thin Solid Films. 1987. 147: 111-116.
    [127] 黄昆. 韩汝琦 著. 半导体物理基础(第1版) [M]. 北京. 科学出版社. 1979.
    [128] 刘恩科.朱秉升等 编 半导体物理学[M]. 上海. 上海科学技术出版社. 1984.
    [129] 叶良修 编著. 半导体物理学(上册)[M]. 北京. 高等教育出版社. 1983:84-92.
    [130] 符迈群. 钒氧化物的非计量化学性质. 钒钛. 1990. (2):7-11.
    [131] 徐时清. 赵康. 谷臣清 等. 掺杂VO2相变薄膜的电阻特性研究[J]. 硅酸盐学报. 2002. 30(5): 637-640.
    [132] 北京师范大学化学系无机化学教研室 编. 简明化学手册(第1版)[M]. 北京. 北京出版社. 1980.
    [133] 余焜 主编. 材料结构分析基础[M]. 北京. 科学出版社. 2000: 200-201.
    [134] 孟扬.杨锡良.陈华仙 等.高价态差掺杂氧化物透明透明导电薄膜的研究[J].光电子技术. 2001.21(1): 17-24.
    [135] 丘利. 胡玉和 编著. X射线衍射技术及设备[M]. 北京. 冶金工业出版社. 1998. 13-14.
    [136] 许波. 刘征 编著. MatLab工程数学应用[M]. 北京. 清华大学出版社. 2000.
    [137] 张克丛. 近代晶体学基础(上、下册)[M]. 北京. 科学出版社. 1987.
    [138] 王华英. 晶体学导论(第1版)[M]. 北京. 清华大学出版社. 1989.
    [139] 陈春荣. 赵新乐 编著. 晶体物理与检测(第1版)[M]. 北京. 北京理工大学出版社. 1995.
    [140] 唐伟忠 著. 薄膜材料制备原理、技术及应用(第1版)[M]. 北京. 冶金工业出版社.1998.
    [141] P.Jin. S.Nakao. S.Tanemura. Tungsten doping into vanadium dioxide thermochromic films by high-energy ion implantation and thermal annealing[J]. Thin Solid Films.1998. 324: 151-158.
    [142] W. Burkhardt. T. Christmann. B. K. Meyer. W-and F-doped VO2 films studied by photoelectron spectrometry[J]. Thin Solid Films.1999. 345: 229-235.
    [143] W. Burkhardt. T. Christmann. S. Franke. Tungsten and fluorine CO-doping of VO2 films[J]. Thin Solid Films.2002. 402: 226-231.
    [144] E. Cavanna. J. P. Segaud. J. Livage. Optical switching of Au-doped VO2 sol-gel films[J]. Materials Research Bulletin.1999. 34(2): 167-177.
    [145] Moon-Hee Lee. Myoung-Geun Kim. Hyung-Keun Song. Thermochromism of rapid thermal annealed VO2 and Sn-doped VO2 thin films[J]. Thin Solid Films.1996. (290-291): 30-33.
    [146] 胡福增等 编著. 材料表界面(第2版)[M].上海. 华东理工大学出版社.2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700