基于人工免疫系统的机组复合故障诊断技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着旋转机械设备的大型化、高速化、复杂化,复合故障发生的概率也在不断的增大。由于多重故障并发时,不同故障特征相互混杂呈现出多耦合、模糊性等复杂征兆,并非多个单故障的简单线性叠加,很难用准确的数学模型加以描述,也难以完全依靠确定性判据进行故障诊断,复合故障具有复杂性、相关性和不确定性的特点,给诊断带来了极大的困难。本文以化工机组复合故障为主要研究对象,以人工免疫与其他智能方法集成来提高复合故障的准确率为研究内容,分析、研究机组复合故障的特性,优化特征分类能力,形成核心算法,研究依托免疫系统分布性、多样性原理的多类无量纲免疫检测器集成诊断技术,通过智能整合思想为问题的解决提供一条可行的途径,深入探索复合故障精确诊断的机理,研究出有效诊断方法,突破复合故障诊断难的瓶颈,为人工免疫系统在机组复合故障诊断技术的工业应用打下理论基础及提供技术支撑,在工业机组复合故障诊断领域实现智能化、高诊断准确率的目标。具体研究如下:
     考察和分析现有的故障检测器生成算法,发现基于人工免疫的算法中一般都针对一定的匹配规则,目前都没有很好地解决阈值的问题,预设常数阈值对不同的故障存在局限性;应用单一匹配规则,生成检测器的质量不高,会生成错误的检测器,从而在检测时产生比较大的误报率;同时还会产生检测器集的黑洞问题,在检测时造成比较大的漏报率和误报率;而且现有算法需要比较大的检测器集合来保证较高的检测率,导致每次检测器生成过程和检测过程花费较多时间。为此,研究一种故障检测器生成算法,基于形态学空间的分析,提出利用检测器串覆盖问题的思想来生成检测器集合,该算法在进化过程中实现匹配阈值的自适应变化,有效减少黑洞和边界不清晰的问题,防止故障误检和漏检。构造一种符合人工免疫系统多样性、分布性原理的高效的、快捷的检测器训练方式和算法,生成高效的免疫检测器,提高故障检测准确率。
     针对多重故障并发时,不同故障特征相互混杂呈现出多耦合、模糊性等复杂征兆,提出免疫编程的特征构造方法。通过抗体集的进化来获得最优抗体,得到具有最佳识别能力的新特征指标,解决分类能力不足的问题,通过算法训练后获得最佳分类能力的成熟免疫检测器,进一步提高免疫检测器对复合故障的分类能力。
     针对目前采用神经网络、模糊聚类理论、专家系统等集成的算法存在计算复杂、在线性差,难于满足诊断快速性要求。把多重复合故障看成单独一类新出现故障参与到整个故障空间中进行训练,定义5种时域指标生成的无量纲免疫检测器同时进行交叉检测,利用证据理论的决策系统作进一步决策,通过多信息融合技术,推导出能诊断复合故障的优秀免疫检测器,研究出一种更为简单、高效、快速、实用的集成诊断算法,形成基于多类无量纲免疫检测器集成的机组复合故障诊断技术。
     利用人工免疫系统的特性,根据缓变故障的特点,采用阴性选择算法,选取合适的编码位数,对缓变故障特征进行提取和约简,得到独有故障特征,再集成诊断,通过实验验证了这种方法对缓变的复合故障诊断的有效性。
     把研究成果应用于工业机组的故障诊断中,“橡胶装置二线挤压脱水机GY6204及膨胀干燥机GY6205智能故障诊断系统”的投入使用,为人工免疫系统在故障诊断的工业应用上打下了基础,初步实现了工业机组复合故障领域智能化、高诊断准确率的目标。
     通过本文的研究,尤其是人工免疫系统在复合故障诊断问题的深入探讨,为今后进一步的研究打下了坚实的基础,同时也发掘出了一些新的研究问题和研究思路。
Due to the high speed and complexity of large-scale rotating machinery, complex fault probability is also constantly increasing. When multiple concurrent faults happen, those different faults are mixed with each other and feature multiple-coupling and ambiguity, they can’t be reduplicated by simple linear fault, so it's hard to accurately describe the mathematical model of those faults and it’s very difficult to diagnose them through deterministic criteria. Complex fault has the features of complexity, correlation and uncertainty; therefore it is very difficult to diagnose. This paper aims to discuss the problem of accurate complex fault diagnosis of machine unit, by means of artificial immune method combining with other intelligence methods, the accuracy ratio of complex fault diagnosis can be improved, and a feasible way to complex fault diagnosis may be provided through the idea of intelligent integrated. This article analyzes the characteristics of unit complex faults, optimizes feature classification, forms the core algorithm, and based on principle of immune system distribution and diversity, studies the integrated diagnostic technology to more types of non-dimensional immune detectors. Precise diagnosis mechanisms of complex fault are studied further in this paper. In order to break the bottleneck of complex fault diagnosis, the effective diagnosis method will be developed. Those methods can form a solid theoretical foundation and provide strong technical support for artificial immune system application to unit complex faults diagnose, and those methods can help to carry out intelligence and high diagnostic accuracy ratio of industrial units complex fault diagnosis. The main contents of this dissertation are summarized as followings:
     Investigation and analysis of the existed generating algorithms to fault detector, we find that they have fixed matching rules based on artificial immune algorithm; the threshold problem is currently not well resolved. The default constant threshold has limitations for different faults. The quality of detectors generated by using single matching rule is not very satisfactory, sometime, error detectors will be generated, and it can result in larger detection false. In the same time it will produce a detector set black hole, and lead to larger false rate and omitting rate. In order to guarantee the higher detector rate, the existed algorithm needed larger detector set, but it take long time to generate detector and detect. In this paper, detector-generating algorithm is studied. Based on the form analysis, the detector set can be generated by the technology of detector covering; the algorithm can adaptively match on the threshold in the course of evolution. According to the principle of the diversity and distribution of artificial immune system, the detectors set can be optimized, efficient and fast detector training method and algorithm can be proposed through the principle of the diversity and distribution of artificial immune system. The more efficient detector can reduce black holes and boundary uncertainty, and prevent misdiagnosis and omitting diagnosis.
     As concurrent multiple faults happen, different fault features mix with each other and feature multiple coupling and ambiguity, the algorithm of characteristics construction of immune programming is proposed. By through of evolution of antibodies set, the optimal antibodies can be obtained and the new features indicator of best recognition ability can be formed, it can solve the problem of insufficient classification capacity. By algorithm training, mature immune detector with best classification ability can be obtained such that the detector further enhances the immune detector classification capability to the complex fault.
     Considering that the use of neural networks, fuzzy clustering theory, expert systems integration algorithms has complexity and on-line diagnosis can not meet the fast requirements in recent years, through the multiple complex fault participating in the non-ego training space as a new type fault, the dimensionless immune detectors have been generated by defining five kinds of time domain performance index, those detectors can crossly test. Using decision-making systems of the evidence theory, the excellent detector can be derived through multi-information fusion technology, the detector can diagnose complex fault. A kind of integrated diagnosis algorithm with more simplicity, efficiency, rapidity and practice has been proposed, and basing on integration of some class of dimensionless immune detectors, the unit complex fault diagnosis technology has been formed.
     Using characteristics of the artificial immune system, negative selection algorithm is adopted and the appropriate coding bits are selected based on characteristics of slowly-varying fault, slowly-varying fault feature can be extracted and reduced, unique fault feature can be obtained, and then the integrated diagnosis can be proceed. Experiment has shown the effectiveness of the method to slowly varying complex fault diagnosis.
     The research results have been applied to fault diagnosis of industrial units. The intelligent diagnosis systems such as the rubber device GY6204 and GY6205 have been used in the industrial area. Those use of fault diagnosis technology in the industrial sector has made a solid foundation for artificial immune system, and the intelligence and high accuracy ratio of complex fault diagnosis can be realized in the field of industrial unit complex fault diagnosis.
     Through some study in our paper, the especially further research about the use of the artificial immune system to complex fault can not only make a solid foundation in this field, but also help us to discover some new research problems and possible solutions.
引文
[1]袁静,何正嘉,訾艳阳.基于提升多小波的机电设备复合故障分离和提取[J].机械工程学报. 2010, 46(1): 79-81, 91.
    [2]张彼德,郑高.概率因果联接模型在汽轮发电机组振动多故障诊断中的应用[J].汽轮机技术. 2004, (3):207-209.
    [3]何永勇,钟秉,林黄仁.基于人工神经网络的旋转机械多故障同时性诊断策略[J].东南大学学报, 1996, (5): 39-43.
    [4]景敏卿,张晓丽.基于ART-并行BP神经网络的柴油机故障诊断研究[J].机械科学技术, 2007, 6(4) :412-426.
    [5]陈耀武,汪乐宇,程耀东.基于组合式模糊神经网络的旋转机械故障诊断模型[J].中国机械工程学报, 2000, 11(11) :1255-1259.
    [6]刘琳,沈颂华,刘强.基于小波模糊网络的电厂汽轮发电机组故障诊断[J] .电网技术, 2005,29(16) :11-15.
    [7]李国勇,杨庆佛.基于模糊神经网络的车用发动机故障诊断系统[J] .系统仿真学报, 2007, 19(5) :1034-1037.
    [8]董彩凤,隗喜斌,王天宇.汽轮发电机组转子复合故障的研究[J] .汽轮机技术, 2003, 45(6)3:77-379.
    [9]吴梅,许东,王鹏.导弹复合故障诊断专家系统研究[J].弹箭与制导学报, 2002, 22(1) :17-20.
    [10]莫宏伟.人工免疫系统原理与应用[M] .哈尔滨:哈尔滨工业大学出版社, 2003.
    [11]李涛.计算机免疫学[M] .北京:电子工业出版社, 2004.
    [12]焦李成,杜海峰,刘芳,公茂果.免疫优化计算、学习与识别[M].北京:科学出版社, 2006.
    [13] Forrest S, Perelson A, Cherukuri R. Self-nonself Discrimination in a Coumputer .Proc. Of the IEEE Symposium on Research in Security and Privacy,1994.
    [14] D′haeseleer P, Forrest S, Helman P. An Immunological Approach to Change Algorithms: Analysis and Implications. In: Proc IEEE Symposium on Security and Privacy, LasAlamitos, CA, USA, 1996, 110-119.
    [15] De Castro L N, Von Zuben F J. Clonal Selection Algorithm with Engineering Applications. In:Proc GECCOOO, Las Vegas, Nevada, USA, 2000, 36-37.
    [16] Xiong Hao and Sun Cai-xin. Artificial Immume Network Classification Algorithm for Fault Diagnosis of Power Transformer[J]. IEEE Transactions on Power Delivery, 2007, 22(2):930-935.
    [17]屈梁生,何正嘉.机械故障诊断学[M] .上海:上海科学技术出版社, 1986.
    [18] Jerne N K. The Immune System[J]. Scientific American, 1973, 229(1): 51-56.
    [19] Perelson A S. Immune network theory[J]. Immunological Review, 1989, 110: 5-36.
    [20] Farmer J D, Packard N H, Perelson A S. The Immune System, Adaptation, and Machine Learning[J]. Physical D, 1986, 22: 187-204.
    [21] Ishida Y. Fully Distributed Diagnosis by PDP Learning Algorithm: Towards Immune Network PDP Model[M]. San Diego: Proceedings of ICNN90, 1990.
    [22] Kayawa M, SugitaY, Morooka. Sensor Diagnosis System Combing Immune Network and Learning Vector Quantization[J]. Electrical Engineering in Japan, 1997: 44-55.
    [23] Dasgupta D, KrishnaKumar K, Wong D, et al. Negative Selection Algorithm for Aircraft Fault Detection[EB/OL] .http://issrl.cs.memphis. edu/papers/ais/2004/ICARIS04.pdf.
    [24] Dasgupta D, Forrest S. Artificial Immune Systems in Industrial Applications[C]. Proc. 2nd International Conference on Intelligent Processing and Manufacturing of Materials, Honolulu, 1999: 257-267.
    [25] Gonzalez F, Dasgupta D. Anomaly Detection Using Real-valued Negative Selection[J].Genetic Programming and Evolvable Machines, 2003, 12(4): 383-403.
    [26] Ishiguro A, Watanabe Y, Uchikawa Y. Fault Diagnosis of Plant Systems Using Immune Networks[C]. Proc. IEEE International Conference On Multi-sensor Fusion and Integration for Intelligent Systems, Las Vegas, NV, 1994, 34-42.
    [27] Taniguchi S, Dote Y. Sensor Fault Detection for Uninterruptible Power Supply Control Systems Using Fast Fuzzy Neural Network and Immune Network[C]. Proc. of the SMC’2001, USA, Oct, 2001: 7-10.
    [28] Tang Z, Yamaguchi T, Tashima K, et al. Multiple-valued Immune Network Model and Its Simulation[C]. Proc. the 27 International Symposium on Multiple-Valued Logic, Antigonish, Nova Scotia, Canada, 1997: 519-524.
    [29] Luh Guan-chun, Cheng Weichong. Immune Model-based Fault Diagnosis[J]. Mathematics andComputers in Simulation, 2004, (7): 5-6.
    [30]刘树林,黄文虎,王日新等.基于免疫系统的往复泵在线故障诊断方法[J].中国机械工程学报, 2002, 13(8) :686-689.
    [31]谷吉海,姜兴渭,刘树林等.免疫系统的反面选择算法在故障诊断中的应用[J] .中国空间科学技术, 2002, (2) :24-29.
    [32]栾家辉,姜兴渭.免疫状态观测器的设计及应用[J] .中国空间科学技术, 2005, (5) :34-39.
    [33]庞茂,周晓军,孟庆华.基于免疫学的在线故障检测算法的研究及应用[J].中国电机工程学报, 2005, 25(24) :149-153.
    [34]李伟,黄席樾.基于免疫原理的故障诊断推理模型研究[J].计算机仿真.2005,22 (7) :111-113.
    [35]陈强,郑德玲.基于免疫原理的齿轮箱故障检测和诊断方法研究[J].矿山机械, 2005, 33(5) :75-77.
    [36]李蓓智,杨建国,杨江云等.基于自我-非我识别机理的状态监测与故障诊断[J].上海工程技术大学学报, 2004,18(1)2:4-27.
    [37]窦唯,于楷,孟庆武等.基于免疫系统机理的距离函数故障诊断方法[J].大庆石油学院学报, 2003, 27(3) :54-56.
    [38]窦唯,刘树林,孙明等.生物免疫机理在往复压缩机在线状态监测中的应用[J].流体机械, 2004, 32(5) :16-19.
    [39]孟庆华,周晓军,吴跃成等.基于小波免疫系统的车辆总成故障检测[J].汽车工程, 2004, 26(5) :619-622.
    [40] Shengfa Yuan, Fulei Chu. Fault Diagnosis Based on Support Vector Machines with Parameter Optimization by Artificial Immunization Algorithm [J]. Mechanical Systems and Signal Processing, 2007, (21): 1318-1330.
    [41]熊浩,孙才新,李小虎.基于克隆选择分类算法的电力变压器故障诊断[J].电网技术, 2006, 30(4): 65-68.
    [42]蔡兴国,马平.基于信息融合技术的复合故障诊断的研究[J].中国电机工程学报, 2003, (5):112-115.
    [43]刘永安,白文宝,徐保国.证据理论在旋转机械故障诊断中应用[J].计算机测量与控制, 2007, (2):174-176.
    [44]张清华,钱宇,胥布工等.一种采用无量纲指标免疫检测器的集成故障诊断方法[J].噪声与振动控制, 2007, (6):69-72.
    [45]岑健,胥布工,张清华等.基于证据理论的免疫检测器在轴承故障诊断中的应用[J] .《轴承》, 2009.8,总第357期:42-45,49.
    [46]钟秉林,黄仁.机械故障诊断学(第二版) [M].机械工业出版社,2002.
    [47]马宏忠.电机状态监测与故障诊断[M] .机械工业出版社,2008.
    [48]魏伟,王琳.电机故障诊断技术研究现状与发展趋势[J] .微电机, 2009, (42): 66-68.
    [49]陈长征,胡立新,周勃等.复合故障诊断.设备振动分析与故障诊断技术[M] .科学出版社, 2007.
    [50]郑小年,杨克冲.数控机床故障诊断与维修[M] .武汉:华中科技大学出版社, 2005,108.
    [51]李国华,张永忠.机械故障诊断[M].北京:化学工业出版社, 1999.
    [52]李世琼,张展等.机床现代诊断技术[M].北京:机械工业出版社, 1997.
    [53]杨小强,岳美琴.减速箱齿轮磨损故障诊断[M].设备管理与维修,2000, (8):25-26.
    [54]屈梁生,何正嘉机.械故障诊断学[M] .上海:上海科学技术出版社,1986.
    [55]蒋洪明,张庆.动态测试理论与应用[M].南京:东南大学出版社, 1999.
    [56]陈金国.常见故障振动谱图与分析[J].中国设备管理, 1998, (2): 27-28.
    [57]王新晴,徐燕申.齿轮传动几种典型故障的振动图谱分析[J] .机械传动, 1999,23(3) :34-36.
    [58]杜设亮,麦云飞.频谱分析法在齿轮故障诊断中的应用研究[J].机电工程, 1999, 16(5): 211-213.
    [59]吴今培,肖健华.智能故障诊断与专家系统[M] .北京:科学出版社, 1997.
    [60]赵翔,黄磊,刘健,周绍骑.现代故障诊断技术研究现状与趋势[J].后勤工程学院学报,2006, (2) :94-98.
    [61]徐波,于劲松,李行善.复杂系统的智能故障诊断[J] .信息与控制, 2004, 33(1):56-60.
    [62]桂卫华,刘晓颖.基于人工智能方法的复杂过程故障诊断技术[J].控制工程, 2002,9(4):1-6.
    [63] Tang T H, Lin X, Li J R, et al. A New Fuzzy Neural Network Approach for Intelligent Monitoring System[A]. Proceedings of IFAC Transportation Systems Conference[C]. 1997. 691-696.
    [64]李海潮.人工免疫理论及其在机械设备故障诊断中的应用研究[D].江西理工大学硕士学位论文, 2006 .
    [65]袁小宏,屈梁生.机械故障诊断中的信息融合利用问题研究[J].振动、测试与诊断,1999, 19(3):187-192.
    [66]李良敏,屈梁生.遗传编程在无量纲指标构建中的应用[J].西安交通大学学报, 2002, 36(7):736-739.
    [67]刘世元,杜润生,杨叔子.利用转速波动信号诊断内燃机失火故障的研究(2)-波形分析方法[J].内燃机学报, 2000, 18(3):320-323.
    [68]陈向东,赵登峰,王国强等.基于神经网络的滚动轴承故障监测[J].轴承, 2003(2):23-26.
    [69]张清华.基于人工免疫系统的机组故障诊断技术研究[D].华南理工大学博士论文, 2004.
    [70]漆安慎,杜婵.免疫的非线性模型[M].上海:科技教育出版社.1998, 2-5.
    [71]肖云本.免疫学基础及病原生物学[M].北京:中国医学科学出版社, 1999.
    [72]高廷玉.人工免疫系统在机组故障检测技术中的应用研究[D].太原理工大学硕士学位论文. 2007.
    [73]李涛.计算机免疫学[M] .北京:电子工业出版社. 2004, 27-37, 62-63.
    [74]肖人彬,王磊.人工免疫系统:原理,模型分析及展望[J] .计算机学报,2002,25(12): 1281–1287.
    [75]邵龙秋.多无量纲免疫检测器的机组并发故障诊断技术研究[D].太原理工大学硕士学位论文.2009.
    [76] De Castro LN. An Evolutionary Immune System Network for Data Clustering[C]. In: Proceedings of the Sixth Brazilian Symposium on Neural Networks. 2000, 84-89.
    [77] Timmins J. A Resource Limited Artificial Immune System for Data Analysis [J].Knowledge Based Systems.2002 (14):121-130.
    [78] Jerne N K. Towards a Network Theory of The Immune System. Annual Immunology, 1974, 125c: 373-389.
    [79] Tang Z, Yamaguchi T, Tashima K. Multiple-valued Immune Network Model and Its Simulation. In: Proc the 27 International Symposiums on Multiple-Valued Logic, Antigonish, Nova Scotia, Canada, 1997, 519-524.
    [80] Ishiguro A, Shirai Y, and Kondo T. Immunoid: Architecture for Behavior Arbitration on The Immune Networks. In: Proc IEEE/RSJ International Conference on Intelligent Robots Systems, Osaka, Japan, 1996, 1730-1738.
    [81] De Castro L N, Von Zuben F J. Artificial Immune System: Part I: Basic Theory and Application. School of Electrical and Computer Engineering, State University of Campinas, Campinas-SR, Brazil: Technical Report RT-DCA 01, 1999.
    [82] Forrest S, Hofmeyr S A. Immunology as Information Processing [M] , In: Segel and Cohen eds.Design Principles for the Immune System and Other Distributed Autonomous Systems, USA: Oxford University Press, 2000.
    [83] Timmis J. A Resource Limited Artificial Immune System for Data Analysis [J].Knowledge Based Systems, 2002 (14):121-130.
    [84] Esponda F, Forrest S, Helman P. A Formal Framework for Positive and Negative Detection Scheme[C].IEEE Transaction onSystems, Man,and Cybernetics, IEEE Press, 2003.357-373.
    [85] D,haeseleer P, Forrest S,Helman P. An Immunological Approach to Change Algorithms: Analysis and Implications. In:Proc IEEE Symposium on Security and Privacy,Las Alamitos,CA, USA, 1996,110-119.
    [86] Forrest S., Perelson A. S.Allen, L. Cherukuri R. Self-Nonself Discrimination in Computer. In Proceedings of IEEE Symposium on Research in Security and Privacy, May, 1999, 202-212, Oakland, CA, 16-18.
    [87] De Castro L N, Von Zuben F J. Clonal Selection Algorithm with Engineering Applications. In: Proc GECCOOO, Las Vegas, Nevada, USA, 2000, 36-37.
    [88] Gonzalez F, Dasgupta D, Gomez J. The Effect of Binary Matching Rules in Negative Selection[C]. Genetic and EvolutionaryComputation Conference, Chicago, 2003, 198-209.
    [89]公茂果,焦李成,马文萍等.基于流形距离的人工免疫无监督分类与识别算法[J].自动化学报, 2008, 34(3):367-375.
    [90]何勇,安源胜,武红霞.旋转机械的故障诊断[J].风机技术, 2007, (6):67-68.
    [91] De Castro L N, Timmis J. Artificial Immune System: A New Computational Intelligence Approach[M]. [S.l.] :Springer,2002:56.
    [92] Chao D L, Forrest S. Information Immune System[C]//Proeeedings of the First International Conference on Artificial Immune System(ICARIS) , 2002,132-140.
    [93] Dasgupta D, Ji Z, Gonzalez F. Artificial Immune System Research in The Last Five Years[C]// Proceedings of the 2003 Congress on Evolutionary Computation. Canberra, Australia, December 2003: 123-130.
    [94] Luo Wen jian, Wang Xin, Tan Ying. A novel Negative Selection Algorithm with An Array of Partial Matching Lengths for Each Deteetor[C]//LNCS 2006: PPSN IX. Berlin: Heidelberg, 2006:112-121.
    [95]杨东勇,陈晋音.基于多种群遗传算法的检测器生成算法研究[J].自动化学报, 2009.7, 35(4): 426-432.
    [96] Ji Zhou, Dasgupta DE. Stimating The Detector Coverage in A Negative Selection Algorithm[C] // The Genetic and Evolutionary Computation Conference, Washington,DC,June 2005:25-29.
    [97] Gonz’alez F A , Dasgupta D. Anomaly Detection Using Real-valued Negative Selection[J] . IEEE Transactions on Evolutionary Computation,2002, (6): 1081-1088.
    [98] Ji Zhou. A Boundary-aware Negative Selection Algorithm [J]. Artificial Intelligence and Soft Computing, 2005:451.
    [99] Xiong Hao, Sun Cai-xin. Artificial Immume Network Classification Algorithm for Fault Diagnosis of Power Transformer [J]. IEEE Transactions on Power Delivery, 2007, 22(2): 930 -935.
    [100]张清华,钱宇,胥布工,高廷玉等.一种采用非己空间变异搜索的故障检测算法[J].计算机工程与应用, 2007, 43(28):92-95.
    [101] De Castro, L. N. ,Von Zuben, F. J. Learning and Optimization Using the Clonal Selection Principle[A]. IEEE Transactions on Evolutionary Computation, Special Issue on Artificial Immune Systems, 2002,6(3) :239-251.
    [102]徐章遂,房立清,王希武等.故障信息诊断原理及应用[M].北京:国防工业出版, 2000.
    [103]任红卫,邓飞其.基于证据理论的信息融合故障诊断方法[J].系统工程与电子技术2005, 27(3): 471-473.
    [104]蔡兴国,马平.基于证据理论的复合故障诊断方法[J].哈尔滨工业大学学报, 2003, 35(4): 447-449,453.
    [105]何友,王国宏等.多传感器信息融合及应用[M].北京:电子工业出版社, 2000.
    [106] MacMillan T R. Knowledge Based Route Planning[J]. Proceeding of IEEE, NAECON, 1991, 1001-1007.
    [107] Peter M , Adriel L , Marek R , et al. Immune Programming [J]. Information Sciences. 2006, 176 (8): 972-1002.
    [108]张清华,钱宇,胥布工等.无量纲指标及人工免疫系统故障诊断技术的应用研究[J].噪声与振动控制, 2008, (1):89-93.
    [109]韩捷,张瑞林.旋转机械故障机理及诊断技术[M].北京:机械工业出版社, 1997 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700