车载组合导航系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
军用车辆使用环境比较复杂,为了满足武器系统快速机动发射的需求,要求导航系统具有高精度、高可靠性、自主性和抗干扰性。任何单一的导航系统都难以满足这一要求,多传感器信息融合技术成为导航系统研究的主要技术途径。本文以陆战平台为应用背景,以提高导航系统定位精度、适应能力和可靠性为目标,设计了微捷联惯导系统(Micro Strapdown Inertial Navigation System, MSINS)、全球定位系统(Global Positioning System, GPS)和电子罗盘(Electrical Compass, EC)组合的导航系统,并对其相关的关键技术进行了研究,主要研究工作如下:
     基于FPGA和ARM搭建了MSINS/GPS/EC组合导航系统硬件平台。为了提高组合导航子系统的精度,完成了对微惯性组件(Micro Inertial Measurement Unit, MIMU)的整体标定和性能测试,运用Allan方差分析方法对陀螺仪随机噪声进行分析和辨识,完整全面地掌握了噪声特性。针对MEMS陀螺仪随机噪声较大,会严重影响系统精度的问题,首先对随机漂移建立AR模型,然后提出基于状态扩增法设计Kalman滤波器滤除随机噪声,试验验证了该方法的有效性。
     深入研究了捷联惯导系统状态变量的可观测度问题。针对广泛应用的奇异值分解方法只能分析状态的估计精度,不能分析收敛速度的问题,引入主元分析方法,提出了基于主元分析的可观测度分析算法。该方法利用状态变量在主元子空间的投影来确定状态的可观测度信息,定义了估计精度和估计速度两项指标,分别求取两项指标的估计值。从奇异值分解的物理意义入手,简化了可观测度求解方法,全面地获取状态的可观测度信息。仿真和试验结果验证了该方法的有效性。
     对组合导航系统的数据融合算法进行了研究。为了降低GPS和EC的量测噪声,提出一种量测值平均化处理法和强跟踪Kalman滤波器相结合的算法。根据滤波器收敛性判据动态确定平均化时间,在保证滤波器收敛的前提下,使平均化时间最长,解决了传统量测值平均化方法难以确定平均化时间的问题,从而最大幅度降低了量测噪声,提高了系统精度。
     为了提高组合系统在GPS和EC无效时的定位精度,研究了利用车辆运动学约束辅助MSINS工作的导航算法。提出一种将运动学约束辅助法、方位陀螺漂移消减法以及交互多模型法相结合的导航算法。利用运动学约束辅助法(Motion Constraints Aided,MCA),引入约束条件,构造虚拟观测量,设计滤波器进行状态估计,提高了位置、速度的估计精度;采用方位陀螺随机漂移消减算法(Heuristic Drift Reduction, HDR),设计闭环网络,对方位陀螺仪的随机漂移进行实时估计和补偿,提高了航向角的估计精度。将两种算法并列执行,其结果作为交互多模型算法(Interactive Multiple Model, IMM)中各子滤波器的观测量,并以载体运动方式构建系统方程,设计滤波器进行滤波,进一步提高了系统精度。
The application environment of military vehicle is very complex,in order to meet the needs of rapid mobile launch of weapon system,navigation system should have good performance such as high accuracy, high reliability, autonomy and anti-jamming. Any single navigation system is hard to meet this requirement, so multi-sensor information fusion technology has been the main technical means of navigation systems. In this paper, considering military platform as application background, aiming as to improve the navigation system accuracy and the ability to adapt complex environment and high reliability, SINS system, GPS system and EC integrated navigation system are designed. Moreover, this paper did some research on their key technologies. The main research works of this paper are demonstrated as follows:
     Based on FPGA and ARM, an integrated navigation system hardware platform of MSINS/GPS/EC is designed. The performance of the system has been tested by experiments. Experimental verification is done respectively and overall calibration of MIMU. Random noise of gyroscope has been analyzed and identified with Allan variance, which contributes to grasp the noise characteristics completely and comprehensively. In order to solve the problem of the system accuracy which is influenced enormously by MEMS random drift error, a gyro random noise AR model has been established. Also, state augmenting method is proposed to design Kalman filter, which is used to filter the random noise. After testing and verification this approach is able to greatly reduce the random noise of gyro, moreover, it lays the foundation for improving the system accuracy.
     The observable degree of SINS has been studied. The Singular Value Decomposition(SVD) method of observability matrix is widely used in the field. However, this method could only analysis the estimate accuracy of state vector, but not the convergence rate. In order to solve this problem, Relative Principal Component Analysis (RPCA) algorithm is introduced, and a new observable degree analysis algorithm based on RPCA is proposed. The estimate accuracy and estimate velocity of observable degree is distinguished. Obtain the two estimates mentioned respectively, so the observable degree information of state could become more completely and comprehensively. Analysis from the physical meaning of singular value, simplified the solution of observable degree. Simulations and experimental results demonstrate the effectiveness of this method. Moreover, it is simpler and easier to implement compared with the traditional SVD method.
     The data fusion method of integrated navigation system has been studied. A Federal Kalman filter has been applied in SINS/GPS/EC integrated navigation system. Considering the low accuracy of short time output of GPS and EC, measurement averaging method is introduced. However, the average time is hard to determine in conventional method. In order to solve this problem, a new algorithm combined strong tracking kalman filter with convergence criterion of tilter is proposed. This method can reduce observable noise and improve the accuracy of system without any loss of the filter divergence.
     Due to GPS and EC is vulnerable to interference; this paper studied Navigation algorithm for low-precision inertial when it works alone. Vehicle model and movement characteristics are introduced as constraint information to improve system accuracy. At first, considering the lateral and vertical velocity of vehicle is usually zero, the constraint information was introduced as virtual measurement to design filters, which can estimate state vector and largely improve the system accuracy. Secondly, in order to reduce the rapid growth error of azimuth, HDR algorithm is introduced. A closed loop network is designed to estimate and compensate the random drift of azimuth gyroscope real-time. At last, Interactive Multiple Model (IMM) is proposed to apply in SINS, with the equations of vehicle motion as system equation and output of SINS as measurement. Simulation and experimental results demonstrate the algorithm can further improve the system accuracy.
引文
[1]黄智.车载导航系统组合定位技术研究.湖南大学博士学位论文. 2006
    [2] Bishop R.A.Survey of Intelligent Vehicle Application Worldwide Proceedings of the IEEE Intelligent Vehicle Symposium 2000. dearborm: USA,2000, 25-30P
    [3]徐中明,陈旭,贺岩松等.智能交通系统(ITS)中的智能汽车技术.重庆大学学报. 2005, 28(8): 17-21页
    [4] M. A. P. Taylor. Intelligent Transport Systems:Emerging Technologies and Methods in Transportation and Traffic. Transportation Research. 2004, C(3-4): 167-169P
    [5] M.A.Quddus. High Integrity Map Matching Algorithms for Advanced Transport Telematics Applications.PhD Thesis of University of London. 2006: 29-34P
    [6]徐田来.车载组合导航信息融合算法研究与系统实现.哈尔滨工业大学博士学位论文. 2007
    [7] David H.Titterton著.张天光等译.捷联惯性导航技术.北京:国防工业出版社. 2007
    [8]张韶华.地炮火控系统的现状及发展概况.火力与指挥控制. 2000, 25(2):8-14页
    [9]吴周洁.组合式车载导航系统研究.上海交通大学硕士学位论文. 2009
    [10]岳海波. GPS/DR车载组合导航定位系统研究.南京理工大学硕士学位论文, 2009
    [11] Weinberg M., Bernstein J., Cho S, et. al. Micro machined Comb-Drive Tuning Fork rate Gyroscope, Proceedings of the Institute of Navigation 49th Annual Meeting, Cambridge, MA, June 21-23, 1993:595-602P
    [12]张树侠,孙静.捷联式惯性导航系统.北京:国防工业出版社, 1992
    [13]以光衡.惯性导航原理.北京:航空工业出版社.1987
    [14] Helsel M., Gassner G., Robinson M. and Woodruff J.A. A Navigation GradeMicro-Machined Silicon Accelerometer. Proceedings IEEE 1994 Position, Location and Navigation Symposium. 1994: 51-58P
    [15] Chang Honglong, Xue Liang, Qin Wei, et al. An integrated MEMS gyroscope array with higher accuracy output. Sensors, 2008 (8): 2886-2899P
    [16] E. John. Progress on Micromechanical Inertial Instruments. AIAA-91-2765–CP, 1991: 1482-1485P
    [17]何昆鹏. MEMS惯性器件参数辨识及误差补偿技术.哈尔滨工程大学博士学位论文. 2009
    [18]吉训生,王寿荣. MEMS陀螺仪随机漂移误差研究.宇航学报. 2006, 27(4): 640-642页
    [19]吉训生,王寿荣,许宜申.自适应Kalman滤波在MEMS陀螺仪信号处理中的应用.传感器与微系统, 2006, 25(9): 330-334页
    [20] Zhang Hua, Ke Xizheng, Jiao Rong. Experimental research on feedback Kalman model of MEMS gyroscope. The Eighth International Conference Electronic Measurement and Instruments, 2007: 253-256P
    [21]李晓莹,胡敏,张鹏等.交叠式Allan方差在微陀螺仪随机误差辨识中的应用.西北工业大学学报, 2007, 25(2): 225-229页
    [22]胡敏.基于阵列技术的MEMS虚拟陀螺仪技术研究.西北工业大学硕士学位论文, 2006
    [23] Agustín L. Herrera-May, Luz A. Aguilera-Cortés, Pedro J. García-Ramírez Resonant Magnetic Field Sensors Based On MEMS Technology. Sensors 2009, 9: 7785-7813P
    [24]马艳红,胡军.基于SVD理论的可观测度分析方法的几个反例.惯性技术学报. 2008, 16(4):448-457页
    [25]熊丽,梁军.基于PCA的系统故障监测方法及其三相异步电动机仿真研究.机电工程. 2003,20(5): 180-182页
    [26]姜军,杨亚非. SINS/GPS组合导航系统初始对准的可观测度分析.哈尔滨工业大学学报. 2007: 1025-1027页
    [27] Ham F M, Brown T G. Observability, eigenvalues, and Kalman filtering. IEEE Transactions on Aerospace and Electronic Systems, 1983, 19(2):269-27P
    [28]万德均,房建成.惯性导航初始对准.南京:东南大学出版社,1998
    [29]程向红,万德钧,仲巡.捷联惯导系统的可观测性和可观测度研究.东南大学学报.1997, 27(6):6-11页
    [30] LIU Yu-fei, CUI Ping-yuan. Observability analysis of deep-space autonomous navigation system//Proceedings of the 25th Chinese Control Conference, Harbin, China, 2006: 279-282P
    [31]吴海仙,俞文伯,房建成.高空长航时无人机SINS/CNS组合导航系统仿真研究.航空学报. 2006, 27(2): 299-304页
    [32]文成林,胡静,王天真等.相对主元分析及其在数据压缩和故障诊断中的应用研究.自动化学报. 2008, (34) 9: 1128-1139页
    [33]周东华,叶银忠.现代故障诊断与容错控制.北京:清华大学出版社, 2001
    [34] Merwe R V D, Wan E A. The Square-root Unscented Kalman Filter For State and Parameter-eatimation. International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, 2001, 16(3): 123-127P
    [35]宫晓琳,房建成.模型预测滤波在机载SAR运动补偿POS系统中的应用.航空学报. 2008, 29 (1): 102-108页
    [36] J. Huang and H.-S. Tan. A low-order DGPS-based vehicle positioning system under urban environment. IEEE/ASME Trans. Mechatron., 2006, 5(12): 567–575P
    [37] N. El-Sheimy and X. Niu. The promise of MEMS to the navigation community. Inside GPS, 2007, 2(2): 46–56P
    [38] S. Godha M. E. Cannon GPS/MSINS integrated system for navigation in urban areas. GPS Solut. 2007, 11(3):193–203P
    [39] Zhang Y L, Gao F, Tian L. INS/GPS Integrated Navigation for Wheeled Agricultural Robot Based on Sigma-point Kalman Filter. Asia Simulation Conference-7th International Conference on System Simulation and Scientific Computing, 2006,3:456-463P
    [40] Isaac Skog and Peter H?ndel. In-Car Positioning and NavigationTechnologies—A Survey. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS. 2009, 10(1): 4-21P
    [41] Dissanayake G, Sukkarieh S, Nebot E, et al. The aiding of a low-cost strapdown inertial measurement unit using vehicle model constraints for land vehicle applications. IEEE Transactions on Robotics and Automation, 2001, 17(5): 731-747P
    [42] S. Julier and H. Durrant-Whyte. On the role of process models in autonomous land vehicle navigation systems. IEEE Trans. Robot. Autom., 2005, 19(1): 1-14P
    [43] R. Toledo-Moreo, M. Zamora-Izquierdo, B. Ubeda-Minarro, and A. Gómez-Skarmeta, High-integrity IMM-EKF-based road vehicle navigation with low-cost GPS/SBAS/INS. IEEE Trans. Intell. Transp. Syst. 2007, 8(4): 491–511P
    [44] B. Boberg, Robust navigation. Swedish J. Mil. Technol., 2005, 3(1): 23–28P
    [45] J.F.Ru,X.R.Li.Interacting Multiple Model Algorithm with Maximum Likelihood Estimation for FDI.International Symposium on Intelligent Control. Houston, Texas, 2003:661-666P
    [46] X.R.Li,Y.Bar-Shalom.Model-Set Adaptation in Multiple-model Estimation for Hybrid Systems.Proc.1992 American Control Conference. 1992: 1794-1799P
    [47] X.R.Li,Y.Bar-Shalom.Performance prediction of the IMM algorithms. IEEE Trans.on AES,1993,29(3):755-770P
    [48] KIRUBARAJAN T, BAR-SHALOM Y. Kalman filter versus IMM estimator: When do we need the latter? IEEE Trans on Aerospace and Electronic Systems, 2003, 39(4):1452-1456P
    [49] Mazor E, Averbuch A, Bar-Shalom, Y, et al. Interacting multiple model methods in target tracking: a survey. IEEE Transactions on Aerospace and Electronic Systems, 1998, 35(1): 103–123P
    [50] Blackman S, Popoli R. Design and analysis of modern tracking systems. Norwood, MA: Artec.1999: 123-132P
    [51]李辉,沈莹,张安等.交互式多模型目标跟踪的研究现状及发展趋势.火力与指挥控制, 2006, 31(11): 1-4页
    [52]肖乾.多模型估计理论.舰船科学技术, 2005, 27(2): 63-67页
    [53] Zang R C, CuiP Y. An Innovation Filtering Multiple Model Algorithm for Integrated Navigation System. Proceedings of the First International Conference on Innovative Computing, Information and Control, 2006, 12: 55-462P
    [54] Ragel B A, Farooq M. IMM filter for GPS aided INS in the AUV Application. The 48th Midwest Symposium on Circuits and Systems, 2008: 373-382P
    [55]藏荣春,崔平远,崔祜涛等.基于IMM-UKF的组合导航算法.控制理论与应用, 2007, 24(4): 634-638页
    [56] Seong Yun Cho, Byung Doo Kim. Adaptive IIR/FIR fusion filter and its application to the INS/GPS integrated system. Automatica, 2008, 44(8): 2040-2047P
    [57] Rafael T M, Miguel A Z, Benito U M, Antonio F. Gómez-Skarmeta. High-Integrity IMM-EKF-based road vehicle navigation with Low-Cost GPS/SBAS/INS. IEEE Transactions on intelligent transportation systems, 2007, 8(3): 491-511P
    [58] Crisan D. Particle Filters-A Theoretical Perspective. In Sequential Monte Carlo Methods in practice. Springer-Verlag. 2001, 12(3) :17-42P
    [59]马云峰. MSINS/GPS组合导航系统及其数据融合技术研究.东南大学博士学位论文. 2006
    [60] http://www.gene365.com/html/biopic/20070328/1768.html
    [61]孙晨.微惯性器件辅助GPS导航的工程实现.中北大学硕士学位论文. 2006
    [62]易大江.组合导航中的鲁棒滤波研究.国防科技大学博士学位论文. 2008
    [63]闫子波,魏鸣.微机械陀螺仪的工作原理及其应用. EDN电子设计技术. 2009. 9(3): 62-65页
    [64]刘俊,石云波,李杰.微惯性技术.北京:电子工业出版社, 2005
    [65]张鹏.微机械陀螺仪的高精度“虚拟”实现方法研究.西北工业大学硕士学位论文. 2007
    [66]袁建平,方群,郑谔.GPS在飞行器定位导航中的应用.西安:西北工业大学出版社, 2000
    [67]罗超. FOG捷联惯导系统标定和误差补偿技术研究.哈尔滨工程大学硕士学位论文. 2006
    [68] Hou H, El-Sheimy N. Inertial Sensors Errors Modeling Using ION GPS/GNSS Allan Variance. Best Presentation Winning Sep 9-12, Paper, The US Institute of Navigation, 2003 Proceedings, Portland, 2003: 2860-2867P
    [69] Haiying. Hou. Modeling Inertial Sensors Errors Using Allan Variance. CALGARY, ALBERTA: DEPARTMENT OF GEOMATICS ENGINEERING, UNIVERSITY OF CALGARY. 2004, 12(3): 89-104P
    [70]梅硕基,郭秀中,徐鹤年.惯性仪器测试与数据分析.西安:西北工业大学出版社, 1991
    [71] Tehrani, M. M. Ring Laser Gyro Data Analysis with Cluster Sampling Technique. Proceedings of SPIE. 1983, 12(3): 99-112
    [72] Naer EI-Sheimy, Haiying Hou, and Xiaoji Niu. Analysis and Modeling of Inertial Sensors Using Allan Variance. IEEE Transactions on Instrumentation and Measurement. Vol. 57. No. 1. January 2008: 140-149P
    [73] IEEE Std 1139-1988, IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology
    [74] IEEE Std 952-1997 IEEE Standard Specification Format Guide and Test Procedure for Single–Axis Interferometric Fiber Optic Gyros
    [75] IEEE Std 1293-1998 IEEE Standard Specification Format Guide and Test Procedure for Linear, Single-Axis, Non-gyroscopic Accelerometers
    [76] Chen Xiyuan. Modeling random gyro drift by time series neural networks and by traditional method //Neural networks & Signal Processing, Nanjing, December, 2003:810-813P
    [77]杨叔子,吴雅,轩建平,等.时间序列分析的工程应用.武汉:华中理工大学出版社, 2007
    [78] Robert M. Rogers. Applied Mathematics in Integrated Navigation Systems.Published by American Institute of Aeronautics and Astronautics, Inc.2003: 158-160P
    [79]俞济祥. Kalman滤波理论及其在惯性导航系统中的应用.西安:西北工业大学出版社, 1988
    [80]付梦印,邓志红,张继伟. Kalman滤波理论及其在导航系统中的应用.北京:科学出版社, 2003
    [81] Ji Xunsheng, Wang Shourong, Xu Yishen, et. Al. Application of the digital signal procession in the MEMS gyroscope de-drift // Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai China, Jan, 2006: 218-221P
    [82]夏启军,孙优贤,周春晖.渐消Kalman滤波器的最佳自适应算法及其应用.自动化学报.1990, 16(3) : 210-216页
    [83]耿延睿,崔中兴,张洪钺等.衰减因子自适应滤波及在组合导航中的应用.北京航空航天大学学报. 2004, 30(5): 434-437页
    [84] Platil A, Kubik J, Vopalensky M, et al. Precise AMR Magnetometer for Compass. Proceedings of IEEE Sensors. 2003: 461-472P
    [85]李希胜,王家鑫,汤程等.高精度磁电子罗盘的研制.传感技术学报, 2006, 4(6): 79-83页
    [86] Honeywell Company.低价位的罗盘系统的磁传感器的应用. http:// Honeywell-sensor.com.cn
    [87]赵淑清,郑薇.随机信号分析.哈尔滨:哈尔滨工业大学出版社, 2006
    [88]奔粤阳.高动态环境捷联惯导算法研究.哈尔滨工程大学博士学位论文. 2008
    [89]王天真.智能融合数据挖掘方法及其应用.上海海事大学博士学位论文. 2006
    [90]张爱军.水下潜器组合导航定位及数据融合技术研究.南京理工大学博士学位论文. 2009
    [91]陈哲.捷联惯导系统原理.北京:宇航出版社, 1986
    [92]严恭敏,严卫生,徐德民.简化UKF滤波在SINS大失准角初始对准中的应用.中国惯性技术学报. 2006, 16(3): 254-264页
    [93]李涛.非线性滤波方法在导航系统中的应用研究.国防科技大学博士学位论文. 2003
    [94]严恭敏.捷联惯导系统动基座初始对准及其它相关问题研究.西北工业大学博士后研究工作报告. 2008, 03
    [95] Goshen-Meskin D,Bar-Itzhack I Y, Observability analysis of piece-wise constant system. Part II:Applications on Aerospace and Electronic Systems, 1992,28(4): 1056-1067P
    [96]曹娟娟,房建成,盛蔚等.低成本多传感器组合导航系统在小型无人机自主飞行中的研究与应用.航空学报. 2009, 30(10): 1923-1929页
    [97]陆海勇,赵伟,熊剑等.强跟踪UKF滤波在SINS/GPS组合导航中的应用研究.航空电子技术. 2008, 39(4): 78-82页
    [98]芦佳振,张春熹,颜廷洋.应用Kalman滤波的线性系统可观测度实时估计方法.宇航学报. 2009, 30(3): 982-987页
    [99]李跃,邱致和.导航与定位——信息化战争的北斗星.北京:国防工业出版社, 2008
    [100]高社生,王海维,倪龙强.局部可观测理论在惯导系统快速传递对准中的应用.中国惯性技术学报, 2007, 15(6): 642-645页
    [101]袁建平,罗建军,岳晓奎等.卫星导航原理与应用.北京:中国宇航出版社, 2003
    [102] SCHMIDT, G.T., and PHILLIPS, R.E. INS/GPS integration architectures. NATO RTO Lecture Series LS 232, 2003,
    [103]刘承香.惯导/GPS/天文组合导航数据融合技术研究.哈尔滨工程大学工学硕士学位论文. 2003
    [104]秦永元,张洪钺等.Kalman滤波与组合导航原理.西安.西安:西北工业大学出版社,1998
    [105]林敏敏,房建成,高国江.GPS/SINS组合导航系统混合校正Kalman滤波方法.中国惯性技术学报. 2003,11(3):29-33页
    [106]刘百奇,房建成.一种基于可观测度分析的SINS/GPS自适应反馈校正滤波新方法.航空学报. 2008, 29(3): 123-126页
    [107]岳海波. GPS/DR车载组合导航定位系统研究.南京理工大学硕士学位论文, 2009
    [108] Miriha Park. Error Analysis and Stochastic Modeling of MEMS based Inertial Sensors for Land Vehicle Navigation Applications. FOR THE DEGREE OF MASTER OF SCIENCE
    [109] Aboelmagd Noureldin, Tashfeen B. Karamat, Mark D. Eberts, and Ahmed El-Shafie. Performance Enhancement of MEMS-Based INS/GPS Integration for Low-Cost Navigation Applications. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. 2008,12:1077-1096P
    [110]刘建业.考虑量测滞后的INS/SAR组合导航非等间隔滤波算法研究.宇航学报. 2004, 25(6): 626-631页
    [111]万振刚. MINS/GPS组合导航系统若干关键技术研究.东南大学博士学位论文. 2005
    [112]陶俊勇.组合导航系统信息融合理论及故障检测与诊断技术研究.国防科技大学博士学位论文. 2000
    [113]夏全喜. SINS/GPS/EC组合导航系统设计与试验研究.哈尔滨工程大学硕士学位论文. 2009
    [114]黄德鸣,程禄.惯性导航系统.北京:国防工业出版社,1986
    [115]顾启泰,刘学斌.解析式惯性测量系统的数字仿真及其静态试验.导航, 1992, 8(1): 69-76页
    [116]高钟毓,王进,董景新.惯性测量系统零速修正的几种估计方法.惯性技术学报, 1995, 2(3): 24-29页
    [117]奔粤阳,孙枫,高伟等.惯导系统的零速修正技术研究.系统仿真学报. 2008, 20(17): 4639-4642页
    [118] Crisan D, Moral P D, and Lyons T. Discrete Filtering Using Braching and Interacting Particle Systems. Markov Processes and Related Fields, 1999, 5(3): 293-318P
    [119] Moral P D and Jacod J. Interacting Particle Filtering with Observations. In Sequential Monte Carlo Methods in Practice. Springer-Verlag, 2001: 43-75P
    [120] N. El-Sheimy and X. Niu, The promise of MEMS to the navigation community. Inside GPS, 2007, 2(2): 46–56P
    [121]孔金生,翟弦.车辆导航中的交互多模Kalman滤波跟踪方法.计算机工程与应用. 2009, 45(16): 198-200页
    [122] Johann Borenstein, Lauro Ojeda and Surat Kwanmuang. Heuristic Reduction of Gyro Drift for Personnel Tracking System . The Journal of Navigation. 2009(62): 41-58P
    [123] Johann Borenstein and Lauro Ojeda. Heuristic Reduction of Gyro Drift in Gyro_based Vehicle Tracking . Sensors, and Command, Control, Communication and Intelligent (C3I) Technologies for Homeland Security and Homeland Defense III. Orlando, FL, April 2009:1-11P
    [124]王忠军. GPS车载导航的交互式多模型算法.测绘科学技术学报. 2009, 26(3): 170-174页
    [125]方靖,顾启泰,丁天怀.车载惯性导航的动态零速修正技术.中国惯性技术学报. 2008, 16(3): 265-268页
    [126] S.Godha,M.E.Cannon.Integration of DGPS with a Low Cost MEMS-Based Inertial Measurement Unit(IMU)for Land Vehicle Navigation Application. ION GPS-05,Sep.13-16,Long Beach,2005:1-13P
    [127] G. Dissanayake, S. Sukkarieh, E. Nebot, and H. Durrant-Whyte. The aiding of a low-cost strapdown inertial measurement unit using vehicle model constraints for land vehicle applications. IEEE Trans. Robot. Autom. 2001, 17(5): 731–747P
    [128] Simon J. Julier, Jeffrey K. Uhlmann. Unscented Filtering and Nonlinear Estimation. Proceedings of the IEEE, March 2004: 401-420P
    [129] D. Huang and H. Leung. EM-IMM Based Land-Vehicle Navigation With GPS/INS. 2004 IEEE Intelligent Transportation Systems Conference Washington, D.C., USA, October 36,2004: 624-629P
    [130] R. Toledo-Moreo and M. A. Zamora-Izquierdo. IMM-Based Lane-Change Prediction in Highways With Low-Cost GPS/INS. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2009: 180-185P
    [131]范利涛.自动转移飞行器自主导航方法研究.国防科技大学博士学位论文. 2009
    [132] J.B.Gao,C.J.Harris. Some Remarks on Kalman Filters for the Multisensor
    [133] Fusion Information. Fusion 2002(3):191-201P
    [134] R.E.Kalman.A New Approach to Linear Filtering and Prediction Problem. Journal of Basic Eng(ASME),1960,82D:95-108P
    [135] S.Vathsal.Spacecraft Attitude Determination Using a Second-Order Nonlinear Filter.Journal of Guidance,Control,and Dynamics.1987,10(6): 559- 566P
    [136] Y.M.Zhu et al.The Optimality for the Distributed Kalman Filtering Fusion with Feedback.Automatica.2001,37:1489-1493P
    [137] H.Chen,T.Kirubarajan,Y.Bar-Shalom.Performance Limits of Track-To-Track Fusion vs.Centralized Estimation.IEEE Trans.Aerospace and Electronic Systems,2003,39(3):386-398P
    [138] Z.L.Deng,R.B.Qi.Multi-Sensor Information Fusion Suboptimal Steady-State Kalman Filter.Chinese Science Abstracts,2000,6(2):183-184P
    [139] M.Hassan,G.Salut,M.Singh,A.Titli.A Decentralized Computational Algorithm for the Global Kalman Filter.IEEE Trans.Automatic Control. 1978,23: 262-268P
    [140] N.A.Carlson.Federated Square Root Filter for Decentralized Parallel Processes. Proc of NAECON, Dayton,OH,1987:1448-1456P
    [141]岳晓奎,袁建平.一种基于极大似然准则的自适应卡尔曼滤波算法.西北工业大学学报. 2005,23(4):469-474页
    [142] A.P.Sage,G.W.Husa.Adaptive Filtering with Unknown Prior Statistics. Joint Automatic Control Conf.Boulder,CO,1969:760-769P
    [143]耿延睿,崔中兴,张洪钺,房建成.衰减因子自适应滤波及在组合导航中的应用.北京航空航天大学学报. 2004,30(5):434-437页
    [144] M.M.Reda,A.Noureldin,N.El-Sheimy.Improving INS/GPS Positioning Accuracy during GPS Outages Using Fuzzy Logic.Proc.Inst.Nav. GPS/GNSS Conf. 2003:449-508P
    [145] R.Sharaf,M.Tarbouchi,A.El-Shafie,A.Noureldin.Real-Time Implementation of INS/GPS Data Fusion Utilizing Adaptive Neuro-Fuzzy InferenceSystem.Inst.Nav.(ION)Nat.Tech.Meeting. 2005:24-26P
    [146] L.Semeniuk,A.Noureldin.Bridging GPS Outages Using Neural Network Estimates of INS Position and Velocity Errors.Meas.Sci.Technol.,2006,17 2783-2798P
    [147] C.Basnayake, O.Mezentsev, G.Lachapelle, etc.An HSGPS, Inertial and Map-Matching Integrated Portable Vehicular Navigation System for Uninterrupted Real-Time Vehicular Navigation.Int.J.Vehicle Information and Communication Systems,2005,1:131-151P
    [148]缪玲娟,李春明,郭振西等.陆用捷联惯导系统里程计自主式组合导航技术.北京理工大学学报.2004,24(9):808-811页
    [149] S.Godha,M.E.Cannon.Integration of DGPS with a Low Cost MEMS-Based Inertial Measurement Unit (IMU) for Land Vehicle Navigation Application. ION GPS-05,Sep.13-16,Long Beach,2005:1-13P
    [150]赵亦林.车辆定位与导航系统.北京:电子工业出版社,1997
    [151]黄晓瑞.基于信息融合的车载组合导航系统研制.哈尔滨工业大学博士论文. 2002
    [152] D.L.Huang, H. Leung. EM-IMM Based Land-Vehicle Navigation with GPS/INS. IEEE Intelligent Transportation Systems Conference,Washington, D.C, 2004: 624-629P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700