热轧带钢层流冷却过程建模与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层流冷却工艺是现代钢铁工业中通过轧后强制水冷来改善带钢的组织性能,提高带钢质量和产量的过程。层流冷却控制系统通过控制喷水集管阀门的开闭状态控制冷却水量,使带钢从终轧机出口带钢温度(800~900℃)冷却到工艺要求的卷取温度(550~700℃)。层流冷却是影响热轧带钢组织性能的关键工序之一,而冷却后的卷取温度是决定成品带钢加工性能、力学性能的重要参数之一,卷取温度过低或者过高都将降低带钢质量。
     冷却过程传热机理复杂、水冷换热系数、热导率等具有随工况条件的变化而非线性变化的特性,难以建立精确的层流冷却过程模型。现有的层流冷却模型只描述了在单个冷却单元下的冷却动态过程,不能直接计算带钢卷取温度,且水冷换热系数和热导率的选择忽略了变化工况对关键参数的影响,导致现有层流冷却模型精度较低。
     因受冷却过程中高温水汽的影响,冷却区中难以逐点对运行状态的热轧带钢温度进行连续检测,且冷却水量与带钢卷取温度之间的关系具有复杂的非线性特性,现有的基于表格查询和带钢温度模型的控制方法受限于表格的规模和带钢温度模型精度,不能适应变化频繁的工况条件,导致卷取温度控制精度较低。
     本文依托973项目(No.2002CB312200)“复杂生产制造过程实时、智能优化与控制理论和方法研究”,针对热轧带钢层流冷却过程建模和控制中存在的问题,以提高带钢卷取温度控制精度为目标,开展了热轧带钢层流冷却过程的建模和控制方法的研究。具体研究工作包括:
     1.提出了由冷却单元阀门开闭状态模型、任意段带钢所处冷却单元位置计算模型、冷却单元下的冷却过程动态模型切换机制、冷却单元下的带钢上表面温度模型组成的带钢卷取温度模型。其中冷却单元阀门开闭状态模型根据喷水控制系统给出的喷水集管阀门开启总数、上下起始阀门开启位置和喷水模式确定每段带钢经过各冷却单元时对应的喷水控制阀门开闭状态;每段带钢所处冷却单元位置计算模型根据带钢进入冷却区的初始速度和设定的加速度计算每段带钢在任意时刻所处冷却区域内的位置;冷却单元冷却过程动态模型切换机制根据阀门开闭状态确定在该冷却单元发生的换热方式;冷却单元带钢上表面温度模型根据确定的换热方式选择具体的水冷或空冷换热模型计算带钢上表面温度。
     2.给出了水冷换热系数模型、热导率模型中关键参数随带钢工况条件变化的确定方法,特别是给出了水冷换热系数模型中的比例参数随每段带钢的工况条件的变化而变化的方法,改进了水冷换热系数和热导率模型,从而提高了带钢卷取温度模型精度。最后采用国内某大型钢厂实际运行数据进行了模型实验研究,结果表明,与文[34]忽略每段带钢工况条件的变化对水冷换热系数模型的影响的方法相比,采用本文方法改进水冷换热系数模型、热导率模型之后计算的卷取温度与实测卷取温度之间的偏差均方根误差从11.8℃下降到4.2℃。
     3.提出了层流冷却过程混合智能控制方法,其中喷水集管控制阀门开启总数设定方法由喷水集管阀门开启总数的预设定模型、卷取温度预报模型、预报补偿模型、带钢批次间补偿模型组成,其中预设定模型根据目标卷取温度、终轧机出口带钢厚度预估值、温度预估值、带钢头部速度预估值计算喷水集管阀门开启总数的预设定值;卷取温度预报模型根据阀门开启总数的设定值预报带钢的卷取温度值;预报补偿模型根据预报卷取温度偏差,结合案例推理技术和常规PI调整算法计算喷水集管阀门开启总数的前馈补偿值;带钢批次间补偿模型根据已经冷却后的带钢实测卷取温度与目标卷取温度之间的实际偏差,采用案例推理技术和PI迭代学习方法,在不同批次带钢之间进行迭代运算,最终求得使实际卷取温度偏差被控制在一定范围内的喷水集管阀门开启总数批间补偿值。随工况条件的变化,该方法能够自动调整喷水集管阀门开启总数设定值,再将该设定值送给过程控制系统进行任意时刻的喷水控制阀门的开闭状态计算并执行,从而实现冷却水量的调整,保证卷取温度被控制在目标温度范围内。
     4.基于本文提出的层流冷却过程模型和控制方法,设计开发了虚拟对象仿真软件和设定控制软件,并将开发的软件与现有的由设定控制计算机、过程控制系统(包括PLC控制系统和过程监控系统)、仪表与执行机构虚拟装置、虚拟对象计算机组成的分布式仿真实验平台相集成,建立了层流冷却过程控制仿真实验系统。
     5.在上述仿真实验系统上进行了本文提出的混合智能控制方法的实验研究,结果表明,与国内某大型钢厂现有控制方法相比,采用本文方法使实际卷取温度偏差被控制在±10℃的命中率从42.9%提高到84.1%,均方根误差由21.1℃下降为8.21℃。
In order to enhance the quality and yield of strip, the laminar cooling technique is used to improve the metallurgical properties of the hot rolled strips by water-cooling after rolling in modern iron and steel industry. The strips are cooled from the austenitic finishing temperature (800~900℃) down to the ferrite coiling temperature (550~700℃) by controlling the cooling water quantity in the laminar cooling system. Laminar cooling process is one of the key procedures influencing the microstructure and properties of hot rolled strips. The coiling temperature is one of the important factors that determines the processing properties and mechanics properties of the strip product, and too high or too low of the coiling temperature will downgrade the final strip product quality.
     The heat transfer in cooling process is extremely complex. What's more, the heat transfer coefficient and thermal conductivity change nonlinearly along with the operation conditions. It's difficult to establish the accurate mathematical model for the strip cooling process. The cooling process models reported in the literature so far are only for dynamic cooling process in a single coiling unit. Those models cannot be used to compute the strip coiling temperature directly. The choice of water-cooling heat transfer parameter and thermal conductivity doesn't consider the influences of varying process condition, and thus results less accurate models.
     The strip temperature is difficult to be measured online in the cooling zone because of the high temperature vapour generated. The relationship between cooling water quantity and strip coiling temperature is nonlinear. For the above reasons, the existing control methods based on looking up tables and strip temperature models can't adapt the changing operation condition and lead to low control accuracy.
     Supported by the national project 973 (No.2002CB312200) of "Research on the real-time, intelligent optimal and control theory and methods for complex production manufacturing process" and aiming at the above problems in the modeling and control of laminar cooling processe, this paper carries out the research on the modeling and control of the laminar cooling process, and the target is to increase the control precision of the strip coiling temperature. The main works of this research are summarized as follows.
     1. A strip coiling temperature model is proposed consisting of four parts:the status of cooling unit valves calculated model, the strip segment track model, the model switching mechanism and the top surface temperature model of the strip in a cooling unit. The status of cooling unit valves calculated model is used to determine the valve status when the strip segment passes by every cooling unit, according to the setting values given by the control system of the sprayers, such as the number of active valves, the initial active valve location both side of the runnout table, and the spray mode. The strip segment track model is to compute the location of the strip segment, according to the initial velocity and the setting accelerations. The model switching mechanism is to decide the heat transfer style in the cooling unit. The top surface temperature model for the strip is to choose the air-cooling or water-cooling model according to the heat transfer style and to compute the top surface temperature of the strip.
     2. A method to determine the key coefficient of the water-cooling heat transfer parameter and thermal conductivity is proposed according to the fluctuating operation condition. Especially, the key coefficient of the water-cooling heat transfer parameter varys with the segment strip's operation conditon. The water-cooling heat transfer parameter and thermal conductivity can be modified and the coiling temperature model precision is improved. Simulation is conducted using the industrial operating data from a large strip plant, and the results show that root mean square (RMS) of the error decreases from 11.85℃to 4.2℃, where the error is between the measured coiling temperature and the computed coiling temperature based on the improved water-cooling heat transfer parameter and thermal conductivity.
     3. A hybrid intelligent control method for laminar cooling process is developed. The proposed setting model for the number of active valves is consisted of four parts: the number of active valves pre-setting model, coiling temperature prediction model, prediction compensator and batch to batch compensator. The number of active valves pre-setting model calculates the pre-setting values of the number of active valves according to the target coiling temperature, the estimated values at the outlet of the finish train, such as the strip thickness, temperature and the running velocity of the strip head. The coiling temperature prediction model is to predict the coiling temperature according to the setting number of active valves. The prediction compensator computes the active valves compensated according to the predicted coiling temperature deviation, where the case-based reasoning and general PI tuning algorithm are used. The batch to batch compensator is to compute the compensated number of the active valves according the cooled strips'measured coiling temperature deviations. The case-based reasoning technology and PI iteration learning algorithm are adopted to conduct the iterative calculation among different strips, to control the measured coiling temperature deviation in a limited range. The number of active valves setting model can automatically adjust the number of active sparyers according to the varying operating condition. The control system of spary computes the states of the spary head valve according the new setting value and realize the cooling water quantity, in order to control the coiling temperature within the acceptable range of their target values.
     4. Based on the proposed model of the strip coiling temperature and the hybrid intelligent control method, a virtual object software and a setting control software are designed and developed. A simulation system for laminar cooling system is developed by integrating with an existing distributed experimental platform, which consists of a setting computer, a process control system(such as PLC system and the process monitor system), virtual instruments and actuators computer, and a virtual object computer.
     5. The proposed hybrid intelligent control method is simulated using the above simulation system. Contrasting with the existing control method, the simulation results show that the hit rate increased from 42.9% to 84.1% where the coiling temperature errors are controlled in the range of±10℃, and the root mean square (RMS) of the error decreases from 21.1℃to 8.21℃.
引文
1 Simon P, Fishbach J P, Riche P. Ultra-fast cooling on the run-out table of the hot strip mill[J]. Revue de Metallurgie, Cahiers d'Informations Techniques,1996,93(3):409-415.
    2陈健就,贺达伦.现代化宽厚板厂控制轧制和控制冷却技术[J].宝钢技术,1999,(2):10-17.
    3小指军夫.控制轧制控制冷却—改善材质的轧制技术的发展[M].北京:冶金工业出版社,2002.
    4王有铭 李韦.钢材的控制轧制和控制冷却[M].北京:冶金工业出版社,1995.
    5王占学.控制轧制与控制冷却[M].北京:冶金工业出版社,1988.
    6 Uetz G, Woelk G, Bischops T. Influencing the Formation of the Steel Structure by Suitable Temperature Control in the Run-Out Sections of Hot-Strip Mills[J]. Steel Research,1991,62(5): 216-222.
    7吴孝娟.热轧带钢控制冷却技术概况[J].鞍钢技术,1992,9:1-6.
    8冯光纯.控轧控冷技术的现状与发展[J].轧钢,2000,17(3):44-47.
    9高丽霞,冯玉平,赵杰锋.板带材生产中的控制冷却技术[J].安阳师范学院学报,2000:62-63.
    10钱演江.建明传热手册[M].北京:高等教育出版社,1983.
    11 P. M. Auman, D. K. Griffiths, and D. R. Hill. Hot strip mill run-out table temperature control[J]. Iron and Steel Engineer,1967,44(9):174-179.
    12 Ditzhuijzen G V. The controlled cooling of hot rolled strip:A combination of physical modeling, controls problems and practical adaption [J]. IEEE Trans Automat Contr,1993,38(7): 1060-1065.
    13 Leitholf M D, Dahm J R. Model Reference Control of ROT Cooling at LTV:proceedings of the AISE Year Book, model,1989[C].
    14吴毅平.宝钢热轧层流冷却卷取温度控制的改进[J].冶金自动化,1997,1:15-17
    15 Hollander F. Design and control for advanced run-out table processing[J]. Iron and Steel Engineer,1971,48(3):81-91.
    16 Iwamoto M, Yamamtoto M, Ikenoue I, et al. Process control computer system of Fukuyama No. 2 Hot Strip Mill[J]. Nippon Kokan Technical Report Overseas,1986,(46):137-146.
    17 Yahiro K, Yamasaki J, Furukawa M, et al. Development of Coiling Temperature Control System on Hot Strip Mill[J]. Kawasaki Steel Technical Report,1991,24(4):32-39.
    18 Xie H B, Jiang Z Y, Liu X H, et al. Prediction of coiling temperature on run-out table of hot strip mill using data mining[J]. Journal of Materials Processing Technology,2006,177(1-3): 121-125.
    19 Chai T Y, Wang X B. Application of RBF neural networks in control system of the slab accelerating cooling process[J]. Acta Automatica Sinica,2000,26(2):219-225.
    20柴天佑,王笑波.RBF神经网络在加速冷却控制系统中的应用[J].自动化学报,2000,26(02):219-225.
    21 Xie H B, Jiang Z Y, Liu X H. Prediction of coiling temperature on run-out table of hot strip mill using data mining[J]. Journal of Materials Processing Technology,2006,177.
    22 Groch A G, Gubemat R, Birstern E R. Automatic control of laminar flow cooling in continuous and reversing hot strip mills[J]. Iron and Steel Engineer,1990,67(9):16-20.
    23 W. J. Lawrence, A. F. MacAlister, and P. J. Reeve. On line modeling and control of strip cooling[J]. Ironmaking and Steelmaking,1996,23(2):74-78.
    24 Uetz G, Woelk G, Bischops T. Influencing the control system on hot strip mill [J]. steel reserch, 1991,62(5):216-222.
    25 Li P, Liu G J, Zhang Y C. Coiling temperature control of hot steel strip using combined feedforward, feedback and adaptive algorithms:proceedings of the Proceeding of the 2005 IEEE conference on control applications, Torronto, Canada, August 2005,2005[C].
    26 Latzel S. Advanced Automation concept of ROT strip Cooling for Hot Strip and Plate Mills[J]. IEEE Transactions on Industry Applications,2001,37(4):1088-1097.
    27 Samaras N, Simaan M, Autom D, et al. Water-cooled end-point boundary temperature control of hot stripvia dynamic programming[J]. Industry Applications, IEEE Transactions on,1998,34(6): 1335-1341.
    28谭明皓,柴天佑.基于案例推理的层流冷却过程建模[J].控制理论与应用,2005,22(02):248-253.
    29 Guo R M. Modeling and simulation of run-out table cooling control using feedforward-feedback and element tracking system[J]. IEEE Transactions on Industry Applications,1997,33(2): 304-311.
    30 Serajzadeh S. Modelling of temperature history and phase transformations during cooling of steel[J]. Elsevier Journal of materials processing technology,2004,146(3):311-317.
    31 Chai T Y, Tan M H, Chen X Y. Intelligent Optimization Control for Laminar Cooling: proceedings of the Proceeding of the 15th IFAC World Congress, Barcelona, Spain,2002[C].
    32 Kumar P K, Sinha S K, Lahiri A K. Modeling of the cooling process on the ROT of a hot strip mill-a parallel approach[J]. IEEE Transactions on Industry Applications,1997,33(3):807-814.
    33王笑波.带钢层流冷却过程的建模与控制研究[D].沈阳:东北大学,1999.
    34谭明皓.基于案例推理的热轧层流冷却过程建模与控制研究[D].沈阳:东北大学,2005.
    35 Skeirik R. Expert systems for closed-loop process control:proceedings of the Instrumentation in the Chemical and Petroleum Industries,1990[C],
    36 Takatsu H, Itoh T, Araki M. Future needs for the control theory in industries-report and topics of the control technology survey in Japanese industry[J]. Journal of Process Control,1998,8(5): 369-374.
    37 Kumar R, Sinha S, Lahiri A. An online parallel controller for the runout table of hot stripmills[J]. Control Systems Technology, IEEE Transactions on,2001,9(6):821-830.
    38 Engell S. Feedback control for optimal process operation[J]. Journal of Process Control, 2007,17(3):203-219.
    39 Kumar R K, Sinha S K. Real Time Simulator for the Runout Table of Hot Strip Mills: proceedings of the in Proc 31st Annu Meet, IEEE Ind Applicat Soc,1996[C].
    40 Samaras N, Simaan M. Optimized trajectory tracking control of multistage dynamicmetal-cooling processes[J]. Industry Applications, IEEE Transactions on,2001,37(3): 920-927.
    41单旭沂.宝钢2050mm热轧层流冷却控制系统改造开发:proceedings of the中国科技年会,杭州,[C].1999.
    42 Li H X, Guan S P. Hybrid intelligent control strategy-Supervising a DCS-controlled batch process[J]. IEEE Control Systems Magazine,2001,21(3):36-48.
    43关守平.一类复杂工业过程的混合式实时专家控制系统及其在中厚钢板加速冷却过程中的应用研究[D].沈阳:东北大学,1995.
    44谭明皓,柴天佑.层流冷却过程喷水系统的智能设定方法[J].控制与决策,2005,(03):99-304.
    45 Friedrich M., R. P. Design and control of batch reactors, an industrial viewpoint[J]. Computers Chem Eng,1995.,19:S357-S368.
    46 Mukhopadhyay A, Sikdar S. Implementation of an on-line run-out table model in a hot strip mill[J]. Journal of Materials Processing Technology,2005,169:164-172.
    47 Samaras N S, Simaan M A. Water-cooled end-point boundary temperature control of hot strip via dynamic programming[J]. IEEE Trans on Industry Applications,1998,34:1335-1341.
    48 Sugeno M, Kang G. Structure identification of fuzzy model[J]. Fuzzy sets and systems, 1988,28(1):15-33.
    49 Nahas E, Henson M, Seborg D. Nonlinear internal model control strategy for neural network models[J]. Computers & Chemical Engineering,1992,16(12):1039-1057.
    50 Kristinsson K, Dumont G. System identification and control using genetic algorithms[J]. IEEE Transactions on systems, Man and Cybernetics,1992,22(5):1033-1046.
    51 Thomas G. A Combined Feedforward-Feedback Computer System for Hot Strip Mill[J]. CRM Metall Rep(52),1978:17-23.
    52 Bouchet J L, Eichenbaum-Voline C. Case-based reasoning techniques applied to operation experience feedback in nuclear power plants[J]. Advances in Case-Based Reasoning,1996,1168: 497-511.
    53 Guan S P, Li H X, Tso S K. Multivariable fuzzy supervisory control for the laminar cooling process of hot rolled slab[J]. IEEE Trans on control technology,2001,9(2):348-356.
    54彭良贵.热轧带钢层流冷却策略研究极其应用[D].沈阳:东北大学,2007.
    55 Wolf D H, Incropera F P, Viskanta R. Jet impingment boiling[J]. Advances in Heat transfer, 1993,23:1-131.
    56 Guo R M, Hwang S T. Investigation of strip cooling behavior in the run-out section of hot strip mill[J]. J Mater Processing Manufacturing Sci,1996,4(4):339-351.
    57 Ishigai S, Nakanishi S, Ochi T. Boiling heat transfer for a plane water jet impinging on a hot surface:proceedings of the The 6th International Heat Transfer Conference Toronto, Aug, 1978[C].
    58 Zumbunnen D, Incropera F, Viskanta R. Convective heat transfer distributions on a plate cooled by planar water jets[J]. Journal of heat transfer,1989,111(4):889-896.
    59 Chen S J, Biswas S K, Han F, et al. Modeling and analysis of controlled cooling for hot moving metal plates:proceedings of,1990[C]. Amer Society of Mechanical.
    60 Filipovic J, al. e. Thermal behaver of a moving steel strip cooled by an array of planner water jets:proceedings of the ASME Heat Transfer in Metals and Containerless Processing and Manufacturing Conf,1991 [C].
    61 Kasamatsu K. Improvement of Coiling Temperature Control System of Hot Strip Mill[J]. CAMP-ISIJ,1994,7:pp427-430.
    62 Kohring F. Waterwall water-cooling systems[J]. Iron Steel Eng,1985,62(6):30-36.
    63德根库伯.轧后直接加速冷却钢板设备的进展:proceedings of the带钢轧制科学和技术,第四届国际轧钢会议论文集,1990[C].冶金工业出版社.
    64王笑波,王仲初,柴天佑.中厚板轧后控制冷却技术的发展及现状[J].轧钢,2000,17(3):44-47.
    65王笑波,王继相.带钢层流冷却控制技术的发展和问题[J].基础自动化,2000,7(5):1-5.
    66 Moffat R, Moore M, Robinson M, et al. Computer control of hot strip coiling temperature with variable flow laminar spray[J]. Iron and Steel Engineer,1985,62(11):21-28.
    67韩斌.热轧带钢层流冷却过程的建模与控制研究[D].沈阳:东北大学,2005.
    68 Kellner M, Madachy R, Raffo D. Software process simulation modeling:Why? What? How?[J]. The Journal of Systems & Software,1999,46(2-3):91-105.
    69 van Ditzhuijzen G. The controlled cooling of hot rolled strip:a combination ofphysical modeling, control problems and practical adaption[J], Automatic Control, IEEE Transactions on, 1993,38(7):1060-1065.
    70 Biswas S K, Chen S J, Satyanarayana A. Optimal temperature tracking for accelerated cooling processes in hot rolling of steel[J]. Dynamics and Control,1997,7(4):327-340.
    71郭永铭译.热轧机中创新的冷却系统[J].上海钢研,2005,(3):27-30.
    72杨节.轧制过程数学模型[M].北京:冶金工业出版社,1993.
    73孙一康.带钢热连轧的模型与控制[M].北京::冶金工业出版社,2002.
    74 Issa R. Numerical Modeling of the Dynamics and Heat Transfer of Impacting Sprays for a Wide Range of Pressures[D]:University of Pittsburgh,2003.
    75 Ryuichi I, Atsuo M, Kazuhiko K. Basic Characteristics of Pipe Nozzle Cooling with Retaining Water on Plate[J]. ISIJ International,1989,29(4):339-344.
    76 Piljong L, Haewon C, Sunghong L. The effect of nozzle height on cooling heat transfer from a hot steel plate by an impinging liquid jet[J]. ISIJ International,2004,44(4):704-709.
    77王昭东,袁国,王国栋.热带钢超快速冷却条件下的对流换热系数研究[J].钢铁,2006,41(7):54-56.
    78韦光,董希满,王进民.水幕冷却高温钢板对流换热系数的研究[J].钢铁,1994,29(1):22-26.
    79 Otomo A, Yasunaga S, Ishida R. Cooling characteristics of steel sheet by water film in hot strip mill[J]. Tetsu-to-Hagane(J Iron Steel Inst Jpn),1987,73(8):996-1003.
    80 Yushi M. Device and system for controlled cooling for hot strip mill[J]. Transactions ISIJ, 1980,20:496-503.
    81杨世铭.传热学.第三版[M].1998.
    82刘庄.热处理过程的数值模拟[M].科学出版社,1996.
    83 Zumbrunnen D A, Incropera F P, Viskanta R. Method and apparatus for measuring heat transfer distributions on moving and stationary plates cooled by a planar liquid jet[J]. Experimental Thermal and Fluid Science,1990,3(2):202-213.
    84 Herman J C. Impact of new rolling and cooling technologies on thermomechanically processed steels[J]. Ironmaking and Steelmaking(UK),2001,28(2):159-163.
    85 Evans J F, Roebuck L D, Watkins H R. Numerical modeling of hot strip mill runout table cooling[J]. Iron and Steel Engineer,1993:50-55.
    86孔祥谦.有限单元在传热学中的应用[M].北京:科学出版社,1998.
    87张学学,李桂馥.热工基础[M].北京:高等教育出版社,2000.
    88 Haftka R T, Adelman H M. Recent developments in structural sensitivity analysis[J]. Structural Optimization,1989,1(2):137-152.
    89 Varah J M. A Spline least squares method for numerical parameter estimation in differential equations[J]. SIAM J Sci Stat Comput,19823:28-46.
    90 Luksan L. Hybrid methods for large sparse nonlinear least squares[J]. Journal of Optimization Theory and Applications,1996,89(3):575-595.
    91 Tjoa I B, Biegler L T. Simultaneous Solution and Optimization Strategies for Parameter Estimation of Differential-algebraic equation systems[J]. Ind Engng Chem Res,1991,30: 376-385.
    92 Baden N, Villadsen J. A Family of collocation based methods for parameter estimation in differential equation[J]. Chem Eng J,1982,23:1-13.
    93 Grefenstette J. Optimization of control parameters for genetic algorithms[J]. IEEE Transactions on systems, Man and Cybernetics,1986,16(1):122-128.
    94 Hartman E J, Keller J D, Kowalski J M. Layered neural networks with Gaussian hidden units as universal approximations[J]. Neural Computation,1990,2(2):210-215.
    95 Olsson E, Funk P, Xiong N. Fault diagnosis in industry using sensor readings and case-based reasoning[J]. Journal of Intelligent & Fuzzy Systems,2004,15(1):41-46.
    96 Stephane N, Marc L L J. Case-based reasoning for chemical engineering design[J]. Chemical Engineering Research & Design,2008,86(6A):648-658.
    97 Policastro C A, Carvalho A C P L F, Delbem A C B. A hybrid case based reasoning approach for monitoring water quality [J]. Innovations in Applied Artificial Intelligence,2004,3029:492-501.
    98 Kraslawski A, Kudra T. Case-based reasoning for design of drying equipment[J]. Drying Technology,2001,19(5):767-783.
    99 Acevedo P R, Martinez J J F, Gonzalez M D, et al. Case-based reasoning and system identification for control engineering learning[J]. leee Transactions on Education,2008,51(2): 271-281.
    100 Kolodner J L, Cox M T, Gonzalez-Caler P A. Case-based reasoning-inspired approaches to education[J]. Knowledge Engineering Review,2005,20(3):299-303.
    101 Kolodner J L. An introduction to case-based reasoning[J]. Artificial Intelligence review, 1992,06(01):3-34.
    102 Kolodner J, Leake D. A tutorial introduction to case-based reasoning[J]. Case-Based Reasoning: Experiences, Lessons, and Future Directions,1996:31-65.
    103 Aha D W, Breslow L A, Munoz-Avila H. Conversational case-based reasoning[J]. Applied Intelligence,2001,14(1):9-32.
    104 Watson I, Marir F. Case-Based Reasoning-a Review[J]. Knowledge Engineering Review, 1994,09(04):327-354.
    105 Watson I. Case-based reasoning is a methodology not a technology [J]. Knowledge-Based Systems,1999,12(5-6):303-308.
    106 Chiu S L. Fuzzy model identification based on cluster estimation[J]. IEEE Trans on Fuzzy Systems,1994,2(2):267-278.
    107王兴玲,李占斌.基于网格搜索的支持向量机核函数参数的确定[J].中国海洋大学学报,2005,35(5):859-862.
    108 Hsu C W, Chang C C, Lin C J. A practical guide to support vector classification [M].2003: 1-15.
    109 Kumar H S, Krishnamoorthy C S. A Framework for Case-Based Reasoning in Engineering Design[J]. Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing, 1995,09(03):161-182.
    110 Maher M L, Garza A G D. Case-based reasoning in design[J]. leee Expert-Intelligent Systems & Their Applications,1997,12(02):34-41.
    111 Montazemi A R, Gupta K M. A framework for retrieval in case-based reasoning systems[J]. Annals of Operations Research,1997,72:51-73.
    112 Finnie G, Sun Z H. A logical foundation for the case-based reasoning cycle[J]. International Journal of Intelligent Systems,2003,18(4):367-382.
    113 Rissland E L, Ashley K D, Branting L K. Case-based reasoning and law[J]. Knowledge Engineering Review,2005,20(3):293-298.
    114 Richter M M, Aamodt A. Case-based reasoning foundations[J]. Knowledge Engineering Review,2005,20(3):203-207.
    115 Yang B S, Jeong S K, Oh Y M, et al. Case-based reasoning system with Petri nets for induction motor fault diagnosis[J]. Expert Systems with Applications,2004,27(2):301-311.
    116杨炳儒.知识工程与知识发现[M].北京:冶金工业出版社,2000.
    117 Bergmann R, Kolodner J, Plaza E. Representation in case-based reasoning[J]. Knowledge Engineering Review,2005,20(3):209-213.
    118 Pal S K, De P K, Basak J. Unsupervised feature evaluation:a neuro-fuzzy approach[J]. IEEE Transactions on neural networks,2000,11(2):366-376.
    119史忠植.知识发现[M].北京::清华大学出版社,2002.
    120方崇智,萧德云.过程辨识[M].北京,1988.
    121 Luinenburg A W, Onink M, Ritman V A. New physical on-line model for coiling temperature control:proceedings of the The7th international conference on steel roiling(STEEL ROILING'98), Chiba, Japan,1998[C]. The iron and steel institute of Japan.
    122余驰斌,粱伟刚.热连轧带钢水幕冷却控制设计的研究[J].钢铁,1993,28(1):37-40.
    123吴德强,胡昌宗,黄波.热轧带钢层流冷却系统的技术开发与应用[J].钢铁技术,2005,(1):7-9.
    124陈治刚,许超,邵惠鹤.间歇过程优化与先进控制综述[J].化工自动化及仪表,2003,30(3):1-6.
    125宋建成.间歇过程计算机集成控制系统[M].北京:化工工业出版社,1999.
    126胡玉娥,翟春艳,李书臣.时滞间歇过程迭代学习控制算法研究[J].自动化仪表,2006,(01).
    127杜寿兵,吴付岗.迭代学习控制在配料控制系统中的应用[J].计算机测量与控制,2006,(04).
    128徐敏,林辉,刘震.可变学习增益的迭代学习控制律[J].控制理论与应用,2007,24(05):856-860.
    129孙明轩,黄宝健.迭代学习控制[M].北京:国防工业出版社,1999.
    130 Saab S S. On the P-type learning control[J]. Ieee Transactions on Automatic Control, 1994,39(11):2298-2302.
    131张怀相,原魁,邹伟.基于迭代学习控制的pid控制器设计[J].系统工程与电子技术,2006,(08).
    132 Lee K S, Lee J H. Iterative learning control-based batch process control technique for integrated control of end product properties and transient profiles of process variables[J]. Journal of Process Control,2003,13(7):607-621.
    133 Lee J, Lee K, Kim W. Model-based iterative learning control with a quadratic criterion for time-varying linear systems[J]. AUTOMATICA-OXFORD-,2000,36:641-657.
    134于少娟,齐向东,吴聚华.迭代学习控制理论与应用[M].北京:北京工业出版社,2005.
    135 Xiong Z H, Zhang J. A batch-to-batch iterative optimal control strategy based on recurrent neural network models[J]. Journal of Process Control,2005,15(1):11-21.
    136 Krothapally M, Palanki S. A neural network strategy for batch process optimization[J]. Computers and Chemical Engineering,1997,21:463-468.
    137 Bristow D A, Tharayil M, Alleyne A G. A survey of iterative learning control[J]. IEEE Control Systems Magazine,2006,26(3):96-114.
    138李仁俊,韩正之.迭代学习控制综述[J].控制与决策,2005,20(09):961-966.
    139刘琪,方勇.可变初始状态下迭代学习控制误差估计[J].计算机应用与软件,2006,23(10):118-122.
    140陈小燕,柴天佑,王笑波.板带层流冷却系统仿真软件包的研究与开发[J].系统仿真学报,2002,14(06):785-789.
    141谭明皓,片锦香,柴天佑.热轧层流冷却过程的智能建模仿真软件包[J].系统仿真学报,2005,17(02):332-336.
    142贾树晋.层流冷却过程优化设定控制实验平台的设计与开发[D].沈阳:东北大学,2007.
    143陈允中.热轧带钢层流冷却控制实验系统的控制软件平台的设计与开发[D].沈阳:东北大学,2008.
    144片锦香,柴天佑,贾树晋.层流冷却系统过程优化控制仿真实验平台[J].系统仿真学报, 2007,19(24):5667-5671.
    145翟廉飞,柴天佑,高忠江.制粉系统智能解耦控制的分布式仿真实验平台[J].系统仿真学报,2006,18(7):1824-1828.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700