电动汽车接入电网的电能有序利用模型与控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动汽车是世界能源技术革命和国家新能源战略的重要组成部分,是国家七大战略新兴产业之一。未来规模化的电动汽车充电将给电网的运行带来深远的影响和挑战,新能源接入、电力系统安全经济运行与电动汽车充放电三者之间的相互作用和关系,是新能源电网和电动汽车发展面临的重要问题。本文围绕电动汽车接入电网后的电能有序利用问题展开研究和分析,主要成果和创新点如下:
     根据对可控热负荷控制思想和控制策略的分析,提出了可控负荷需具备的两个必要条件:1)功率需求定义的时间尺度远大于电力系统工频周期,2)负荷允许的最大工作功率大于平均功率需求;基于上述讨论和不同类型电动汽车行泊规律和充电行为的统计分析,论证了电动汽车负荷具备可控性,揭示了充电负荷具备灵活性和可调节性的物理本质和基本原理,明确了有序充放电的控制对象。
     充电需求是充放电功率有序控制的基础和重要约束。基于动力电池的戴维南等效电路模型,建立其充放电过程的稳态功率模型,描述不同电池状态、不同充电方式下的充电功率和电池电能的累积过程;在充电功率可变的情况下,考虑到电池的最大受电能力和充电机的最大充电功率的约束,建立了单一电动汽车的充电需求模型,反映用户的充电时间和能量需求以及充电功率的约束;针对动力电池充电过程的功率具有有后效性的特点,创造性地提出应用时间序列分析理论预测未来某区域内电动汽车充电站桩的投入数量,建立了多辆电动汽车集中充电负荷的充电需求预测模型,为充放电功率的有序控制确定了描述能量和时间约束的可行域边界。
     参与电网有功和能量调度是电动汽车有序充放电最主要目标。在有功能量调度方面,提出含新能源接入的有源城市电网规模化电动汽车的充电功率有序控制策略。构建了双层控制结构,阐述了两个控制层面间的相互约束关系,实现了充电功率规划与瞬时功率的解耦控制;在电网层,以提高新能源利用率、平抑配电网的有功负荷波动和火力发电机组经济调度为目标,针对电动汽车的特点,考虑用户的充电能量、时间需求约束和电池、充电机的充电功率约束,提出了充电功率多目标优化模型,和求解该约束多目标问题的约束多目标差分进化算法,并应用基于信息熵权的逼近理想解排序多属性决策方法从Pareto前沿中选取最优解,获得日前最优充电功率规划;在用户层,基于电池的受电能力特性和用户的心理承受力,提出分段加权功率分配方法,对不同充电阶段的电池阶段赋予不同的充电优先级和不同的功率分配策略,满足用户的充电能量需求和功率分配公平性的要求,同时最大化电网层优化模型中最大充电功率约束的范围。
     利用充电设施的无功补偿能力,辅助电网无功/电压控制。提出利用非车载快速充电机作为无功电源,实现无功就地补偿的模型和优化算法。考虑充电负荷的特点带来的无功调节范围约束,建立以网损最小化为目标的无功优化模型;应用拉格朗日函数和梯度法,提出初始可行解的搜索方法,获得满足节点电压偏差要求的初解;将非线性问题线性化后,讨论步长对求解精度的影响,并给出步长的确定方法;求解线性规划问题,寻找满足网损最小化目标的最优解,实现配电网无功/电压控制。
     面向靠近变电站、为电动私家车和出租车提供充电服务的集中型电动汽车充换电站,在现有充电站通讯和监控系统基础上,基于Web平台研究开发了有序充电控制软件。在SQL Server数据库系统下建立全站的数据采集、管理与分析的基础数据平台;对充电功率控制策略进行适当改进,并在C#环境下编写程序智能调度电动汽车的充电行为,实现有序充电;软件还集成了充电站信息管理、智能引导与可视化监控等功能,实现充电站管理与电能使用的有序化、智能化、可视化。
Electric Vehicle (EV) is an important part of the world's energy technology revolution and the national renewable energy strategy. It is one of the seven Emerging strategic acquisitions in China. Scales of EV charging will effect the power system significantly. Interaction of integration of renewable energy, security and economic of power system operation, charging and discharging of EVs is an important problem in development of EV and active power system. Concentrating on coordinated consumption of electric power energy with EV intergrated, this paper has conducted the following research:
     According to the control strategy of thermal load, the idea of average power value in large time scale is not a strict constraint to the average power in small time scale is proposed first. Applying this idea, based on statistics and analysis of driving and charging behaviors of different kinds of EVs, physical reality and mechanism of flexibility and adjustability of EV charging load are revealed. Controlling objective of coordinated charging and discharging is pinpointed.
     A steady-state model is established based on Thevenin equivalent circuit of EV battery. Charging power under different state of charge (SOC) and charging mode and energy accumulate process is discribed. A single EV charging demand model is established considering maximum charging power of battery and charger under variable charging power so that users'demand on energy and charging time and constraints of charging power can be reflected precisely. As EV charging is a follow-up-effect process, charging behavior forecast approach is proposed based on time sequence analysis theory. And a model of charging demand forecast of scales of EVs in an area is established. This work provides feasible region constraint to charging power planning.
     A coordinated EV charging power control strategy in active city power system is proposed. A double-layer control system is presented. Constraints between two control layers are revealed. And decoupling of charging power planning and real-time power control is achieved. On the system layer, aiming at maximum utilization rate of renewable energy, stabilizing load fluctuation and economic dispatch of thermal generators, considering power system operation and charging demand constraints, a muti-objective optimazation model is established. A nevel constrained multi-objective differential evolution (CMODE) algorithm is proposed to get the pareto solution of the multi-objective optimazation problem. A comentropy weighted technique for order preference by similarity to an ideal solution decision-making method is applied to select optimal solution from pareto solutions, so that the optimal day-ahead charging plan is obtained. On the user layer, according to analysis of battery charging power and users' psychological enduring capacity, a piecewise weighted power dispatching (PWPD) approach is proposed. Different priority and power dispatch strategies are employed in the light of battery state and charging period. As a result, charging demand can be met, fairness among users are satisfied, and EVs can provide a maximum adjustable power to the system layer control.
     In microgrids, a sheme of local reactive power compensation utilizing off-board fast chargers is put forward. Considering reactive power compensation capacity of the chargers, the objective of var/voltage control (VVC) is formulated as minimizing system power loss while regulating voltage profile within acceptable limits. The centralized VVC scheme is a two-phase control scheme where gradient based Phase I control targets at regulating voltages and linear programming (LP)-based Phase II optimization aims at minimizing power loss. Effects of step length caused by linearization is discussed, and the way to determine step length in linear programming is given.
     A coordinated charging control system based on Web is designed and developed in this paper. This system serves for charging station which is near the substation and charge for priviate electric cars and electric taxies. Data platform including collection, administration and analysis is built in SQL Server. Control strategy of coordinated charging is modified to adapt the situation of charging station. Smart control algorithm program are coded in C#. EVs charging in the station can be controlled by the program, so that coordinated charging is realized. Besides, this system also integrates imformation management, smart guiding and visual monitoring. Coordinated, smart, visual consumption of electric power in EV charging stations is achieved.
引文
[1]吕荣胜,孙扬.我国交通运输能源消耗研究综述[J].经济问题探索,2012,(11):178-182.
    [2]Mehdi Etezadi-Amoli, Kent Choma, JasonStefani. Rapid-charge electric-vehicle stations [J].IEEE Transactions on Power Delivery,2010,25(3):1883-1887.
    [3]IEA. EV Global Outlook [EB/OL]. http://www.iea.org/topics/transport/ electricvehiclesinitiative/EVI_GEO_2013_FullReport.PDF.2013.
    [4]陈小复.从PNGV到FreedomCAR——看美国的新一代汽车开发项目[J].上海汽车,2002,(7):36-40.
    [5]申善毅.上海电动汽车及其充电基础设施运营模式的研究[D].上海:上海交通大学,2011.
    [6]中国新闻网.美国电动汽车发展驶入快车道[EB/OL]. http://fmance.china news.com/auto/2013/08-27/5208770.shtml.2013-8.
    [7]财政部新闻办公室.四部委确定第一批新能源汽车推广应用城市或区域名单[EB/OL]. http://gs.mof.gov.cn/lanmudaohang/zhengcefagui/201311/t20131126_1 016791.html.2013-11.
    [8]中华人民共和国财政部.关于支持沈阳、长春等城市或区域开展新能源汽车推广应用工作的通知[EB/OL]. http://www.gov.cn/gzdt/2014-02/08/content_25817 98.htm.2014-02.
    [9]中华人民共和国国务院.节能与新能源汽车产业发展规划(2012—-2020年)[EB/OL]. http://www.gov.cn/zwgk/2012-07/09/content_2179032.htm.2012-06.
    [10]中华人民共和国工业和信息化部.关于继续开展新能源汽车推广应用工作的通知[EB/OL]. http://www.miit.gov.cn/n11293472/n11293832/12843926/n13917042 /15629217.html.2013-9.
    [11]中国电力企业联合会电动汽车充电设施调研组.我国电动汽车充电设施发展报告[R].北京:中国电力企业联合会,2011.
    [12]赵兴福.电动汽车蓄电池的建模与仿真研究[D].湖北:武汉理工大学,2004.
    [13]Johnson V H, Zolot M D, Pesaran A A. Development and validation of a temperature-dependent resistance/capacitance battery model for ADVISOR [J]. Berlin German:Electric Vehicle Association of the Americas,2001.
    [14]黄妙华,龚海峰.车用电池网格模型及其在ADVISOR中的实现[J].武汉理工大学学报(信息与管理工程版),2003,25(1):68-71.
    [15]雷黎,刘权彬,等.电动汽车使用对电网负荷曲线的影响初探[J].电机技术,2003, (1):37-39.
    [16]徐虹,贺鹏,艾欣.电动汽车充电功率需求分析模型研究综述[J].现代电力,2012,29(3):51-56.
    [17]Jee E, Kang W, Recker W. An activity-based assessment of the potential impacts of plug-in hybrid electric vehicles on energy and emissions using 1-day travel data[J]. science drict transactions on transportation research part D,2009, (14): 541-556.
    [18]杨洪明,熊脶成,刘保平.插入式混合电动汽车充放电行为的概率分析[J].电力科学与技术学报,2010,25(3):8-12,24.
    [19]罗卓伟,胡泽春,宋永华.电动汽车充电负荷计算方法[J].电力系统自动化,2011,35(14):36-42.
    [20]Kejun Qian, Chengke Zhou, Allan M, et al. Modeling of load demand due to ev battery charging in distribution systems [J]. IEEE Transactions on Power Systems, 2011,26(2):802-810.
    [21]田立亭,史双龙,贾卓,等.电动汽车充电需求的统计学建模方法[J].电网技术,2010,34(11):126-130.
    [22]白高平.电动汽车充(放)电站规模化建设与电网适应性研究[D].北京:北京交通大学,2011.
    [23]徐立中,杨光亚.电动汽车充电负荷对丹麦配电系统的影响[J].电力系统自动化,2011,35(14):18-23.
    [24]刘鹏,刘瑞叶,白雪峰,等.基于扩散理论的电动汽车充电负荷模型[J].电力自动化设备,2012,32(9):30-34.
    [25]辛建波,温宇宾,李睿.电动汽车规模应用对江西电网的影响分析[J].江西电力,2010,34(4):1-5,20.
    [26]谢莹华,谭春辉,张雪峰,等.电动汽车充放电方式对深圳电网日负荷曲线的影响[J].,2011,24(12):47-50,69.
    [27]Papadopoulos P, Skarvelis-Kazakos S, Grau I. Electric vehicles' impact on British distribution networks [J]. Electrical Systems in Transportation,2012,2(3):91-102.
    [28]Arellano B, Sena S, Abdollahy S, et al. Analysis of electric vehicle impacts in new Mexico urban utility distribution infrastructure[C]//IEEE Transportation Electrification Conference and Expo,2013:1-6.
    [29]王辉,文福拴,辛建波.电动汽车充放电特性及其对配电系统的影响分析[J].华北电力大学学报,2011,38(5):17-24.
    [30]孙风杰,尹国龙.电动汽车对配电网负荷率影响的探讨[J].科技创新导报,2011,(13):42-43.
    [31]李惠玲,白晓民.电动汽车充电对配电网的影响及对策[J].电力系统自动化,2011,35(17):38-43.
    [32]赵兴福.电动汽车充放储一体化电站对电网影响的研究[D].上海:上海交通大学,2012.
    [33]涂轶昀,李灿,承林,等.电动汽车对电网影响的研究[J].广东电力,2012,25(5):11-15.
    [34]Farkas C, Szabo K I, Prikler L. Impact assessment of electric vehicle charging on a LV distribution system [C]//Proceedings of the 2011 3rd International Youth Conference on Energetics,2011:1-8.
    [35]Shahidinejad S, Filizadeh S, Bibeau E. Profile of charging load on the grid due toplug-in vehicles [J]. IEEE Transactions on Smart Grid,2012,3(1):135-141.
    [36]Qin Yan, Kezunovic M. Impact analysis of Electric Vehicle charging on distribution system[C]//North American Power Symposium,2012:1-6.
    [37]李秋硕,陶顺,肖湘宁,等.电动汽车充电负荷特性分析及其在配电网中的应用[J],电工技术学报,2013,28(1):30-35.
    [38]Singh M, Kar I, Kumar P. Influence of EV on grid power quality and optimizing the charging schedule to mitigate voltage imbalance and reduce power loss[C]// 2010 14th International Power Electronics and Motion Control Conference,2010: 196-203.
    [39]孙波,廖强强,谢品杰,等.车电互联削峰填谷的经济成本效益分析[J].电网技术,2012,36(10):30-34.
    [40]胡泽春,宋永华,徐智威,等.电动汽车接入电网的影响与利用[J].中国电机工程学报,2012,32(4):1-10.
    [41]李惠玲,白晓民,谭闻,等.电动汽车入网技术在配电网的应用研究[J].中国电机工程学报,2012,32:22-27.
    [42]杜成刚,张华,李瑾.电动汽车入网技术在智能电网中的应用[J].华东电力,2010,38(4):557-560.
    [43]张晨曦.电动汽车入网技术及社会综合效益研究[D].浙江:浙江大学,2013.
    [44]Phan D T, Jinjun Xiong, Ghosh S. A distributed scheme for fair EV charging under transmission constraints[C]//American Control Conference,2012:1053-1058.
    [45]Peng Zhang, Kejun Qian, Chengke Zhou. A methodology for optimization of power systems demand due to Electric Vehicle charging load[J]. IEEE Transactions on Power Systems,2012,27(3):1628-1636.
    [46]宫鑫,林涛,苏秉华.插电式混合电动汽车充电对配电网的影响[J].电网技术,2012,36(11):30-35.
    [47]姚伟锋,赵俊华,文福拴,等.基于双层优化的电动汽车充放电调度策略[J].电力系统自动化,2012,36(11):30-37.
    [48]黄润,周鑫,严正,等.计及电动汽车不确定性的有序充电调度策略[J].现代电力,2012,29(3):57-63.
    [49]王贵斌,赵俊华,文福拴,等. [J].配电系统中电动汽车与可再生能源的随机协同调度,2012,36(19):22-29.
    [50]唐升卫.电动汽车有序充电研究[D].湖南:湖南大学,2012.
    [51]熊脶成.基于多尺度空间层次聚类的电动汽车充放电优化调度[D].湖南:长沙理工大学,2013.
    [52]薛红红.电动汽车与电网互动技术之协调充电策略探究[D].湖北:华中师范大学,2012.
    [53]Sortomme E, Hindi M M, MacPherson S D J. Coordinated Charging of Plug-In Hybrid Electric Vehicles to Minimize Distribution System Losses [J]. IEEE Transactions on Smart Grid,2011,2(1):198-205.
    [54]Verzijlbergh R A, Lukszo Z, Ilic M Dl. Comparing different EV charging strategies in liberalized power systems [C]//9th International Conference on the European Energy Market,2012:1-8.
    [55]Rungfang Chang, Yachin Chang, Channan Lu.Loss minimization of distribution systems with electric vehicles by Network reconfiguration [C]//2012 International Conference on Control Engineering and Communication Technology,2012, 551-555.
    [56]Niangjun Chen, Quek T Q S, Chee Wei Tan. Optimal charging of electric vehicles in smart grid:Characterization and valley-filling algorithms [C]//IEEE Third International Conference on Smart Grid Communications,2012,13-18.
    [57]冯艾,刘继春,纪祥贞.基于NSGA-II的电动汽车协调充电策略研究[J].华东电力,2012,40(2):300-305.
    [58]万路路,王磊,丁昊.配电网电动汽车优化充电研究[J].华东电力,2011,39(12):2049-2053.
    [59]占恺峤,宋永华,胡泽春.以降损为目标的电动汽车有序充电优化[J].中国电机工程学报,2012,32(31):11-18.
    [60]Clement K, Haesen E, Driesen J. Coordinated charging of multiple plug-in hybrid electric vehicles in residential distribution grids [C]//9th IEEE/PES Power Systems Conference and Exposition,2009:1-7.
    [61]Clement K, Haesen E, Driesen J. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid [J]. IEEE Transactions on Power Systems, 2010,25(1):371-380.
    [62]Beaude O, Yujun He, Hennebel M. Introducing decentralized EV charging coordination for the voltage regulation [C]//4th IEEE/PES Innovative Smart Grid Technologies Europe,2013,1-5.
    [63]冯艾,刘继春,纪祥贞.基于NSGA-Ⅱ的电动汽车协调充电策略研究[J].华东电力,2012,40(2):300-305.
    [64]Chammas M, Chiche A, Fournie L. A multi-scale optimization model to assess the benefits of a smart charging policy for electrical vehicles [C]//IEEE Grenoble Power Tech,2013:1-6.
    [65]Groenbaek J, Bessler S, Schneider C. Controlling EV charging and PV generation in a low voltage grid [C]//22nd International Conference and Exhibition on Electricity Distribution,2013,1-4.
    [66]Molina D, Hubbard C, Lu C,et al. Optimal EV charge-discharge schedule in smart residential buildings [C]//IEEE Power Engineering Society Conference and Exposition in Africa,2012:1-8.
    [67]李惠玲,白晓民,谭闻.电动汽车与分布式发电入网的协调控制研究[J].电网技术,2013,37(8):2108-2115.
    [68]张学清,梁军,梁军.计及风光电源的一种地区电网电动汽车充电调度方法[J].电工技术学报,2013,28(2):28-35.
    [69]O'Connell N, Qiuwei Wu, Ostergaard J, et al. Electric Vehicle (EV) charging management with dynamic distribution system tariff [C]//2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, 2011,1-7.
    [70]Dauer D, Flath C M, Strohle P, et al. Market-based EV charging coordination [C]// IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT),2013,102-107.
    [71]O'Connell A, Flynn D, Keane A. Rolling multi-period optimization to control electric vehicle charging in distribution networks [J].IEEE Transactions on Power Systems,2014,29(1):340-348.
    [72]刘玉娇,蒋传文,王旭.采用随机约束和多目标算法的电动汽车换电站能量管理[J].电力自动化设备,2013,33(8):59-69.
    [73]苗轶群.含电动汽车及换电站的微网优化调度研究[D].浙江:浙江大学,2012.
    [74]Aswantara I K A, Kab Seok Ko, Sung D K. A centralized EV charging scheme based on user satisfaction fairness and cost [C]//IEEE Innovative Smart Grid Technologies-Asia,2013,1-4.
    [75]Yijia Cao, Shengwei Tang, Canbing Li, et al. An optimized EV charging model considering TOU price and SOC curve [J]. IEEE Transactions on Smart Grid,2012, 3(1):388-393.
    [76]Yifeng He, Venkatesh B, Ling Guan. Optimal scheduling for charging and discharging of electric vehicles [J]. IEEE Transactions on Smart Grid,2012,3(3): 1095-1105.
    [77]Hong Liu, Shaoyun Ge, et al. Optimization of TOU price of electricity based on Electric Vehicle orderly charge [C]//IEEE Power and Energy Society General Meeting,2013,1-5.
    [78]黄镠.电动汽车有序充电研究[D].天津:天津大学,2011.
    [79]Verzijlbergh R A, Lukszo Z, Ilic M D. Comparing different EV charging strategies in liberalized power systems [C]//9th International Conference on the European Energy Market,2012,1-8.
    [80]Richardson P, Flynn D, Keane A. Local versus centralized charging strategies for electric vehicles in low voltage distribution systems [J]. IEEE Transactions on Smart Grid,2012,3(2):1020-1028.
    [81]Azad A P, Beaude O, Lasaulce S. An optimal control approach for EV charging with distribution grid ageing [C]//First International Black Sea Conference on Communications and Networking,2013,206-210.
    [82]Chatupromwong P, Yokoyama A. Optimization of charging sequence of plug-in electric vehicles in smart grid considering user's satisfaction [C]//IEEE International Conference on Power System Technology,2012,1-6.
    [83]Zitzler. E, Thiele. L. Multiobjective evolutionary algorithms:a comparative case study and the strength pareto approach[J]. IEEE Transactions on Evolutionary Computation,1999,3:257-271.
    [84]Zitzler. E, Laumanns M, Thiele. L. SPEA2:improving the strength Pareto evolutionary algorithm[J]. TIK-Report No.103 Computer Engineering and Networks Laboratory (TIK), Zurich, Switzerland, Swiss Federal Institute of Technology (ETH) Zurich,2001.
    [85]Knowles. J. D, Corne. D. W. Approximating the non-dominated front using the pareto archived evolution strategy[J]. Evolutionary Computation,2000,8: 149-172.
    [86]Deb. K, Pratap. A, Agarwal. S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002, 6:182-197.
    [87]Zitzler. E, Kiinzli. S. Indicator-based selection in multiobjective search[C]. Proceedings of the International Conference on Parallel Problem Solving form Nature, LNCS, Springer, Berlin,2004,886:832-842.
    [88]Hughes. E. J. Evolutionary many-objective optimisation:many once or one many[C]. Proceedings of IEEE Congress on Evolutionary Computation(CEC 05), IEEE Press, Piscataway, New Jersey,2005:222-227.
    [89]Beume. N, Naujoks. B, Emmerich. M. SMS-MOEA:multiobjective selection based on dominated hypervolume[J]. European Journal of Operational Research, 2007,181:1653-1669.
    [90]Zhang. Q, Li. H. MOEA/D:a multiobjective evolutionary algorith based on decomposition J]. IEEE Transactions on Evolutionary Computation,2007,11: 712-731.
    [91]Zhang. Q, Zhou. A, Jin. Y. RM-MEDA:a regularity model based multiobjective estimation of distribution algorithm[J]. IEEE Transactions on Evolutionary Computation,2008,12:41-63.
    [92]Zou. X, Chen. Y, Liu. M, et al. A new evolutionary algorithm for solving many-objective optimization problems[J]. IEEE Transactions on System, Man and Cybernetics,2008,38:1402-1412.
    [93]Basu. M. Dynamic economic emission dispatch using non-dominated sorting genetic algorithm-Ⅱ[J]. International Journal of Electrical Power & Energy Systems,2008,30(2):140-149.
    [94]Gong Dun-wei, Zhang Yong. Qi Cheng-liang. Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm[J]. Electrical Power and Energy Systems,2010,32:607-614.
    [95]Jamuna. K, Swarup. K. S. Multi-objective biogeography based optimization for optimal PMU placement[J]. Applied Soft Computing,2012,12:1503-1510.
    [96]Uday K. Chakraborty. Advances in Differential Evolution(M). Berlin:Springer, 2008.
    [97]Yuan Xiaohui, Wang Liang, Zhang Yongchuan, et al. A hybrid differential evolution method for dynamic economic dispatch with valve-point effects[J]. Expert Systems with Applications,2009,36:4042-4048.
    [98]Jiang Xingwen, Zhou Jianzhong, Wang Hao, et al. Dynamic environmental economic dispatch using multiobjective differential evolution algorithm with expanded double selection and adaptive random restart[J]. Electrical Power and Energy Systems,2013,49:399-407.
    [99]Aniruddha Bhattacharya, Pranab Kumar Chattopadhyay. Solving economic emission load dispatch problems using hybrid differential evolution[J]. Applied Soft Computing,2011,11:2526-2537.
    [100]Wang Yong, Cai Zixing, Zhang Qingfu. Enhancing the search ability of differential evolution through orthogonal crossover[J]. Information Sciences, 2012,185:153-177.
    [101]Brest J, Greiner S, Boskovic B, et al. Self-adapting control parameters in differential evolution:a comparative study on numerical benchmark problems[J]. IEEE Transactions on Evolutionary Computation,2006,10(6): 646-657.
    [102]Lu Youlin, Zhou Jian zhong, HuiQin, Wang Ying, et al. Chaotic differential evolution methods for dynamic economic dispatch with valve-point effects[J]. Engineering Applications of Artificial Intelligence,2011,24:378-387.
    [103]刘晓飞,张千帆,崔淑梅.电动汽车V2G技术综述[J].电工技术学报,2012,27(2):121-127.
    [104]杨健,王媚,张屹,等.电动汽车动力电池参与电网调峰的应用[J].华东电力,2010,38(11):1685-1687.
    [105]李瑾,杜成刚,张华.智能电网与电动汽车双向互动技术综述[J].供用电,2010,27(3):12-14.
    [106]张秉良,孙玉田,李建祥.电动汽车的电网调峰模型及效益分析[J].供用电,2012,29(1):29-32.
    [107]Al-Awami A T, Sortomme E. Coordinating vehicle-to-grid services with energy Trading [J]. IEEE Transactions on Smart Grid,2012,3(1):453-462.
    [108]Hui Liu, Zechun Hu, Yonghua Song, et al. Decentralized vehicle-to-grid control for primary frequency regulation considering charging demands [J].IEEE Transactions on Power Systems,2013,28(3):3480-3489.
    [109]杨玉红,张峰,张艳芳.电动汽车参与电网调峰的分析研究[J].电力学报,2012,27(4):306-312.
    [110]黄媛,刘俊勇,陈井锐.计及电动汽车入网的负荷频率控制[J].电力系统自 动化,2012,36(9):24-28.
    [111]刘保平.电动汽车参与系统调频的控制方法[D].湖南:长沙理工大学,2013.
    [112]中国国家标准化管理委员会.GB/T 12325-2008 电能质量供电电压偏差[S].北京:中国标准出版社,2008.
    [113]Kundur P.Power system stability and control[M].New York:McGraw-Hill,1994.
    [114]Gonen T. Electric Power Distribution System Engineering [M]. New York:McGraw-Hill,2008.
    [115]Grainger J, Civanlar S. Volt/Var control on distribution systems with lateral branches Using switched capacitors and voltage regulators, part Ⅰ:the overall problem [J]. IEEE Power Engineering Review,1985,5(11):3278.
    [116]Grainger J, Civanlar S. Volt/Var control on distribution systems with lateral branches Using switched capacitors and voltage regulators, part II:the solution method [J]. IEEE Power Engineering Review,1985,5(11):3284-3290.
    [117]Grainger J, Civanlar S. Volt/Var control on distribution systems with lateral branches Using switched capacitors and voltage regulators, part Ⅲ□:the volt/var control [J]. IEEE Power Engineering Review,1985,5(11):3291.
    [118]Borozan V, Baran M E, Novosel D. Integrated volt/VAr control in distribution systems [C]//IEEE Power Engineering Society Winter Meeting.2001,3: 1485-1490.
    [119]Dixon J, Moran L, Rodriguez J, et al. Reactive power compensation technologies: state-of-the-art review [J]. Proceedings of the IEEE,2005,93(12):2144-2164.
    [120]Lin M, Rayudu R K, Samarasinghe S. A review of voltage/Var control [C]// Australasian Universities Power Engineering Conference.2003:1-5.
    [121]ABB. Volt-VAr Management Software (VVMS) for smart grid distribution automation applications [EB/OL]. http://www05.abb.com/global/scot/scot245.nsf/verity-display/cb20417bfa9255d6c12578ef0052d2b6/$file/vvms_2guz5015_2-22-11.pdf.
    [122]Baldick R. Applied optimization:formulation and algorithms for engineering systems [M]. Cambridge:Cambridge University Press,2006.
    [123]Zhu J. Optimization of power system operation [M]. New Jersey:John Wiley & Sons,2009.
    [124]P. Gill, W. Murray, and M. Wright, Practical optimization[M]. Academic Press, 1981.
    [125]Sun D, Ashley B, Brewer B, et al. Optimal power flow by Newton approach [J]. IEEE Transactions on Power Apparatus and Systems.1984,103(10): 2864-2880.
    [126]Wood A, Wollenberg B. Power Generation, Operation and Control (2nd Edition) [M]. New Jersey:John Wiley & Sons,1996.
    [127]Lavei J, Rantzer A, Low S. Power flow optimization using positive quadratic programming [C]//18th IFAC World Congress.2011:1-6.
    [128]Lavaei J, Low S H. Zero duality gap in optimal power flow problem [J]. IEEE Transactions on Power Systems,2012,27(1):92-107.
    [129]王科,张乐平,吴俊阳,等.电动汽车大规模充电控制技术研究[C]//电动汽车充放电技术研讨会,2012:29-33.
    [130]Bingnan Jiang, Yunsi Fei. Decentralized scheduling of PEV on-street parking and charging for smart grid reactive power compensation [C]//IEEE PES Innovative Smart Grid Technologies,2013:1-6.
    [131]Klumpner C, Nielsen P, Boldea I, et al. Optimal operation by controllable loads based on smart grid topology considering insolation forecasted error[J]. IEEE Transactions on Smart Grid,2011,2(3):438-444.
    [132]陶顺.有源智能配电网[M].北京:中国电力出版社,2012.
    [133]樊扬,左郑敏,朱浩骏.电动汽车充电模式对广东电网负荷特性的影响[J].广东电力,2011,24(12):58-61.
    [134]武力.电动汽车充电设施规划方法研究[D].华北电力大学硕士学位论文,2012.
    [135]北京交通发展研究中心.北京市2011年交通发展报告[R].北京,2011.
    [136]北京社会建设研究院.北京社会建设分析报告[R].北京:社科文献出版社,2011.
    [137]刘听,罗禹贡,付晓丹,等.电动汽车电池容量与充电设施布置调查分析[J].公路与汽运,2011,3(5):5-7.
    [138]电动车时代网.上海电动汽车示范运行一周年数据分析[EB/OL]. http://www.evdays.com/html/201207/37589.html.2012-7.
    [139]黄少芳.电动汽车充电机(站)谐波问题的研究[D].北京:北京交通大学,2008.
    [140]Minxin Zheng, Bojin Qi, Xiaowei Du. Dynamic Model for Characteristics of Li-ion Battery on Electric Vehicle [C]//2009 4th IEEE Conference on Industrial Electronics and Applications,2009:2867-2871.
    [141]王黎明,王连.应用时间序列分析[M].上海:复旦大学出版社,2009.
    [142]Basu. M. Dynamic economic emission dispatch using non-dominated sorting genetic algorithm-II[J]. International Journal of Electrical Power & Energy Systems,2008,30(2):140-149.
    [143]Chen C L, Lee T Y, Jan R M. Optimal wind-thermal coordination dispatch in isolated power systems with large integration of wind capacity[J]. Energy Conversation and Management,2006,47:3456-3472.
    [144]高媛.非支配排序遗传算法(NSGA)的研究与应用[D].浙江:浙江大学,2006.
    [145]Musrrat Ali, Patrick Siarry, Millie Pant. An efficient Differential Evolution based algorithm for solving multi-objective optimization problems[J]. European Journal of Operational Research,2012,217(2):404-416.
    [146]Yiuwing Leung, Yuping Wang. An orthogonal genetic algorithm with Quantization for Global Numerical Optimization[J]. IEEE Transaction On Evolutionary Computation,2001,5(1):41-53.
    [147]Brest J, Greiner S, Boskovic B, et al. Self-adapting control parameters in differential evolution:a comparative study on numerical benchmark problems[J]. IEEE Transactions on Evolutionary Computation,2006,10(6): 646-657.
    [148]Dhanalakshmi S, Kannan S, Mahadevan K, et al. Application of modified NSGA-II algorithm to Combined Economic and Emission Dispatch problem[J]. Electrical Power and Energy Systems,2011,33(4):992-1002.
    [149]董自帅.基于多目标微分进化的风力/火电发电系统动态调度[D].郑州:郑州大学,2013.
    [150]Hoke A, Brissette A, Maksimovic D, et al. Electric vehicle charge optimization including effects of lithium-ion battery degradation[C]//IEEE Vehicle Power and Propulsion Conference,2011:1-8.
    [151]Pesaran A A, Markel T, Tataria H S, et al. Battery requirements for plug-in hybrid electric vehicles analysis and rationale [C]//23rd International Electric Vehicle Symposium,2007:1-15.
    [152]Smith K, Earleywine M, Wood E, et al. Comparison of plug-in hybrid electric vehicle battery life across geographies and drive cycles[C]//SAE World Congress and Exhibition,2012:1-11.
    [153]Smith K, Earleywine M, Wood E, et al. Battery wear from disparate duty-cycles: opportunities for electric-drive vehicle battery health management[C]//American Control Conference,2012:1-7.
    [154]杨阳,林志煌,秦大同,等.HEV再生制动时NiMH电池快速充电策略与仿真[J].重庆大学学报(自然科学版),2007,30(3):1-5.
    [155]Potkonjak M, Rabaey J. Algorithm selection:A quantitative computation-intensive optimization approach[C]//IEEE/ACM International Conference on Computer-Aided Design,1994:90-95.
    [156]Stott B, Alsac O, Monticelli A J, et al. Security analysis and optimization [J]. Proceedings of the IEEE,1987,75(12):1623-1644.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700