形状记忆合金阻尼器消能减震结构体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构振动控制是已经被实际工程证明了的能够改善结构抗震性能、减小结构地震反应的积极有效方法。其中,被动消能减震因其构造简单、造价低廉、易于维护且无需外部能源支持等优点,成为目前发展较为成熟且工程中得到广泛应用的振动控制技术。然而,目前开发的耗能器存在着一些缺点,如材料的老化和耐久性、残余变形以及大震过后的更新替换等问题。近年来,智能材料和控制装置的研究和发展为土木工程结构减震控制开辟了新的天地,为新一代高性能被动耗能器的研制和开发提供了基础。
     形状记忆合金(Shape Memory Alloys,简称SMA)是一种新型的智能材料,因其独特的形状记忆效应、超弹性、高阻尼和耐腐蚀特性,成为土木工程结构消能减震的理想材料。本文在超弹性SMA丝的力学性能、超弹性SMA的本构模型、新型SMA阻尼器的研制开发及性能测试、SMA阻尼器消能减震结构体系的参数优化及非线性分析、SMA阻尼器进行结构震动控制的振动台试验等方面进行了深入系统的研究,主要内容包括:
     (1)试验研究了三种直径超弹性NiTi SMA丝的力学特性,考察了循环加载次数、加载速率、应变幅值和环境温度对其力学性能(相变应力、每循环耗散能量、割线刚度、等效阻尼比和残余应变等)的影响,揭示了加卸载过程中因潜热引起的SMA丝温度的变化规律,为SMA阻尼器设计中材料的选择提供了试验基础。
     (2)提出了超弹性SMA的改进本构模型。在试验的基础上,针对Graesser &Cozzarelli模型不能描述马氏体硬化效应和应变率相关特性的缺点,提出了改进的Graesser & Cozzarelli模型,给出了模型参数选取原则和方法,并通过数值仿真结果和试验结果的对比,验证模型了的适用性。
     (3)开发研制了新型筒式自复位SMA阻尼器(TRSMAD)。采用超弹性SMA丝提出了一种筒式自复位SMA阻尼器,试验研究了SMA丝初始应变、位移幅值和加载频率对阻尼器力学性能的影响,建立了阻尼器一维理论模型,并对其力学性能进行了数值模拟。
     (4)开发研制了新型复合型SMA摩擦阻尼器(HSMAFD)。采用超弹性SMA丝自复位装置和摩擦耗能装置,提出了一种复合型SMA摩擦阻尼器,该阻尼器有效利用摩擦装置的高耗能和SMA的自复位功能,具有更强的耗能能力;试验测试了SMA丝初始应变、摩擦力、位移幅值及加载频率对阻尼器力学性能的影响,建立了阻尼器的理论模型,并对其力学性能进行了数值模拟。
     (5)研究了SMA阻尼器结构振动控制的参数优化及非线性分析问题。采用能量平衡分析方法对SMA消能减震结构体系阻尼器的参数进行了优化,给出了阻尼器参数的建议取值范围。建立了安装SMA阻尼器的对称结构和偏心结构在地震作用下的运动方程,并基于MATLAB语言编写了SMA阻尼器消能减震结构体系的弹塑性时程分析程序。最后,分别以多层对称框架结构和偏心框架结构为算例,对SMA阻尼器消能减震结构体系在地震作用下的反应进行了数值分析,验证了SMA阻尼器的减震效果。
     (6)进行了对称结构的振动台试验,以验证SMA阻尼器对结构平移震动反应的控制效果。设计了一个三层对称钢框架模型,分别将两种新型阻尼器安装在结构底层的质心位置,对无控条件下和安装阻尼器的有控条件下的结构反应进行了振动台试验,并通过能量分析方法对SMA阻尼器消能减震体系的能量分配进行了评价。结果表明,SMA阻尼器可以有效抑制结构的平动反应。
     (7)进行了偏心结构的振动台试验,以验证SMA阻尼器对结构平-扭耦联震动反应的控制效果。设计了一个三层单向偏心的钢框架模型,分别将两种新型阻尼器安装在结构底层的一侧,并通过振动台试验,分别对无控条件下和安装阻尼器的有控条件下的结构反应进行了研究。结果表明,SMA阻尼器可以有效抑制结构的平-扭耦联震动反应。
Structural vibration control is an effective design strategy to enhance structural performance against earthquake and mitigate seismic response,which has been verified in the practical engineering.Passive energy dissipation is a comparative mature technology which has been widely used in earthquake engineering due to its simple configuration,low cost,easy maintenance and reliable run without power support.However,current technologies present some limitations,such as problems related to aging and durability,residual displacement, substitution after strong events,among others.Recently,the increasing research and development of smart materials and controlling devices open up a new area for seismic vibration control of structural engineering,providing a basic platform for the design and exploration of new generation high-performance passive damping devices.
     Shape memory alloys(SMA) are a class of novel smart materials that possess unique properties,including shape memory effect,superelasticity effect,extraordinary fatigue resistance,high corrosion resistance and damping characteristics,which make them perfect candidates for seismic energy dissipation devices in structural engineering.This thesis focuses on the use of superelastic SMA-based energy dissipation system for structural vibration control.Extensive investigations on the mechanical behavior of superelastic SMA wires by cyclic tensile tests,improvement of the constitutive model for superelastic SMA,design and performance test of innovative SMA dampers,analysis and optimization of energy dissipation system based on SMA damper and structural vibration control using SMA damper subjected to earthquakes,are carded out.The main contents are included as follows:
     (1) Cyclic tensile tests on superelastic NiTi SMA wires with three diameters were carried out.The effects of the different loading conditions,namely:cyclic loading-unloading number, strain amplitude,loading frequency and ambient temperature,on the mechanical behavior described by some fundamental quantities,such as energy dissipation per cycle,secant stiffness,equivalent damping,residual strain,were examined.The temperature changes of the SMA wires due to the latent heat under different loading conditions are analyzed.
     (2) According to the test data,a novel constitutive model of superelastic SMAs based on the Graesser and Cozzarelli's model is proposed,which is capable of describing the martensitic hardening under large amplitudes and the strain-rate dependent hysteretic behavior at different strain levels.An iterative procedure to determine parameter values of the improved model is proposed.To verify the effectiveness of the proposed constitutive model, comparisons between experimental and numerical results predicted by the proposed model were conducted.
     (3) An innovative telescopic recentering SMA damper(TRSMAD) was proposed by utilizing both the high damping and recentring features of superelastic SMA wire.The mechanical behaviors of the damper under various cyclical loading-unloading conditions with different pre-strain,displacement amplitude and loading rate were investigated experimentally. One-dimensional theoretical model based on plastic theory for TRSMAD was developed and the numerical simulation for the mechanical behaviors of the damper was performed by means of the developed model.
     (4) An innovative hybrid shape memory alloy friction device(HSMAFD) which consists of pre-tensioned superelastic SMA wires and friction devices(FD) was proposed.The most important property of the HSMAFD is the integration and unification with stable large energy dissipation capacity provided FD and re-centering feature profited from the superelastic pre-tensioned SMA wires.To investigate the mechanical behaviors of the damper as a function of pre-displacement,displacement amplitude,friction force and loading frequency, cyclic tensile tests on a scale model under various loading conditions were conducted.The theoretical model for HSMAFD was developed and the numerical simulation for the mechanical behaviors of HSMAFD was conducted.
     (5) The optimization of the parameters as well as nonlinear analysis of the energy dissipation system with SMA dampers was performed.Using energy balance method,the parameters of the SMA damper-based energy dissipation system were optimized,and the reasonable value ranges for the parameters were suggested.The dynamic equations of the symmetrical and eccentric structures with SMA dampers under earthquakes were developed and nonlinear time history analysis program for the energy dissipation system with SMA dampers based on MATLAB software was compiled.Then,as examples,two SMA damper-based frame buildings with or without eccentricity subjected to earthquake ground motions were analyzed to assess the effectiveness of the SMA dampers in reducing the structural seismic response.
     (6) Shaking table tests on a reduced-scale symmetric steel frame model with and without SMA dampers were carried out to verify the effectiveness of the SMA damper-based energy dissipation system in reducing translational response of structures subjected to strong seismic excitations.A 1/4-scale,3-story symmetric steel frame model of building was designed.One TRSMAD and HSMAFD were installed in the bottom story of the model,respectively.The building model with and without SMA dampers were tested through shake table.The energy analysis method was also utilized to evaluate the distribution of energy for the energy dissipation system.The experimental results show that the SMA dampers can effectively suppress the translational response of symmetric buildings.
     (7) To verify the control effect of SMA dampers in reducing torsion coupled response of eccentric buildings,shaking table tests on a reduced-scale eccentric steel frame model with and without SMA dampers were performed.A 1/4-scale,3-story steel frame model of building with eccentricity was designed.One TRSMAD and HSMAFD were installed in the bottom story of the model,respectively.The building model with and without SMA dampers were tested through shake table.The experimental results indicate that the SMA dampers can effectively reduce the torsion coupled response as well as translational vibration of symmetric buildings.
引文
[1]李宏男.建筑抗震设计原理.北京:中国建筑工业出版社,1996.
    [2]周福霖.工程结构减振控制.北京:地震工程出版社,1997.
    [3]欧进萍.结构振动控制-主动、半主动和智能控制.北京:科学出版社,2003.
    [4]李宏男,李忠献,祁凯等.结构振动与控制.北京:中国建筑工业出版社,2005.
    [5]李宏男,霍林生.结构多维减震控制.北京:科学出版社,2008.
    [6]Yao J T P.Concept of structural control.ASCE Journal of the Structural Division,1972,98(ST7):1567-1574.
    [7]Housner G W,Bergman L A,Caughey T K,et al.Structural control:past,present,and future.Journal of Engineering Mechanics,1997,123(9):897-971.
    [8]Fujino,Y.,Soong,T.T.,Spencer,B.F.Structural Control:Basic Concepts and Applications.The Proceedings of the 1996 ASCE Structures Congress,Chicago,Illinois,April 15-18,1996.
    [9]Spencer B.F.and Nagarajalah.S.State of the art of structural control.Journal of Structural Engineering.2003,ASCE,6:845-856.
    [10]李宏男,阎石.中国结构控制的研究与应用.地震工程与工程振动,1999,19(1):107-112.
    [11]Kelly M.James.Base Isolation:Origins and Development.EERC News,1991.12(1),January 1991.
    [12]唐家祥,刘再华.建筑结构基础隔震.武汉:华中理工大学出版社,1993.
    [13]武田寿一.建筑物隔震、防振与控振.北京:中国建筑工业出版社,1993.
    [14]朱宏平,唐家祥.叠层橡胶隔震支座的振动传递特性.工程力学,1995,12(4):109-114.
    [15]唐家祥,李黎,李英杰.叠层橡胶基础隔震房屋结构设计与研究.建筑结构学报,1996,17(2):37-47.
    [16]刘文光,周福霖,庄学真等.铅芯夹层橡胶隔震垫基本力学性能研究.地震工程与工程振动,1999,19(1):93-99.
    [17]李宏男,吴香香.橡胶垫隔震支座结构高宽比限值研究.建筑结构学报,2003,24(2):14-19.
    [18]苏经宇,曾德民.我国建筑结构隔震技术的研究与应用.地震工程与工程振动,2001,21(4):94-101.
    [19]杨迪雄,李刚,程耿东.隔震结构的研究概况和主要问题.力学进展,2003,33(3):302-312.
    [20]中华人民共和国国家标准(GB50011-2001).建筑抗震设计规范.北京:中国建筑工业出版社,2001.
    [21]Kelly J M,Skinner R I,Heine A J.Mechanisms of energy absorption in special devices for use in earthquake resistant structures.Bulletin of N.Z.society for Earthquake Engineering.1972,5(3):63-88.
    [22]Pall,A S,and Marsh,C.Response of friction damped braced frames.ASCE Journal of the Structural Division,1982,108(6):1313-1323.
    [23]Soong T.T.and Dargush G.F.Passive energy Dissipation Systems in Structural Engineering.New York:John Wiley & Sons,1997.
    [24]Soong T T,Spencer B F.Supplemental energy dissipation:state-of-the-art and state-of-the-practice.Engineering Structures,2002,24(3):243-259.
    [25]Mazzolani,F.M.Passive control technologies for seismic-resistant buildings in Europe.Prog.Struct.Engng.Mater.,2001,3:277-287.
    [26]周云.金属耗能减震结构设计.武汉:武汉理工大学出版社,2006.
    [27]李玉顺,沈世钊.安装软钢阻尼器的钢框架结构抗震性能研究.哈尔滨工业大学学报,2004,36(12):1623-1626.
    [28]周云,刘季.双环软钢耗能器的研究.地震工程与工程振动,1998,18(2):117-123.
    [29]李宏男,李钢,李中军等.钢筋混凝土框架结构利用“双功能”软钢阻尼器的抗震设计.建筑结构学报,2007,28(4):36-43.
    [30]周强,吕西林.组合耗能系统的振动台试验与分析.振动工程学报.2002,15(3):305-310.
    [31]刘伟庆,魏琏,丁大钧等.摩擦耗能支撑钢筋混凝土框架结构的振动台试验研究.建筑结构学报,1997.18(3):29-37.
    [32]周云.摩擦耗能减震结构设计.武汉:武汉理工大学出版社,2006.
    [33]吴斌,张纪刚.基于几何非线性的Pall型摩擦阻尼器滞回特性分析与试验验证.地震工程与工程振动,2001,21(4):60-65.
    [34]吴斌,张纪刚,欧进萍.Pall型摩擦阻尼器的试验研究与数值分析.建筑结构学报,2003,24(2):7-13.
    [35]周云.粘滞阻尼减震结构设计.武汉:武汉理工大学出版社,2006.
    [36]欧进萍,吴斌,龙旭等.北京饭店消能减振抗震加固分析与设计:时程分析法.地震工程与工程振动.2001,21(4):82-87.
    [37]周云.粘弹性阻尼减震结构设计.武汉:武汉理工大学出版社,2006.
    [38]吴波,李惠.液压粘弹性控制系统对建筑结构抗震控制的研究.地震工程与工程振动,1996,16(2):67-75.
    [39]徐赵东,周洲,赵鸿铁等.粘弹性阻尼器的计算模型.工程力学,2001,18(6):88-93.
    [40]魏文晖,瞿伟廉.设置FVD框架结构的非线性地震反应控制研究.东南大学学报(自然科学版),2004,34(13):386-389.
    [41]Sladek J R,Klingner R E.Effect of tuned-mass dampers on seismic response.Journal of Structural Engineering,1983,109(8):2004-2009.
    [42]Xu Y L,Kwok K C S.Semianalytical method for parametric study of tuned mass dampers.Journal of Structural Engineering,ASCE,1994,20(3):747-764.
    [43]Chen G D,Wu J N.Experimental study on multiple tuned mass dampers to reduce seismic responses of a three-story building structure.Earthquake Engineering and Structural Dynamics,2003,32(5):793-810.
    [44]Miranda,J C.On tuned mass dampers for reducing the seismic response of structures.Earthquake Engineering and Structural Dynamics,2005,34(7):847-865.
    [45]Sadek F,Mohraz B,Taylor A W et al.Method of estimating the parameters of tuned mass dampers for seismic applications.Earthquake Engineering and Structural Dynamics,1997,26(6):617-635.
    [46]Loh C H,Chern W Y.Seismic effectiveness of active tuned mass dampers for the control of flexible structures.Probabilistic Engineering Mechanics,1994,9(4):225-234.
    [47]Ghosh A,Basu,B.Effect of soil interaction on the performance of tuned mass dampers for seismic applications.Journal of Sound and Vibration,2004,274(3-5):1079-1090.
    [48]Wu J N,Chen G D,Lou,M L.Seismic effectiveness of Tuned Mass Dampers considering soil-structure interaction.Earthquake Engineering and Structural Dynamics,28(11):1219-1233.
    [49]Fujino Y.Tuned liquid damper(TLD) for suppressing horizontal motion of structure.ASCE Journal of Engineering Mechanics,1992;118(10):2017-2030.
    [50]Fujino Y,Sun L M.Vibration control by multiple tuned liquid dampers(MTLDs).Engineering Mechanics,1993,119(12):3482-3502.
    [51]Fujii K,Tamura Y.Wind-induced vibration of tower and practical applications of tuned sloshing damper.Journal of Wind Engineering and Industrial Aerodynamics,1990(33):263-272.
    [52]Dirithy R,Jinkyu Y,Harry Y.et al.Investigation of tuned liquid dampers under large amplitude excitation.Journal of Engineering Mechanics,1998,124(4):405-413;
    [53]Koh H M,Kim J K,Park J H.Fluid-structure interaction analysis of 3-D rectangular tanks by a variationally coupled BEM-FEM and comparison with test results.Earthquake Engineering and Structural.Dynamics,1998,127(2):109-124.
    [54]Reed D,Yeh H,Yu J et al.Tuned liquid dampers under large amplitude excitation.Journal of Wind Engineering and Industrial Aerodynamics.1998,(74-76):923-930.
    [55]蔡国平,孙峰,黄金枝.MTMD控制结构地震反应的特性研究.工程力学,2000,17(3):55-59.
    [56]李春祥.地震作用下高层钢结构的最优MTMD控制策略及设计.计算力学学报.2002,19(1):83-88.
    [57]李宏男,张玲,杨玉石.利用多个调液阻尼器减小高层建筑地震反应的研究.地震工程与工程振动,1997,17(1):23-31.
    [58]瞿伟廉,宋波,陈研桂等.TLD对珠海金山大厦主楼风振控制设计.建筑结构学报,1995,16(3):21-36.
    [59]胡继军,黄金枝,李春样等.网壳-TMD风振控制分析.建筑结构学报,2001,22(3):31-35.
    [60]叶继红,陈月明,沈世钊.网壳结构TMD减震系统的优化设计.振动工程学报,2000,13(3):376-384.
    [61]孙树民.自立式独柱平台的TMD减震控制研究.中国海洋平台,2000,15(6):6-9.
    [62]Vandiver J K,Mitome S.Effect of liquid storage tanks on the dynamic response of offshore platforms.Journal of Petroleum Technology,1979,31(10):1231-1240.
    [63]Lee S C,Reddy D V.Frequency tuning of offshore platform by liquid sloshing.Applied Ocean Research,1982,4(4):226-231.
    [64]Lin Y Y,Cheng C M,Lee C H.A tuned mass damper for suppressing the coupled flexural and torsional buffeting response of long-span bridges.Engineering Structures,2000,22(9):1195-1204.
    [65]宋根由.结构主动控制(AMD)系统试验与分析:(博士学位论文).哈尔滨:哈尔滨工业大学,1996.
    [66]田石柱,刘季.结构模型的AMD主动控制试验.地震工程与工程振动,1999,19(4):90-94.
    [67]欧进萍,王刚,田石柱.海洋平台结构的AMD主动控制试验研究.高技术通讯,2002,12(10):85-90.
    [68]Chang J C H,Soong T T.Structural control using active tuned mass dampers.ASCE Journal of Engineering Mechanics Division,1980,106(6):1091-1098.
    [69]Aizawa S,Fukao Y,Minewald S et al.An experimental study on the active mass damper.Proceedings of 9th World Conference on Earthquake Engineering,5:871-876.
    [70]Cao H,Reinhorn A M,Soong T T.Design of an active mass damper for a tall TV tower in Nanjing,China.Engineering Structures,1998,20(3),134-143.
    [71]Kobori T,Takahashi M,Nasu T et al.Seismic response controlled structure with active variable stiffness system.Earthquake Engineering and Structural Dynamics,1993,22(11):925-941.
    [72]Okubo H,Komatsu N,Tsumura,T.Tendon control system for active shape control of flexible space structures.Journal of Intelligent Material Systems and Structures.1996,7(4):470-475.
    [73]周福霖,谭平,阎维明.结构半主动减震控制新体系的理论与试验研究.广州大学学报(自然科学版),2002,1(1):69-74.
    [74]吴波,刘汾涛,魏德敏.变刚度半主动控制结构的抗震设计方法.振动工程学报,2003,16(3):306-310.
    [75]吴波,刘汾涛,魏德敏.变刚度半主动控制结构的拟振型分解法.华南理工大学学报(自然科学版),2002,30(9):85-90.
    [76]何玉敖,冯德平.主动变刚度结构体系(AVS)多模态优化控制研究.建筑结构学报,2000,21(3):53-59.
    [77]李敏霞,欧进萍,王刚等.足尺变刚度控制系统性能试验与计算模型.地震工程与工程振动,2000,20(4):96-100.
    [78]李敏霞,刘季.变刚度半主动结构振动控制的试验研究.地震工程与工程振动,1998,18(4):90-95.
    [79]李敏霞,刘季.电液式变刚度结构振动控制系统的稳定性分析.振动与冲击,1999,18(2):81-83.
    [80]李惠,袁雪松,吴波.粘滞液体变阻尼半主动控制器对结构抗震控制的试验研究.振动工程学报,2002,15(1):25-30.
    [81]孙作玉.变阻尼半主动结构控制:(博士学位论文).哈尔滨:哈尔滨工业大学,1998.
    [82]Karnopp D,Crosby M J,Harwood R A.Vibration Control using semi-active force generators.Journal of Engineering for Industry,96(2):619-626.
    [83]Symans M D,Constantinou M C,Taylor D P et al.Semi-active fluid viscous dampers for seismic response control.Proceedings of First World Conference on Structural Control,Pasadena,1994.
    [84]Patten W N.New life for the Walnut Creek Bridge via semi-active vibration control.Newsletter of the International Association for Structural Control,2(1):4-5.
    [85]Kobori T.Mission and perspective towards future structural control research.Proceedings of 2nd World Conference on Structures Control,Kyoto,Japan,1998.
    [86]Hrovat D,Barak P,Rabins M.Semi-active versus passive or active tuned mass dampers for structural control.Journal of Engineering Mechanics,ASCE,1983,109(3):691-705.
    [87]Abe M,Igusa T.Semi-active dynamic vibration absorbers for controlling transient response.Journal of Sound and Vibration,1996,198(5):547569.
    [88]Abe M.Semi-active tuned mass dampers for seismic protection of civil structures.Earthquake Engineering and Structural Dynamics,1996,25(7):743-749.
    [89]Ricciardelli F,Occhiuzzi A,Clemente P.Semi-active tuned mass damper control strategy for wind-excited structures.Journal of Wind Engineering and Industrial Aerodynamics,2000,88(1):57-74.
    [90]Pinkaew T,Fujino Y.Effectiveness of semi-active tuned mass dampers under harmonic excitation.Engineering Structures,2001,23(7):850-856.
    [91]Setareh M.Application of semi-active tuned mass dampers to base-excited systems.Earthquake Engineering and Structural Dynamics,2001,30(3):449-462.
    [92]欧进萍,杨飓.压电-T型变摩擦阻尼器及其性能试验与分析.地震工程与工程振动,2003,23(4):171-177.
    [93]赵大海.基于压电摩擦阻尼器的结构振动控制理论与试验研究:(博士学术论文).大连:大连理工大学,2007.
    [94]Li H N,Li J,Song G B.Sub-optimal bang-bang control of buildings with piezoelectric friction dampers.Proceedings of SPIE,San Diego,2005.
    [95]Chen G D,Chen C Q.Semiactive control of the 20-story benchmark building with piezoelectric friction dampers.Journal of Engineering Mechanics,2004,130(4):393-400.
    [96]Lu L Y.Predictive control of seismic structures with semi-active friction dampers.Earthquake Engineering and Structural Dynamics,2004,33(5):647-668.
    [97]Xu Y L,Qu W L;Chen Z H.Control of wind-excited truss tower using semiactive friction damper.Journal of Structural Engineering,2001,127(8):861-868.
    [98]瞿伟廉,徐幼麟.被动及半主动摩擦阻尼器对合肥翡翠电视塔地震反应的控制.地震工程与工程振动,2000,20(2):101-106.
    [99]瞿伟廉,陈朝晖,徐幼磷.压电材料智能摩擦阻尼器对高耸钢塔结构风振反应的半主动控制.地震工程与工程振动,2000,20(1):94-99.
    [100]Ehrgott R C,Masri S F.Modeling the oscillatory dynamics behavior of electrorheological materials in shear.Smart Materials and Structures,1(4):275-285.
    [101]Gavin H P,Ortiz D S,Hanson R D.Testing and modeling of a proto-type ER damper for seismic structural response control.Proceedings of International Workshop on Structural Control,Honolulu,HI,USA,1993.
    [102]Spencer B F,Dyke S J,Sain M K et al.Dynamical model of a magnetorheological damper.Proceedings of Structures Congress XIV,ASCE,Chicago,USA,1996.
    [103]李宏男,常治国,王苏岩.基于智能算法的MR阻尼器半主动控制.振动工程学报,2004,17(3):344-349.
    [104]关新春,欧进萍.磁流变耗能器的阻尼力模型及其参数确定.振动与冲击,2001,20(1):5-8.
    [105]隋莉莉,欧进萍.半主动磁流变减振驱动器的工作原理及应用.哈尔滨建筑大学学报,2002,35(3):9-13.
    [106]Chu S Y,Soong T T,Reinhorn A M,et al.Integration issues in implementation of structural control systems.Journal of Structure Control,2002,9(1):31-58.
    [107]Watakabe M,Tohdo M,Chiba O,et al.Response control performance of a hybrid mass damper applied to a tall building.Earthquake Engineering and Structural Dynamics,2001,30(11):1655-1676.
    [108]Yang J N,Li Z,Danielians A,et al.A seismic hybrid control of nonlinear and hyteretic structures.Journal of Engineering Mechanics,1992,118(7):1423-1456.
    [109]Yang J N,Wu J C,Kawashima K,et al.Hybrid control of seismic-excited bridge structures.Earthquake Engineering and Structural Dynamics,1995,24(11):1437-1451.
    [110]Madden G J,Wongprasert N,Symans M D.Analytical and numerical study of a smart sliding base isolation system for seismic protection of buildings.Computer-Aided Civil and Infrastructure Engineering,2003,18(1):18-30.
    [111]Nagashima I,Maseki R,Asami Y,et al.Performance of hybrid mass damper system applied to a 36-story high-rise building.Earthquake Engineering and Structural Dynamics,2001,30(11):1615-1637.
    [112]李爱群,瞿伟廉,程文瓖.南京电视塔风振的混合振动控制研究.建筑结构学报1996,17(3):9-17.
    [113]诸静.模糊控制原理与应用.北京:机械工业出版社,2005.
    [114]王永骥.神经元网络控制.北京:机械工业出版社,1999.
    [115]陈国良,王煦法,庄镇泉等.遗传算法及其应用.北京:人民邮电出版社,1996.
    [116]杨大智.智能材料与智能系统.天津:天津大学出版社,2000.
    [117]姜德生,Richard O.Claus.智能材料、器件、结构与应用.武汉:武汉工业大学出版社.2000.
    [118]杜善义,冷劲松,王殿富.智能材料系统与结构.北京:科学出版社.2001.
    [119]黄尚廉.智能结构系统--减灾防灾的研究前沿.土木工程学报,2000.33(4):1-5
    [120]欧进萍,关新春.土木工程智能结构体系的研究与发展.地震工程与工程振动.1999,19(2):21-28.
    [121]李宏男,任亮著.结构健康监测光纤栅传感技术.北京:中国建筑工业出版社,2008.
    [122]孙丽.光纤光栅传感技术与工程应用:(博士学位论文).大连:大连理工大学,2006.
    [123]任亮.光纤光栅传感技术在结构健康检测中的应用:(博士学位论文).大连:大连理工大学,2008.
    [124]赵晓燕.基于压电陶瓷的结构健康检测与损伤诊断:(博士学位论文).大连:大连理工大学,2008.
    [125]崔迪.形状记忆合金及其智能混凝土结构研究:(博士学位论文).大连:大连理工大学,2007.
    [126]Markris N,Burton S A,Hill D,et al.Analysis and design of ER damper for seismic protection of structures.Journal of Engineering Mechanics,1996,122(10):1003-1011.
    [127]欧进萍,关新春.磁流变耗能器性能的试验研究.地震工程和工程振动,1999,19(4):76-81.
    [128]杨亲民.智能材料的研究与开发.功能材料,1999,30(6):575-581.
    [129]李人厚.智能控制理论和方法.西安:西安电子科技大学出版社,1999.
    [130]瞿伟廉,李卓球,姜德生等.智能材料-结构系统在土木工程中的应用.地震工程与工程振动,1999,19(3):87-95.
    [131]徐祖耀.形状记忆材料.上海:上海交通大学出版社,2000.
    [132]Duerig,T.W.Engineering aspects of shape memory alloys.Butterworth- Heinemann,London,1990.
    [133]Delemont,M.Seismic Retrofit of Bridges Using Shape Memory Alloys:[dissertation].Department of Civil and Environmental Engineering,Georgia Institute of Technology.2001.
    [134]Lin C.,Wu S.K.and Yeh M.T.Damping Characteristics of NiTi Shape Memory Alloys.Metal.Trans.1993,24A(10):2189.
    [135]Liu Y.Some aspects of the properties of NiTi shape memory alloy.Journal of Alloys and Compounds.1997,247:115-121.
    [136]Liu Y.,Xie Z.L.Cyclic deformation of NiTi shape memory alloys.Materials Science and Engineering.1999,A273-275:673-678.
    [137]Ip,K.H.Energy dissipation in shape memory alloy wire under cyclic bending.Smart Materials and Structures.2000,9:653-659.
    [138]毛展曦.结构地震损伤监测与控制的SMA智能系统:(博士学位论文).哈尔滨:哈尔溟工业大学.
    [139]Carballo M.,Pu Z.and Wu K.H.Variation of Electrical Resistance and the Elastic Modulus of Shape Memory Alloys under Different Loading and Temperature Conditions.Journal of Intelligent Material Systems and Structures.1995,6(7):557-565
    [140]Friend C.and Morgan N.,Fatigue/Cyclic Stability of Shape-Memory Alloys.SMST-99:Proceedings of the First European Conference on Shape Memory and Superelasticity,1999,pp.115-128.
    [141]Dolce M.and Cardone D.Mechanical behavior of shape memory alloys for seismic applications 2:austenite NiTi wires subjected to tension.Int.J.Mech.Sci.,2001.43:2657-2677.
    [142]Wolons D.,Gandhi F,and Malovrh B.Experimental investigation of the pseudoelastic hysteresis damping characteristics of shape memory alloy wires.Journal of Intelligent Material System and Structures,1998,9,116-126.
    [143]Wu K,Yang F,Pu Z et al.The effect of strain rate on detwinning and superelastic behavior of NiTi shape memory alloys J.Intell.Mater.Syst.Struct.1996,7:138-44.
    [144]Tobushi,H.,Shimeno,Y.,Hachisuka,T.et al.Influence of Strain Rate on Superelastic Properties of TiNi Shape Memory Alloy.Mechanics of Materials,1998.30:141-150.
    [145]Leo,P.,Shild,T.and Bruno,O.Transient Heat Transfer Effects on the Pseudoelastic Behavior of Shape Memory Wires.Acta Metall.Mater.,1993,Vol 41,pp.2477-2485.
    [146]倪立峰,李爱群,左晓宝.工程结构的SMA超弹性阻尼研究,东南大学学报(自然科学版),2003,33(2):168-171.
    [147]Graesser E.J.and Cozzarelli F.A.Shape memory alloys as new materials for seismic isolation.Journal of Engineering Mechanics,1991,117(11):2590-2608.
    [148]Dolce,M.,Cardone,D.and Marnetto,R.Implementation and testing of passive control devices based on shape memory alloys.Earthquake Eng.Struct.Dyn.,2000.29(7):945-968.
    [149]Dolce M.,Cardone D.and Ponzo F.C.Shaking table tests on reinforced concrete frames with different isolation systems.Earthquake Engng Struct.Dyn.2007,36:573-596.
    [150]江世哲.SMA自复位隔震结构地震反应分析:(博士学位论文).西安:西安建筑科技大学,2004.
    [151]Wilde,K.,Gardoni,P.and Fujino,Y.Base isolation system with shape memory alloy device for elevated highway bridges.Engineering Structures.2000.22:222-229.
    [152]李忠献,陈海泉,刘建涛.应用SMA复合橡胶支座的桥梁隔震.地震工程与工程振动,2002,22(2):143-148.
    [153]陈海泉,李忠献,李延涛.应用形状记忆合金的高层建筑结构智能隔震.天津大学学报,2002,35(6):761-765.
    [154]陈海泉,应用形状记忆合金的大跨桥梁结构振动控制理论研究和振动台试验:(博士学位论文).天津:天津大学,2003.
    [155]Attanasio M,Faravelli L.Marioni A.Exploiting SMA bars in energy dissipators.Proceedings of the 2~(nd) International workshop on structural control.Hong Kong,1996.123-130.
    [156]Mayes J J,Lagoudas D,Henderson B K,An experimental investigation of shape memory alloy pseudoelastic springs for passive vibration isolation.AIAA Space 2001 Conference and Exposition,Albuquerque,NM,2001.
    [157]Clark P,Aiken I,Kelly J et al.Experimental and Analytical Studies of Shape Memory Alloy Dampers for Structural Control.Proceedings of SPIE,1995,2445:241-251.
    [158]Higashino M,Aizawa A,Clark P W.Experimental and analytical studies of structural control system using shape memory alloy.Proceedings of the 2nd International Workshop on Structural Control,1996,221-232
    [159]Dolce M.,Cardone D.and Ponzo F.C.(2005).Shaking table tests on reinforced concrete frames without and with passive control systems.Earthq.Eng.Struct.Dyn.34 1687-717.
    [160]李惠,毛晨曦.新型SMA耗能器及结构地震反应控制试验研究.地震工程与工程振动.2003.23(1):133-139.
    [161]毛晨曦,李惠,欧进萍.形状记忆合金被动阻尼器及结构地震反应控制试验研究和分析.建筑结构学报,2005,26(3):38-44.
    [162]Li H.,Mao C.X.and Ou J.P.Shape memory Alloy-based smart building.Proceedings of the 8th US National Conference on Earthquake Engineering.San Francisco,California.2006.
    [163]Li H.,Liu M.and Ou J.P.Vibration mitigation of a stay cable with one shape memory alloy damper.Struct.Control Health Monit.,2004.11:21-36.
    [164]Liu Min,Li Hui,Song Gangbing et al.Investigation of vibration mitigation of stay cables incorporated with superelastic shape memory alloy dampers.Smart Mater.Struct.2007,16:2202-2213.
    [165]倪立峰,李秋胜,李爱群等.新型形状记忆合金阻尼器的试验研究.地震工程与工程振动,2002,22(3):145-148.
    [166]倪立峰,李爱群,左晓宝.形状记忆合金拉压型超弹性阻尼器的试验研究.地震工程与工程振动,2003,23(5):205-208.
    [167]Zuo Xiao-Bao,Chang Wei,Li Ai-Qun,et at.Design and experimental investigation of a superelastic SMA damper.Materials Science and Engineering,A 438-440,2006,1150-1153.
    [168]左晓宝,李爱群,倪立峰等.一种超弹性SMA复合阻尼器的设计与试验.东南大学学报,2004,34(4):459-463.
    [169]左晓宝,李爱群,倪立峰等,2004.设置超弹性SMA阻尼器的框架结构震反应分析.工业建筑,34(10):13-16,20
    [170]左晓宝,李爱群,黄镇等.超弹性SMA复合阻尼器的计算模型及参数分析.振动工程学报,2005,18(2):161-166.
    [171]韩玉林,李爱群,林萍华等.基于形状记忆合金耗能器的框架振动控制试验研究.东南大学学报,2000,30(4):16-20.
    [172]Han,Y.L.,Li,Q.S.and Li,A.Q.Structural vibration control by shape memory alloy damper.Earthq.Eng.Struct.Dyn.,2003,32:483-494.
    [173]肖尔田,韩玉林,李爱群等,2003.基于形状记忆合金超弹性阻尼器的结构振动控制和地震时程分析.东南大学学报,33(5):605-609.
    [174]薛素铎,董军辉,卞晓芳等.一种新型形状记忆合金阻尼器.建筑结构学报,2005,26(3):45-60.
    [175]薛素铎,王利.一种SMA复合摩擦阻尼器的设计与性能研究.世界地震工程,2006,22(2):1-6.
    [176]薛素铎,石光磊,庄鹏.SMA复合摩擦阻尼器性能的试验研究.地震工程与工程振动,2007,27(2):145-151.
    [177]Zhang Y.and Zhu S.A shape memory alloy-based reusable hysteretic damper for seismic hazard mitigation.Smart Mater.Struct.,2007,16:1603-1613.
    [178]Zhu S.and Zhang Y.Seismic behaviour of self-centring braced frame buildings with reusable hysteretic damping brace.Earthquake Engng Struct.Dyn.,2007,36:1329-1346.
    [179]Ma Hongwei,Cho Chongdu.Feasibility study on a superelastic SMA damper with re-centring capability.Materials Science and Engineering A 473,2008,290-296.
    [180]李宏男,任文杰,宋钢兵.自复位超弹性SMA阻尼器,中国,发明专利,200720011605.6,2007.
    [181]李宏男,任文杰,宋钢兵.耗能--复位SMA阻尼器,中国,发明专利,200720011606.0,2007.
    [182]李宏男,任文杰,宋钢兵.多维超弹性SMA阻尼器,中国,发明专利,200720011607.5,2007.
    [183]Ren W J,Li H N,Song G B.Design and numerical evaluation of an innovative multi-directional shape memory alloy damper.Proceedings of SPIE:Active and passive smart Structures and integrated systems.March,San Diego,California,USA,2007.
    [184]彭刚,刘智敏.装备SMA耗能阻尼器的框架结构动力响应分析.武汉大学学报(工学版),2004,37(1):89-93.
    [185]姜袁,彭刚.SMA阻尼器在土木结构被动控制中的运用.应用力学学报,2004,21(4):88-93.
    [186]孟和.形状记忆合金阻尼器在底部薄弱结构中的应用研究:(博士学位论文).西安:西安建筑科技大学,2006.
    [187]Saadat S,Noori M,Davoodi H et al,2001.Using NiTi SMA tendons for vibration control of coastal structures.Smart Materials and Structures.10:695-704
    [188]丁阳,张笈玮.高层钢结构地震反应形状记忆合金拉索控制研究.地震工程与工程振动,2005.25(3):152-157
    [189]Adachi Y,Unjoh S.Development of Shape Memory Alloy Damper for Intelligent Bridge Systems.Part of the SPIE Conference on Smart Systems for Bridges,Structures,and Highways.Newport Beach,California,SPIE,(3671):31-42,1999.
    [190]DesRoches R,Delemont M.Seismic retrofit of simply supported bridges using shape memory alloys.Engineering Structures,2002.24:325-332
    [191]DesRoches,R.,McCormick,J.and Delemont,M.A.Cyclic properties of superelastic shape memory alloy wires and bars,Journal of Structural Engineering,ASCE,2004,130(1):38-46.
    [192]McCormick,J.,DesRoches,R.,and Fugazza D.Seismic Assessment of Concentrically Braced Steel Frames with Shape Memory Alloy Braces.Journal of Structural Engineering,2007,133(6):862-870.
    [193]Ocel J,Leon R,DesRoches R et al.High Damping Steel Beam-Column Connections Using Shape Memory Alloys.Proceedings from the 7th U.S.National Conference in Earthquake Engineering,Boston,MA,2002.
    [194]Ocel J,DesRoches R,Leon R,et al.Steel Beam-Column Connections Using Shape Memory Alloys.Journal of Structural Engineering,2004,130(5):732-740.
    [195]张纪刚,吴斌,欧进萍,2004.锥形形状记忆合金阻尼器性能分析与试验研究.地震工程与工程振动,24(6):126-130
    [196]Adachi Y,Unjoh S.Development of Shape Memory Alloy Damper for Intelligent Bridge Systems.Part of the SPIE Conference on Smart Systems for Bridges,Structures,and Highways.Newport Beach,California,SPIE,(3671):31-42,1999.
    [197]任文杰,李宏男,宋钢兵.基于形状记忆合金的X形板阻尼器的力学模型.振动与冲击,2006,25(4):53-57.
    [198]Indirli,M.et al.(2001),Demo application of shape memory alloy devices:the rehabilitation of S.Georgio Church Bell Tower,Proceedings of SPIE.Vol.4330:262-272.
    [199]Mazzolani F M,Mandara A.Modern trends in the use of special metals for the improvement of historical and monumental structures.Engineering Structures,2002,24:843-856
    [200]Lashlee R,Butler R,Rao V et al.Robust control of flexible structures using multiple shape memory alloy actuators.Journal of Intelligent Material Systems and Structures,1994.5(5):702-712
    [201]Choi S B,Cheong C C.Vibration control of a flexible beam using shape memory alloy actuators.J of Guidance,Control,and Dynamics,1996,19(5):1178-1180
    [202]Shu S G,Lagoudas D C,Hughes D et al.Modeling of a flexible beam actuated by shape memory alloy wires.Smart Materials and Structures,1997,6:265-277
    [203]Lagoudas D C,Bhattacharyya A.Modeling of thin layer extensional thermoelectric SMA actuators.International Journal of Solids and Structures,1998,35(3-4):331-362
    [204]Han H P,Ang K K,Wang Q,Taheri F.Buckling enhancement of epoxy columns using embedded shape memory alloy spring actuators.Composite Structures,2006,72:200-211
    [205]霍永忠.形状记忆合金的主动控制研究.功能材料会议论文集.1996
    [206]陈健,林萍华,王寅岗.SMA树脂复合结构梁振动特性的研究.东南大学学报.1999,29(5):151-155.
    [207]Shahin A R,Meckl P H,Jones J D.Modeling of SMA tendons for active control of structures.Journal of Intelligent Material Systems and Structures,1997,8(1):51-70.
    [208]Tarefder R A,Ma N,Song G B.Dynamic Behavior of a two-story buildingframe braced with SMA for vibration control.ASCE Conference Proceedings,Earth and Space,Houston,USA,2006
    [209]金江,刘红梅,洪俊青等.基于SMA主动阻尼的桅杆振动控制的研究.工程力学,2004,21(2):119-123.
    [210]Rogers C.A.Novel Design Concepts Utilizing Shape Memory Alloy Reinforced Composites.Proc.Am.Soc.Of Composites Materials.Technolomic Publishing Co.1998,719-731.
    [211]Rogers C.A.and H.H.Bobertshaw.Shape Memory Alloy Reinforee Composites.Eng.Sci.Prepreints.1988.6:20-22.
    [212]Rogers C.A.Behavior of Shape Memory Alloy Reinforced Composite Plates.AIAA.1989,1380-1389.
    [213]Rogers C.A.Active Vibration and Structure Acoustic Control of Shape Memory Alloy Hybrid Cornposites.Experimental Results.J.Acoustical Society of America.1990,2803-2811.
    [214]S.Motogi,M.Tanaka and T.Fukuda.Stiffness Change with Temperature in Glass Fiber Reinforced Composite Laminates Embeded with SMA Wires.Transactions of the Japan Society of Mechanical Engineering.Part C.1997,63(5):3772-3777
    [215]McGavin G.and Guerin G.Real-time Seismic Damping and Frequency Control of Steel Structures Using Nitinol Wire.Proceedings of SPIE.2002,4696:175-84
    [216]王征,陶宝祺.智能材料结构的振动抑制.振动、测试与诊断,1995,15(1):47-50.
    [217]梅胜敏,秦太验,陶宝祺.SMA用于主动振动控制的方法初探.力学与实践,1995,17(4):16-18.
    [218]Epps J,Chandra R.Shape memory alloy actuation for active tuning of composite beams.Smart Matedals and Structures,1997,6:251-264.
    [219]Brdaux J.E.,Manson.J A.and Gotthardt R.Active Stiffening of CompositeMaterials by Embeded Shape Memory Alloy Fibers.Materials Research Society Symposium.1997,107-117.
    [220]王吉军,初奕,马孝江等.NiTi形状记忆合金振动感知与主动控振研究.大连理工大学学报,1997,37(6):736-741
    [221]王吉军,崔立山,杨大智等.NiTi形状记忆合金的振动主动控制研究.大连理工大学学报,1997,37(4):484-489
    [222]Chen Q.and Levy C.Active Control of Elastic Beam by Means of Shape Memory Alloy Layers.Smart Materials and Structures.1996,5(4):400-406.
    [223]Liang C,Rogers C A.Design of shape memory alloy springs with applications in vibration control.Journal of Vibration,Acoustics,Stress,and Reliability in Design,1993,115(1):129-135.
    [224]王社良,巨生国,苏三庆.形状记忆合金的动力响应特性及振动控制.西安建筑科技大学学报,1999,31(1):14-17
    [225]Baz A.,Lmam K.and Mccoy J.Active Vibration Control of Flexible Beams Using Shape Memory Actuators.J.Sound and Vibration.1990,140(3):431-456.
    [226]汪劲松.用于微系统驱动的形状记忆合金弹簧特性试验研究.机械工程学报.1994,30(5):87-93
    [227]Lagoudas D.C.and Kinra C.K.Design of High Frequency SMA Actuators.Disclosures of Invention TAMUS 803.Texas A&M University.1993.
    [228]Bhattacharyya A.On the Role of Thermoelectric Heat Transfer in the Design of SMA Actuators:Theoretical Modeling and Experiments.Smart Mater.Struct.1995.4:252-263.
    [229]任勇生,王世文,李俊宝等.形状记忆合金在结构主被动控制中的应用.力学进展.1999,29(1):19-33.
    [230]Song G and Mo Y L.Increasing Concrete Structural Survivability Using Smart Materials,a proposal submitted to Grants to Enhance and Advance Research(GEAR),University of Houston,January,2003.
    [231]Song G,Mo Y L,Otero K and Gu H.Health monitoring and rehabilitation of a concrete structure using intelligent materials.Smart Mater.Struct.2006,15:309-314.
    [232]Li H.,Liu Z.Q,Li Z.W.et al.Study on Damage Emergency Repair Performance of A Simple Beam Embedded With Shape Memory Alloys.Advances in Structural Engineering.2004,7(6):495-502
    [233]Li Hui,Liu Zhi-qiang and Ou Jin-ping.Study on reinforced concrete beams strengthened using shape memory alloy wires in combination with carbon-fiber-reinforced polymer plates.Smart Mater.Struct.2007,16:2550-2559.
    [234]Liu Z.Q.and Li H.Study of A Reinforced Concrete Beam Strengthened Using a Combination of SMA wire and CFRP plate.Porceedings of SPIE.2006
    [235]Liu Z.Q.and Li H.Experimental Study of Simple Concrete and Reinforced Concrete Beams Monitored and Driven by Shape Memory Alloy Wires.Proceedings of the 2nd International Conference on Structural Health Monitoring of Intelligent Infrastructure.15-18 November 2005,Shenzhen,China.
    [236]刘志强.SMA智能混凝土梁损伤自监测与自修复研究:(博士学位论文).哈尔滨工业大学.2006
    [237]Li Hongnan,Cui Di,Song Gangbing.Experimental investigation on self-rehabilitation of intelligent concrete beams reinforced with shape memory alloys.Earth and Space.March,2006,Houston,U.S.A.
    [238]邓宗才,李庆斌.形状记忆合金对混凝土梁驱动效应分析.土木工程学报,3,2002.5(2):41-47.
    [239]Deng Zongcai,Li Qingbin,Jiu Anquan et al.Behavior of Concrete Driven by Uniaxially Embedded Shape Memory Alloy Actuators.Journal of Engineering Mechanics,2003,129(6),697-703.
    [240]邓宗才,李庆斌.形状记忆合金混凝土轴心构件的变形特性.清华大学学报(自然科学版),2002,42(11):1544-1547.
    [241]何思龙,黄先应,陈孟诗等,1996.形状记忆合金增强钢筋混凝土自诊断与自适应智能结构系统的研究.96中国材料研讨会论文集(功能材料),北京:化学工业出版社,622-625
    [242]罗子文.无粘结SMA智能混凝土梁基本理论研究:(博士学位论文).上海:同济大学,2006.
    [243]Park G.and Inman D.J.,Smart bolts:an example of self- healing structures,Smart Materials Bulletin,Feature,2001:5-8.
    [244]王健,沈亚鹏,王社良,形状记忆合金的本构关系,上海力学,1998,19(3):185-195
    [245]Falk F.,Model Free Energy,Mechanics and Thermodynamics of Shape Memory Alloys.Acta Metallurgical.1980,28:1773-1780
    [246]Falk F.and Konopka P.,Three-dimensional Landau theory describing the martensitic transformation of shape memory alloys,Journal de Physique,1990,2,61-77.
    [247]Tanaka K,Sato Y.Phenomenologieal description of the mechanical behavior of shape memory alloys.JSME,1987,53(491):1368~1373
    [248]Patoor,E;Eberhardt,A;Brtveiller,M,Thermomechanical behaviour of shape memory alloys.Archiwum Mechaniki Stosowanej,1988,40(5-6):775-794.
    [249]Sun Q P and Hwang K C.Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloy.J.Mech.Phys.Solids,1993 a,41(1):1-33.
    [250]Sun Q.P.and Hwang K C Micromechanies modeling for the constitutive behavior of polycrystalline shape memory alloys-part Ⅱ.Study of individual phenomenon,Journal of the Mechanics and Physics of Solids.1993b,41(1),19-33.
    [251]J.G.Boyd and D.C.Lagoudas,A thermodynamic constitutive model for the shape memory materials.Part Ⅰ:the monolithic shape memory alloys,International Journal of Plasticity,1996a,12(6),805-842.
    [252]J.G.Boyd and D.C Lagoudas,A thermodynamical constitutive model for shape memory materials.Part Ⅱ.The SMA composite material.Int.J.Plasticity,1996b,12(7),843-873.
    [253]Tanaka K.A thermomechanical sketch of shape memory effect:one dimensional tensile behavior.Res.Mech.,1986,18:251-263.
    [254]Liang C and Rogers C A.One-dimensional thermomechanical constitutive relations for shape memory materials.Journal of Intelligent Material Systems and Structure.1990,1(2):207-234.
    [255]Brinson L.C.One dimensional constitutive behavior of shape memory alloys:thermomechanical derivation with non-constant material functions and redefined martensite internal variable.Journal of Intelligent Material Systems and Structure,1993,4:229-242.
    [256](O|")zdemir,H.,Nonlinear Transient Dynamic Analysis of Yielding Structures,Ph.D.Dissertation,University of California,Berkeley,CA.1976.
    [257]Graesser E J,Cozzarelli F A.Shape memory alloys as new materials for seismic isolation.Journal of Engineering Mechanics,1991,117(11):2590-2608
    [258]Graesser E J,Gozzrelli F A.A proposed three-dimensional constitutive model for shape memory alloys.J.Intell.Mater.Syst.Struct,1994,5(1):78-89.
    [259]李刚,程耿东.基于性能的结构抗震设计-理论、方法与应用.北京:科学出版社,2004.
    [260]李钢,李宏男.新型软钢阻尼器的减震性能研究.振动与冲击.2006,25(3):66-72
    [261]Tehranizadeh M.Passive Energy Dissipation Device for Typical Steel Frame.Building in Iran,Engineering Structures,2001,23(6):643-655.
    [262]李惠,毛晨曦.形状记忆合金(SMA)被动耗能减震体系的设计和参数分析.地震工程与工程振动.2004.21(4):54-59
    [263]翁大根,吕西林.消能减震结构设计参数研究与试验验证.地震工程与工程振动.2004.24(2):150-157
    [264]李宏男.结构多维抗震理论.北京:科学出版社,2006.
    [265]霍林生.偏心结构利用调液阻尼器减震控制的研究:(博士学位论文).大连:大连理工大学.2005.
    [266]Ahlawat A S,Ramaswamy A.Multiobjeetive optimal FLC driven hybrid mass damper system for torsionally coupled,seismicclly excited structures.Earthquake Engineering and Structural Dynamics,2002,31(12):2121-2139.
    [267]Singh M P,Singh S,Moreschi L M.Tuned mass dampers for response control of torsional buildings.Earthquake Engineering and Structural Dynamics,2002,31(4):749-769.
    [268]李宏男,杨浩.多维地震作用下偏心结构动力反应的Simulink仿真分析.防灾减灾工程学报,2004,24(4):355-362.
    [269]Housner G W.Limit design of structures to resist earthquake.Proceeding of First world Conference on Earthquake Engineering,Berkeley,California,1956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700