被动与智能隔震结构地震响应分析及控制算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构减震控制能有效减小地震对结构物造成的损害,已经成为广泛的共识。在所有已经开发的结构减震控制技术中,基础隔震概念简单、性能稳定、造价相对低廉,目前在世界范围内应用最广。但是,在被动隔震结构中,隔震层的位移响应往往较大。当地震激励较强时,隔震层的位移响应在很大程度上制约着隔震体系总体的工作性能。为此,国内外学者尝试将主动或半主动控制元件与隔震系统结合起来,构成所谓的智能隔震体系。对被动隔震结构的动力分析,首先要处理非比例阻尼问题;而智能隔震结构的动力分析,则首先要解决控制算法。此外,地震激励具有很强的不确定性,采用随机响应分析的方法可以更全面地反映隔震体系减震效果的统计特性。本文围绕被动和智能隔震体系的几个热点问题展开研究,主要做了如下几个方面的工作:
     1) 隔震结构是一种非比例阻尼体系。本文揭示了基础隔震系统对非比例阻尼的解耦效应,指出基础隔震结构是一种特殊的非比例阻尼体系,建立了一般多自由度隔震结构的实振型分解算法。通过将所获得的计算结果用MATLAB软件包下的通用动力模拟工具Simulink进行验证,并与复振型分解法闭合解、用FORTRAN语言编制的Wilson-θ法的计算结果进行对比,证实本文方法用于最常见的基础隔震实际工程时域动力分析具有很高的精度。另外,利用本文的实振型分解法一般表达式,导出了双自由度隔震体系最大响应的估算模型,改进了Kelly建议的同类估算方法精度。直接模拟的结果表明,本文方法的结果更为合理。
     2) 对于装有理想控制器的线性系统,最优控制算法是非常有效的理论工具之一,在土木工程中也有很多应用。但经典的最优控制理论用于结构地震响应控制时,Riccati方程一般要出现一个非齐次项,无法直接求解。现有的两种结构最优控制算法,都是在对问题做了简化处理后导出的。本文采用脉冲响应构造控制目标函数,利用最优控制模型中的伴随方程与状态空间方程形式上的相似性,提出了对偶动力系统的概念,解决了结构地震响应最优控制力的求解问题,建立了序列最优控制算法。与现有同类算法相比,本文算法不但建立模型的概念更合理,求解方式上更加严密,而且数值模拟结果表明,本文算法的控制力能更好地跟踪外部激励和响应的特征。在同等控制能量下,本文算法比同类算法更能有效地削减结构响应峰值,具有更高的减震效率,并且稳定性良好。同时,本文导出的最优控制力系数,用代数公式取代传统的Riccati微分方程的求解,使本文算法的计算效率也有了明显优势。
     3) 在强震作用下,结构一般都要发生弹塑性变形,成为滞变体系。建立滞变体系的控制算法要比线性系统困难得多。然而,正是在大震下,结构的抗震成为突出问题,最需要采取控制措施,保护结构安全。因此,针对滞变结构建立控制算法,具有更为显著的工程意义。本文采用等效线性化的Bouc-Wen模型建立控制力的反馈关系,将序列最优控制算法推广到滞变结构中。数值模拟结果表明,与同类算法相比,本文“大震”控制算法同样具有更高的减震效率,并且在常见的控制权重范围内有较好的稳定性。本文还利用Potriagin极值原理,建立了考虑控制器出力饱和的最优控制算法模型,并针对作者承担的实际隔震工程的参数,对本文算法用于智能隔震做了较系统的对比分析,给出了考虑和不考虑控制器出力饱和的最优控制力峰值范围。
    
     4)对被动隔震及智能隔震结构的随机响应分析做了探讨。采用虚拟激励法分析了不
    同功率谱模型、不同结构类型的随机响应,并结合Ly即unov迭代法及Monie carlo动力
    模拟对响应特征进行对比。结果表明,用双过滤白噪声地震功率谱比Taj而i.Kanai谱更
    适合于隔震结构和刚度退化型的非隔震结构随机响应分析,而本文算法比场apunov法更
    能方便地处理这种功率谱。
     5)在智能隔震结构中,半主动控制器在某个时刻的开启及关闭一般是以该时刻耗能
    所需的力是否与控制器能提供的力性质相协调为判别依据的。本文建立了被动隔震和智
    能隔震的瞬时能量平衡关系。从新的角度定性分析了被动隔震和智能隔震体系的能量耗
    散与传输机理。借助于隔震体系的响应相位和耗能的关系提出了一个频域内定量的耗能
    表征指标,作为评判阻尼对隔震结构减震效率影响的一个附加指标。还将该思想延伸到
    智能隔震结构,用相位差定义了半主动控制器在频域中的开启及关闭的指示变量,满足
    了智能隔震结构随机响应分析的需要。
     6)本文还介绍了实振型分解法在实际隔震工程动力分析中的应用,利用实际工程的
    参数对智能隔震系统的实现和在强震作用下的减震特性及参数范围进行了仿真分析:简
    介了作者主持的对叠层橡胶隔震支座在一20℃一50℃低温环境中的力学性能试验和作者
    参与过的一项智能隔震模型试验的概况,论述了与本文有关的一些主要结论。
Structural vibration control is widely recognized as an effective way of mitigating catastrophic damage of structures induced by earthquakes. Among various techniques for structural vibration control, base isolation is the most widely used method in the world because of its simplicity, stability, and cost effectiveness. However, in passive isolated structures, the base drift is always very large. When the earthquake excitation is strong, the overall performance of the structural system is largely suppressed by the response of base isolator. Therefore, a lot of research work has been carried out to improve the adaptiveness of base isolation by combining active or semi-active devices with the passive isolation system, resulting in so-called "smart" isolated system. To calculate the seismic response of passive isolated structures, non-proportional damping must be handled, and to analyze the response of smart isolated structures, control algorithms must be worked out. Besides, seismic excitation is of strong randomness, evaluating controlled response using random vibration analysis can provide better statistical information. This paper investigates several key issues concerning passive and smart isolated structures, and mainly focuses on the following things:
    41) Base isolated building is usually a kind of non-proportionally damped system. But, this paper revealed that base isolated structure is a special type of non-proportionally damped system by showing the damping decoupling effect of base isolation. A real mode superposition method for analyzing time domain response of non-proportionally damped base isolated structures is derived for general MDOF system, and the results calculated by the proposed method are verified using the dynamic simulation tool of Simulink method in Matlab, and compared with those from the complex mode superposition, the Wilson- method coded in double precision Fortran. The result shows that under the design damping level defined in this paper, the proposed method in this study has good accuracy, which shows the applicability of the proposed method for the large class of isolated building in common use. Besides, the proposed general MDOF model of real mode superposition method can be used to derive a spectral estimation of maximum response for 2-DOF isolated structures which is similar to the method proposed by Kelly, but the method proposed in this study has a wider range of validity, and the result is more reasonable when examined by direct simulation.
    2) For linear structure implemented with ideal controller, optimal control is a powerful tool for determining control force, and has found wide application in civil engineering. However, when classical optimal control is applied to seismic control, a non-homogeneous term will appear in the traditional Riccati equation, which causes the model not to be solved directly. Two current optimal control algorithms, i.e., the approximate classical optimal control algorithms (COC) and instantaneous optimal control algorithms (IOC), were derived based on a lot of simplification. In this paper, the control objective function is reconstructed using impulse response of both seismic excitation and the control force, which leads to a new style
    
    
    optimal control model. By defining a dual system according to the resemblance between the companion equation and the state equation, the optimal control force is directly calculated by state transition algorithm. An improved optimal control algorithm is thus developed, and is named as Sequential Optimal Control (SOC). The proposed SOC not only improved the two current optimal control algorithms conceptually, but also numerically. Simulation result shows that the proposed method is advantageous over the two current optimal control algorithms in terms of the ability of reducing the peak response, the control efficiency, and has almost the same stability range with the classical optimal control algorithms.
    3) Under strong earthquakes, a structure will always come to its elasto-plastic stage, and thus becomes a kind of
引文
1. Inaudi, J.A. and Kelly, J.M. Hybrid Isolation Systems for Equipment Protection. Earthquake Engineering and Structural Dynamics, 1993, 22: 297-313.
    2. Yao, J. T. P. Concept of structural control. J Structural Div., ASCE, 1972, 98(ST7): 1567-1574.
    3. Skinner, R.I, Robinson W.H., and McVerry, G.H. An Introduction to Seismic Isolation[M]. John Wiley&Sons,1993.中译本:工程隔震概论[M],谢礼立等译,北京:地震出版社,1996年12月.
    4. Constantinou, M.C. Passive Energy Dissipation Development in U.S. In: Soong, TT, and.Constantinou, M.C. Passive anti active structural vibration control in Civil Engineering. Springer-Verlag, 1994: 255- 269.
    5.周锡元,阎维明,杨润林,建筑结构的隔震、减振和振动控制[J].建筑结构学报,2002,23(2):2-11.
    6.刘季,李惠,液压质量控制系统(HMS)对底层大空间建筑的抗震控制[J],建筑结构学报,1997,18(2):52-64,79.
    7. Soong, TT. Active Structural Control: Theory and Practice [M]. New York: Wiley, 1990年.
    8. Spencer, Jr., B.F., and Nagarajaiah, S. State-of the art of structural control. Journal of Structural Engineering, ASCE, 2003, 129(7): 845-856.
    9 Symans, M.D. and Constantinou, M.C. Semi-active control systems for seismic protection of structures: a state-of the art review. Engineering Structures, 1999, 21:467-487.
    10. Gavin, H.P., Hanson, R.D. and Filisko, F.E. Electrorheological dampers, Part Ⅰ: Analysis and Design. Journal of Applied Mechanics, ASME, 1996, 63: 669-675.
    11. Spencer, Jr., B.F., Dyke, S.J., Sain, M.K. and Carlson, J.D. Phenomenological Model of a Magnetorheological Damper. Journal of Engineering Mechanics, ASCE, 1997, 123(3): 230-238.
    12.吕西林,叶骅.结构主动控制和混合控制技术的新发展[J].世界地震工程.1997,13(2):21-29.
    13.瞿伟廉,袁润章,项海帆.ER智能材料-减震结构体系的研究.振动工程学报,1999,12(2):193-201.
    14.周云,徐龙河,李忠献.半主动磁流变阻尼控制结构的地震反应分析.世界地震工程,2000,16(3):95-100.
    15.钱稼茹,Warnitchai P.等.用TLD减小电视塔动力反应的振动台实验研究.建筑结构学报,1995,16(5):32-39.
    16.王肇民等.电视塔结构TMD风振控制研究与设计[J].建筑结构学报,1994,15(5):2-13.
    17.瞿伟廉,李卓球.智能材料结构系统在土木工程中的应用[J].地震工程与工程振动.1999,19(3):107-112.
    18.李宏男,阎石,林皋.智能结构控制发展综述[J].地震工程与工程振动,1999,19(2):29-36.
    19.欧进萍.土木工程结构振动的智能控制研究与发展[A].国际结构控制与健康诊断研讨会[C],103PDF,深圳,2000.
    20. Liu, S.C. and Chiang, W. Earthquake hazard mitigation research: new technologies and international engineering. In: Ko, J.M., et al. Advances in Structural Dynamics, Hong Kong, 2000, Vol 1: 79-93
    21.唐家祥,刘再华.建筑结构基础隔震.武汉:华中理工大学出版社,1993.
    22.楼永林,王敏权等.多层砖房底部滑移减震研究,建筑结构学报,1994,15(1):24-31.
    23.张文芳,程文瀼,李爱群,税国斌.九层房屋基础滑移隔震的试验研究.建筑结构学报,2000,21(3):60-68,76.
    24.苏经宇,曾德民.我国建筑结构隔震技术的研究和应用.地震工程与工程振动,2001,21(4):94-101.
    25.周福霖.隔震耗能减震和结构控制技术的发展和应用[M].世界地震工程.上:1989,5(4):16-20;下:1990,6(1):7-17.
    26.冼巧铃,周福霖,王伟.橡胶垫隔震框架结构试验研究.世界地震工程,1996,16(2):23-28.
    
    
    27.唐家祥,李黎,李英杰等.叠层橡胶基础隔震房屋结构设计与研究.建筑结构学报.1996,17(2):37-47.
    28.周福霖,工程结构减震控制[M].北京:地震出版社,1997年.
    29.周锡元,韩淼.橡胶支座与R/C柱串联隔震系统水平刚度系数.振动工程学报,1999,12(2):157-165.
    30.周锡元,韩淼,曾德民,马东辉,叠层钢板橡胶垫的稳定性分析与强度验算,建筑科学,1997,(6):13-19.
    31.李宏男,吴香香.橡胶垫隔震支座结构高宽比限值研究.建筑结构学报,2003,24(2):14-19.
    32.朱玉华,吕西林,施卫星等.中日同类铅芯橡胶隔震支座性能对比试验研究[J].建筑结构,2001,31(4):23-24.
    33.张敏政,孟庆利,裴强.叠层橡胶隔震支座的动态稳定性和力学特性研究.地震工程与工程振动,2002,22(5):85-91.
    34.李慧,邓学晶,杜永峰等.寒区叠层橡胶隔震支座拟静力试验研究.低温建筑技术,2003,(4):33-35.
    35. Nashif, A.D., Jones, D.I.G., Henderson, J.P. Vibration Damping. New York: John Wiley, 1985.
    36. Rogers, L. The role of damping in vibration and noise control. Proc. Conference on Mechanical Vibration and Noise, ASME, New York, 1987.
    37. Ungar, E.E. Structural Damping. In: Beranek, et al. Noise and Vibration Control Engineering: Principles and Applications. New York: John Wiley, 1992: 451-481.
    38.杨志勇,李桂青,瞿伟廉.结构阻尼的发展及其研究概况.武汉工业大学学报,2000,22(3):38-41.
    39.李田.结构时程动力分析中的阻尼取值研究.土木工程学报,1997,30(3):68-73.
    40.黄宗明,白绍良,赖明.结构地震反应时程分析中的阻尼研究.土木工程学报,1998,31(2):75-79.
    41. F. Perotti, Analytical and numerical techniques for the dynamic analysis of non-classically damped linear systems, Soil Dynamics and Earthquake Engineering, 1994, 13, 197-212.
    42. Singh, M.P. and Maldonado, G..O. An improved response spectrum method for calculating seismic design response. Part 1: Classically damped structures. Earthquake Engineering and Structural Dynamics, 1991; 20: 621-635.
    43. Maldonado, G.O. and Singh, M.P. An improved response spectrum method for calculating seismic design response. Part 2: Non-Classically damped structures. Earthquake Engineering and Structural Dynamics, 1991; 20: 637-649.
    44. Tsai, H.C. and Kelly, J.M. Non-Classical damping in dynamic analysis of base-isolated structures with internal equipment. Earthquake Engineering and Structural Dynamics, 1988, 16: 29-43.
    45. Tsai, H.C. and Kelly, J.M. Seismic response of heavily damped base isolation systems, Earthquake Engineering and Structural Dynamics, 1993,22: 633-645.
    46. Ibrahimbegovic, A. and Wilson, E.L. Simple numerical algorithms for the mode superposition analysis of linear structural systems with non-proportional damping, Computers & Structures, 1989, 33(2): 523-531.
    47. Mau, S.T. A subspace modal superposition method for non-classically damped systems. Earthquake Engineering and Structural Dynamics, 1988, 16:931-942.
    48.秦佳会,胡聿贤.非经典阻尼体系复振型随机反应分析.地震工程与工程振动[J],1990,10(4):5-19.
    49.秦权,楼磊.非经典阻尼对悬索桥地震反应的影响.土木工程学报[J],1999,32(3):17-22.
    50.周锡元,董娣,苏幼坡.非正交阻尼线性系统的复振型地震响应叠加分析方法[J].土木工程学报,2003,36(5):30-36.
    51. Jangid, R.S. and Banerji, P. Effects of isolation damping on stochastic response of structures with non-linear base isolation. Earthquake Spectra, 1998, 14(1): 95-124.
    52. Foss, F.A. Co-ordinates which uncouple the equation of motion of damped linear systems [J]. J. Applied Mechanics, 1958, 26(3): 361-364.
    
    
    53. Crandall, S.H., McCalley, R.B. Jr. Numerical method of analysis [M]. In: Harris C.M., Crede C.E. Shock and Vibration Handbook. Vol. 2, New York: McGraw-Hill, 1961.
    54. Igusa, T. Der Kiureghian, A. and Sackman, J. L. Model decomposition method for stationary response of non-classically damped systems[J]. Earthquake Engineering and Structural Dynamics, 1984, 12(1): 121-136.
    55.周锡元.一般有阻尼线性体系地震反应的振型分解方法[A].国家地震局工程力学研究所主编.地震工程研究进展(刘恢先80寿辰纪念文集)[C].北京:地震出版社,1992:120-125.
    56.郭永刚,曲乃泗,董毓新.非比例阻尼对结构动力响应影响的摄动分析方法.地震工程与工程振动[J],1995,15(4):48-54.
    57. Claret, A. and Venancio-Filho, F. A Model Superposition Pseudo-force Method for Dynamic Analysis of Structural Systems with Non-proportional Damping. Earthquake Engineering and Structural Dynamics [J], 1991, 20(1): 303-315.
    58.(日)大崎顺彦.振动理论.谢礼立等译.北京:地震出版社,1990.
    59. Kelly, J.M.. The Role of damping in seismic isolation. Earthquake Engineering and Structural Dynamics [J], 1999, 28(1): 3-20.
    60. Reinhorn, A.M., Soong, T.T., and Wen, Y.K. Base-isolated structures with active control [C]. Proc. ASME PVP Conf., San Diego, CA, 1987, PVP-127, 413-420.
    61. Kelly, J..M., Leitmann, G., and Soldatos, A.G. Robust control of base-isolated structures under earthquake excitation [J]. J. Optimization Theory and Applications. 1987, 53: 159-180.
    62. Ribakov, Y, Gluck, J, and Reinhorn, A.M. Active viscous damping system for control of MDOF structures [J]. Earthquake Engineering and Structural Dynamics, 1999, 28(2): 109-126.
    63. Patten, W., Sun, J., Li, G., and Song, G. Field test of an intelligent stiffener for bridges [J]. Earthquake Engineering and Structural Dynamics, 1998, 27(11): 1267-1276.
    64. Feng, MQ, Shinozuka, M., and Fuji, S. Friction controllable sliding isolation system [J]. J. Engineering Mechanics. ASCE, 1993,119(9): 1845-1864.
    65. Makris, N. Rigidity-plasticity-viscosity: Can electrorheological dampers protect base-isolated structures from near-source Ground Motions? Earthquake Engineering and Structural Dynamics [J], 1997, 26: 571-591.
    66. Nagarajaiah, S. Fuzzy controller for structures with hybrid isolation system [C]. Proc. First World Conf. Structural Control, Los Angeles, CA, TA2, 1994: 67-76.
    67. Kawashima, K. and Unjoh, S. Variable dampers and variable stiffness for seismic control of bridges. Proc. of International Workshop on Structural Control, Honolulu, HI, 1993:283-297.
    68. Sahasrabudhe, S., Nagarajaiah, S. and Hard, C. "Experimental Study of Sliding Isolated Buildings with Smart Dampers Subjected to Near Source Ground Motions." 14th Engineering Mechanics Conference, 2000, May 21-24, Austin, Texas.
    69. Madden, G.J., Symans, M.D. and Wongprasert, N. Adaptive Seismic Isolation Systems for Structures Subjected to Disparate Earthquake Ground Motions. 14th Analysis & Computational Specialty Conference, Proceedings of the 2000 Structures Congress & Exposition, 2000, May 8-10, Philadelphia, Pennsylvania.
    70. Yoshida, K., Yoshida, S. and Takeda, Y. Semi-Active Control of Base Isolation Using Feedforward Information of Disturbance. Proc of the Second World Conference on Structural Control, Kyoto, Japan, 1999, Vol. 1, pp. 377-386.
    71. Yang, J.N, Wu, J.C., Kawashima, K. and Unjoh, S. Hybrid Control of Seismically Excited Bridge Structures. Journal of Earthquake Engineering and Structural Dynamics, 1995, 24(11): 1437-1451.
    72. Yang, J.N. and Agrawal, A.K. Semi-Active Hybrid Control Systems for Nonlinear Buildings Against Near-Field Earthquakes. Engineering Structures, 2002, 24:271-280.
    73. Spencer, Jr., B.F., Johnson, E.A. and Ramallo, J.C. "Smart" Isolation for Seismic Control. JSME International Journal, Special Issue on Frontiers of Motion and Vibration Control, Series C, 2000, 43(3): 704-711.
    74. Ramallo, J.C., Johnson, E.A., Spencer, Jr., B.F. and Sain, M.K. Smart base isolation systems. Journal of Engineering Mechanics, ASCE, 2002, 128(10): 1088-1099.
    
    
    75. Ramallo, J.C., Yoshioka, H. and Spencer, Jr., B.F. System Identification of "Smart" Base Isolation Systems. Journal of Structural Engineering, ASCE, 2002, submitted.
    76.杨广强,Spencer,Jr.,B.F.,Carlson,J.D.and Sain,M.K.足尺磁流变阻尼器的建模及动态特性[J].地震工程与工程振动,2001,21(4):8-23.
    77. Dyke, S.J., Spencer, Jr., B.F., Sain, M.K. and Carlson, J.D. Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction. Smart Materials and Structures, 1996, 5: 565-57.
    78.欧进萍,关新春.磁流变耗能器性能的试验研究[J].地震工程与工程振动,1999,19(4):76-81
    79.杨飏,关新春,欧进萍.可调滞回模型的磁流变阻尼器性能及其试验[J].地震工程与工程振动.2002,22(2):115-120.
    80.李江,何玉敖.隔震和半主动控制组成的结构振动混合控制体系分析.第十届全国结构工程会议论文集,2001,Vol 3:13-17.
    81.吕明云,瞿伟廉,涂建维.建筑结构地震反应的智能隔震控制[J].武汉理工大学学报,2002,24(4):62-65.
    82.瞿伟廉,吕明云,李学安.屋盖MR智能隔震系统对升船结构顶部厂房地震鞭稍效应的模糊控制.地震工程与工程振动.2002,22(3):129-137.
    83.陈海泉,李忠献,李延涛.应用形状记忆合金的高层建筑结构智能隔震.天津大学学报(自然科学与工程技术版),2002,(6):761-765.
    84.李黎,唐家祥,熊雷生.智能型隔震系统和电流变体阻尼器设计.工程抗震,1999,(1):30-32.
    85. Battaini, M., Casciati F., Faravelli, L. Fuzzy control of structural vibration--an active mass system driven by a fuzzy controller [J]. Earthquake Engineering and Structural Dynamics, 1998, 27(11): 1267- 1276.
    86. Symans, M.D., Kelly, S.W. Fuzzy logic control of bridge structures using intelligent semi-active seismic isolation. Earthq. Engrg. and Struc. Dyn., 1999, 28: 37-60.
    87. Yang, J.N., Wu, J.C., Reinhom, A.M. and Riley, M. Control of Sliding-Isolated Buildings Using Sliding-Mode Control." Journal of Structural Engineering, 1996, 122(2): 179-186.
    88. Yoshida, H., Ramallo, J.C., and Spencer, Jr., B.F. "Smart" base isolation strategies employing magnetorheological damper. Journal of Engineering Mechanics, ASCE, 2002, 128(5): 540-551.
    89. Abdel-Rohman, M., and Leipholz, H.H.E. Structural control by pole assignment method. Journal of Engineering Mechanics Div, ASCE, 1978, 104:1157-1175.
    90. Meirovitch, L., and Silverberg, L.M. Control of structures subjected to seismic excitations. Journal of Engineering Mechanics Div, ASCE, 1983, 109: 604-618.
    91. Spencer, Jr., B.F., Suhardjo, J., and Sain, M.K. Frequency domain optimal control strategies for aseismic protection. J. Engineering Mechanics. ASCE, 1994, 120(1): 135-158.
    92. Huang, K. and Betti, R. Predictive optimal control for seismic analysis of non-linear and hysteretic structures. Earthquake Engineering and Structural Dynamics [J], 1999, 28(6): 585-607.
    93. Yang, JN, Akbarpour, A. and Ghaemmaghami, P. New optimal control algorithms for structural control [J]. J. Engineering Mechanics, ASCE, 1987, 113(9): 1369-1386.
    94. Yang, JN, Long, F.X., and Wong, D. Optimal control of nonlinear structures [J]. Journal of Applied Mechanics, ASME. 1988, 55(4): 931-938.
    95. Hrovat, D., Barak, P., and Rabins, M. Semi-active versus passive or active tuned mass dampers for structural control [J]. J. Engineering Mechanics, ASCE, 1983, 109(3): 691-705.
    96. Kobori, T., et al. Seismic response controlled structure with active variable stiffness system [J]. Earthquake Engineering and Structural Dynamics, 1993, 22:925-941.
    97. Inaudi, J.A. and Kelly J.M. Single-degree-of-freedom nonlinear homogeneous systems. J. Engineering Mechanics. ASCE, 1994, 120(7): 1543-1562.
    98. Ribakov, Y., Gluck, J. Selective controlled based isolation system with magnetorheological dampers[J]. Earthquake Engineering and Structural Dynamics. 2002, 31: 1301-1324.
    99. Dyke S.J., Spencer B.F., Jr, Sain M.K. and Carlson, J.D. An experimental study of MR dampers for seismic protection [J]. Smart Materials and Structures. 1998, 5: 693-703.
    
    
    100. Masri, S.F., Bekey, G.A., and Caughey, T.K. Optimal pulse control of flexible structures [J]. Journal of Applied Mechanics, ASME. 198I, 48(3): 619-626.
    101. Reinhorn, A.M., Manolis, G.D., and Wen, C.Y. Active control of inelastic structures [J]. Journal of Engineering Mechanics, ASCE. 1987, 113(3): 315-332.
    102. Yang, JN, Long, F.X., and Wong, D. Optimal control of nonlinear structures [J]. Journal of Applied Mechanics, ASME. 1988, 55(4): 931-938.
    103. Yang, J.N., Li, Z. and Liu, S.C. Stable controllers for instantaneous optimal control [J]. Journal of Engineering Mechanics, ASCE. 1992, 118(8): 1612-1630.
    104.何玉敖,何亚东.基于Lyapunov稳定性原理和遗传算法的结构半主动控制[J].土木工程学报[J],2000,33(6):88-93.
    105.何玉敖,李江.基于模糊逻辑与神经网络的高层结构半主动控制[J].建筑结构学报,2003,24(2):33-37.
    106.何玉敖,郭婷.遗传算法-神经网络结构控制体系研究[J].振动工程学报,2001,14(2):192-195.
    107.何玉敖,吴建军.应用自递归神经网络(SRNN)预测结构响应[J].土木工程学报,1998,31(2):46-51.
    108.张春巍,欧进萍.结构磁流变阻尼半主动控制的改进算法与仿真分析.世界地震工程,2003,19(1):37-43.
    109.王刚,欧进萍.结构振动的模糊建模与模糊控制规则提取.建筑结构学报,1998,19(5):28-36.
    110.陈静,瞿伟廉.基于泛布尔代数的MR阻尼器半主动控制方法.武汉理工大学学报,2002,24(7):62-64.
    111.周云,徐龙河,李忠献.磁流体阻尼器半主动控制结构的地震反应分析[J].土木工程学报.2001,34(5):10-14.
    112.张提波,唐家祥.主动基础隔震结构随机最优控制.zoa系统和电流变体阻尼器设计.工程抗震,1999,(1):30-32.
    113. Houser, G.W. Limit design of structures to resist earthquake. Proc. 1st WCEE, Berkeley, CA, 1956: 5.1-5.11
    114. Uang, C.M., and Bertero, U.U. Use of energy as a design criterion in earthquake resistant design. Report No. UCB/EERC - 88/18. Earthquake Engineering Center, University of California, Berkeley, 1988
    115. Zahrah, T.F., Hall, W.J. Earthquake energy absorption in SDOF structures. J. Structural Engineering, ASCE, 1984, 110(8): 1757-1772
    116. Sucuoglu, H., and Nurtug, A. Earthquake ground motion characteristics and seismic energy dissipation [J]. Earthquake Engineering and Structural Dynamics, 1995, 24:1195-1213.
    117. Uang, C.M., and Bertero, V.V. Evaluation of seismic energy in structures [J]. Earthquake Engineering and Structural Dynamics, 1990, 19(1 ): 77-90.
    118.周云,徐彤,周福霖.抗震与减震结构的能量分析方法研究与应用[J].地震工程与工程振动,1999,19(4):133-139.
    119.叶献国.建筑结构弹塑性地震反应中的能量表达及应用[J].合肥工业大学学报,1998,21(5):9-16.
    120.翟希梅,吴知丰.多层结构能量计算的振型分解方法[J].哈尔滨工业大学学报,1998,30(1):121-124.
    121.黄宗明,白绍良,赖明.结构非弹性地震能量反应的分析方法.第三届全国结构工程学术论文集,1994,979-986.
    122.白绍良,黄宗明,肖明葵.结构抗震设计的能量分析方法与研究评述.建筑结构,1997,27(4):54-58.
    123.欧进萍,何政,吴斌,邱法维.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动,1999,19(1):21-30.
    124.王亚勇.关于设计反应谱、时程法和能量方法的探讨[J].建筑结构学报,2000,21(1):21-28.
    125.蒋立志,林荫琦,朱镜清.阻尼耗能在结构弹塑性地震反应中的作用[J].地震工程与工程振动,1996,16(3):30-38.
    
    
    126.经杰,叶列平,钱稼茹.基于能量概念的剪切型多自由度体系弹塑性地震位移反应分析.工程力学,2003,20(3):31-37
    127. Soong, T.T. and Dargush, G.F. Passive Energy Dissipation System in Structural Engineering. Chichester: Wiley, 1997.
    128. Marano, G.C. and Greco, R. Efficiency of base isolation system in structural seismic protection and energetic assessment. Earthquake Engineering and Structural Dynamics, 2003, 32:1505-1531.
    129. Wong, K.K. and Yang, R. Effectiveness of structural control based on control energy perspectives. Earthquake Engineering and Structural Dynamics, 2001, 30:1747-1768.
    130.周云,周福霖.耗能减震体系的能量设计方法[J].世界地震工程,1997,13(4):7-13.
    131.周云,徐彤,贺明玄.基础隔震结构的能量设计方法[J].地震工程与工程振动,2000,20(3):116-122.
    132.朱玉华,吕西林,施卫星等.基础隔震房屋模型振动台试验研究[J].地震工程与工程振动,2000,20(3):123-129.
    133. Rice, S.O. Mathematical analysis of random noise, Bell System Technical Journal. 1944, 23:282-332
    134. Siegert, A.J.F. On the first-passage probability problem. Physical Review, 1951, 81:617-623
    135. Helmstroin, C.W. Note on a Markov envelope process. Transaction on Information Theory, Institute of Radio Engineers. 1959, IT-5.
    136. Coleman, J.J. Reliability of aircraft structures in resisting chance failure. Operations Research, 1959, 7: 639-645.
    137. Cramer, H., and Leadbetter, M.R. Stationary, and related stochastic process. New York: John Wiley, 1967.
    138. Yang, J.N., Shinozuka, M. On the first excursion probability in stationary narrow band random vibration. Journal of Applied Mechanics, 1971, 38: 1017-1022.
    139. Wen, Y.K. Reliability and performance-based design. Structural Safety, 2001, 23: 407-428.
    140. Wen, Y.K. and Chen, H.C. System reliability under time varying loads: Ⅰ and Ⅱ. Journal of Engineering Mechanics, ASCE. 1989, 115(4): 808-839.
    141. Han, S.W. and Wen, Y.K. Reliability-based seismic design. Ⅰ: Equivalent nonlinear systems; Ⅱ: Calibration of Code parameters. Journal of Structural Engineering, ASCE. 1997, 123(3): 256-270.
    142. Wen, Y.K. and Chen, H.C. On fast integration for time variant structural reliability. Probabilistic Engineering Mechanics, 1987, 2(3): 156-162.
    143.王光远.在非平稳强地震作用下结构的分析方法.土木工程学报[J].1964,10(1):14-22.
    144.胡聿贤,周锡元.弹性体系地震反应的耦合问题.土木工程学报[J].1964,10(1):23-30.
    145.李桂青,曹宏,李秋胜,霍达.结构动力可靠性理论及其应用.北京:地震出版社,1993.
    146.李桂青,李秋胜.工程结构时变可靠度理论及其应用.北京:科学出版社,2001.
    147.欧进萍,牛荻涛,王光远.非线性抗震钢结构的随机动力分析与优化设计.结构工程学报,1991,2(3-5):779-784.
    148.管昌生.随机时变结构动力可靠度分析的Markov模型.武汉工业大学学报,2000,22(2):48-50
    149.庄一舟,金伟良等.海洋导管架平台抗震可靠度分析方法.海洋学报.1999,21(5):129-136
    150.刘伯权,赖明,白绍良.地震作用下剪切型结构的可靠性分析[J].地震工程与工程振动.1996,16(1):39-47.
    151.曹晖,赖明,白绍良.基于小波分析的结构动力可靠度估计[J].世界地震工程.2000,16(4):70-77.
    152.肖梅玲,叶燎原,高春涛.不同小波基下的结构位移反应动力可靠性分析[J].世界地震工程.2002,18(2):163-166.
    153.樊剑,唐家祥.基于离散小波变换的滑移隔震结构非平稳随机响应计算.工程力学.2002,19(2):73-77
    154. Lin, J.H., Zhang, W.S. and Williams, F. W. Pseudo-excitation algorithm for non-stationary random seismic response. Engineering Structures, 1994, 16(4): 270-276.
    155. Lin, J.H., Shen, W.P., and Williams, F. W. Accurate high-speed computation of non-stationary random structure response. Engineering Structures, 1997, 19 (7): 586-593.
    156.林家浩.随机地震响应的确定性算法[J].地震工程与工程振动,1985,5(1):89-93.
    
    
    157.邬瑞峰,顾红霞.带构造柱多层砖房的抗震可靠度.全国地震工程会议论文选集(二),1984.
    158.马宏旺,赵国藩.钢筋混凝土梁抗震可靠度校核以及强剪弱弯设计可靠性分析.建筑结构,2000,30(10):3-8
    159.王光远,程耿东,邵卓民,陈厚群.抗震结构的最优设防烈度与可靠度.北京:科学出版社,1999
    160.李国强.基于概率可靠度进行结构抗震设计的若干理论问题.建筑结构学报,2000,21(1):12-20
    161. Constantinou, M.C. and Tadjbakhsh, I.G.. Optimum characteristics of base-isolation. Journal of Structural Engineering ASCE, 1985, 111(12): 2733-2750.
    162. Lin, B.C., Tadjbakhsh, I.G., Papageorgiu, A.S. and Ahmandi, G. Response of base isolated buildings to random excitations described by Clough-Penzien spectral model [J]. Earthquake Engineering and Structural Dynamics, 1989, 18: 49-62.
    163. Palazzo, B. and Petti, L. Stochastic response comparison between base isolated and fixed base structures [J]. Earthquake Spectra, 13(1): 77-96.
    164. Inaudi, J.A. and Kelly J.M. Optimum damping in linear isolation systems. Earthquake Engineering and Structural Dynamics, 1993; 22: 583-598.
    165. Soong, TT, Reinhorn AM. Reliability issues in implementation of active control [A]. In: Proc. Structural Congress[C]. Indiana Polis, Indiana, USA, 1991.
    166. Wen, Y.K. and Ang A.H.-S. Reliability and cost effectiveness of structures with control [A]. Intelligent structures——2. Monitoring and control [M]. Oxford: Elsevier Science, 1992.
    167. Wen, Y.K. and Shinozuka, M. Cost-efficient in active structural control. Engineering Structures, 1997, 20(3): 216-221.
    168. Breitung, K., Casciati, F., and Faravelli, L. Reliability-based stability analysis for actively controlled structures. Engineering Structures. 1998, 20(3): 211-215.
    169. Spencer, BF, Jr, Sain MK, Kanor JC, and Montemagno, C. Probabilistic stability measures for controlled structures subject to the real parameter uncertainties [J]. Smart Materials and Structures, 1992, (1) : 294-305.
    170. Battaini, M., Casciati, F., and Faravelli, L. Some reliability aspects in structural control. Probabilistic Engineering Mechanics, 2000, 15(1 ): 101-107.
    171. Venini, P., Mariani, C. Reliability as a measure of active control effectiveness. Computers and Structures, 1997, 73: 465-473.
    172. Pradlwarter, HJ, Schueller, GI and Dorka U. Reliability of MDOF-systems with hysteretic devices [J]. Engineering Structures. 1998, 20(8): 685-691.
    173.吴波,郭安薪,王光远.安装被动控制装置的钢筋混凝土框架结构弹塑性层间最大位移反应的概率统计分析[J].建筑结构学报,2001,22(2):40-45.
    174.江宜城,唐家祥.基础隔震结构对随机激励的响应分析[J].世界地震工程.2002,18(4):39-42.
    175.李创第,黄天力等.基础隔震的随机地震响应分析的复模态法.地震工程与工程振动,2002,22(6):122-128.
    176.黄天力,李创第,何益斌等.刚性结构基础隔震随机地震响应及优化分析.世界地震工程.2003,19(1):121-127.
    177.李大望,霍达,金焰等.基于动力可靠性分析的滑移隔震体系的优化设计[J].地震工程与工程振动,1998,18(4):118-130.
    178.洪峰,王前信,江近仁.基底滑移隔震刚性结构的随机滑移反应和可靠性分析[J].地震工程与工程振动,1993,13(2):47-51.
    179.欧进萍,王光远.结构随机振动.北京:高等教育出版社,1998.
    180. Bouc, R. Forced vibration of mechanical systems with hysteresis. Abstract, Proc. Fourth Conference on Nonlinear Oscillation, Prague, Czechoslovakia, 1967
    181. Wen, Y.K. Method for random vibration of hysteretic systems [J]. J. Engineering Mechanics Div., ASCE. 1976, 102(EM2): 249~263
    182. Barbat, TT and Wen, YK. Random vibration of hysteretic degrading systems. J Eng. Mech. Div., ASCE. 107(EM6):1069-1087, 1981
    
    
    183. Spencer, BF, Jr. Reliability of randomly excited of hysteretic structures. Lecture Note in Engineering (series editors: Brebbia, C.A. and Orszag, Vol 21, Springer-Verlag, 1986.
    184.江近仁,洪峰.多层砖房的地震可靠性分析[J].地震工程与工程振动,1985,5(4):13-28.
    185. Wen, Y.K. Equivalent linearization for hysteretic systems under random excitation. Journal of Applied Mechanics, ASME, 1980, 47: 150-154.
    186. Hurtado, JE and Barbat, AH. Equivalent linearization of Bouc-Wen hysteretic model. Engineering Structures. 2000, 22(8): 1121-1132.
    187.郭安薪,吴波,徐幼鳞.安装粘弹性阻尼器的滞变结构抗震可靠度分析[J].世界地震工程,2001,17(2):8-13.
    188. Guo, AX, Xu, YL, Wu, B. Seismic reliability analysis of hysteretic structure with viscoelastic dampers. Engineering Structures. 2002, 24: 373-383.
    189.赵雷,陈,路湛沁。结构地震可靠度理论研究进展。建筑结构。2000,30(12):60-64
    190. Park, Y.J. Ang, A.H.-S. Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering ASCE, 1985, 111(4): 740-757.
    191.欧进萍,吴波.钢筋混凝土结构在主余震作用下的反应与损伤分析.建筑结构学报,1993,14(5):45-53.
    192. Wang, G.Y., Wang, W.Q. Fuzzy optimum design of aseismic structures [J]. Earthquake Engineering and Structural Dynamics, 1985, 13(6): 827-837.
    193. Abdel-Rohman, M., and Leipholz, H.H.E. Automatic active control of structures[J]. J Structural Engineering Div., ASCE, 1980, 106: 663-677.
    194. Brogan, W.L. Modern Control Theory [M]. Prentice Hall. Englewood cliffs, N.J., USA, 1991.
    195. R.W. Clough, and J. Penzien. Dynamics of Strctures [M]. 2nd ed. New York: McGraw-Hill, 1993
    196. Du, Yongfeng, Li, Hui and Spencer, Billie F, Jr. Effect of Non-Proportional Damping on Seismic Isolation [J]. Journal of Structural Control, 2002, 9(3):205-236
    197.杜永峰,李慧,B.F.Spencer,Jr.(苏磐石)等.隔震结构动力时程响应的一种工程实用算法.甘肃工业大学学报,2003,29(3):70-75
    198. Warburton. G.B. and Soni, S.R. Errors in response calculations for non-classically damped structures [J]. Earthq Engrg and Struc Dyn, 1977, 5 (2): 365-376
    199. Sinha, R. and Igusa, T. CQC and SRSS method for non-classically damped structures[J]. Earthq Engrg and Struc Dyn, 1990, 24 (4): 615-619
    200.杜永峰,杜小妮,赵国藩.用拉普拉斯变换方法求解非比例阻尼隔震结构[J].兰州大学学报(自然科学版),2000,36(11):40~45
    201. Heylen, W., Lammens, S. and Sas P. Modal Analysis Theory and Testing [M]. Heverlee(Belgium): Katholieke Universiteit Leuven, 1997.
    202. Kawashima, K. and Aizawa, K Modification of earthquake spectra with respect to damping ratio [C]. Proceedings of the Third US National Conference on Earthquake Engineering, Earthquake Engineering Research Institute, Charleston, SC, 1986:1107-1116
    203.施卫星,李正升.基础隔震结构设计反应谱[J]。工程力学,1998年增刊:115-120
    204.杜永峰,赵国藩.隔震结构中非经典阻尼影响及最佳阻尼比分析[J].地震工程与工程振动.2000,20(3):100-107
    205. Soong, TT. State-of-the-art review: Active structural control in civil engineering [J]. Engineering Structures. 1988, 10: 74-84.
    206.何玉敖,吴建军.应用自递归神经网络(SRNN)预测结构响应[J].土木工程学报,1998,31(2):46-51.
    207.戴忠达,吕林.自动控制理论基础[M].北京:清华大学出版社,1991.
    208.杜永峰,严克明,孙荣镐.多层框架隔震参数的优化确定[C].工程力学增刊.1995,Vol 2:1273-1277.
    209.王前信,王孝信.工程结构地震力理论.北京:地震出版社,1979.
    210. Hall, J.F. Discussion on The Role of Damping in Seismic Isolation. Earthquake Engineering and Structural Dynamics, 1999, 28(12): 1717-1720
    
    
    211. Housner, G.W. Characteristic of strong motion earthquakes. Bulletin of Seismic Society, Am., 1947, 37: 17-31.
    212. Kanai, K. Semi-empirical formula for seismic characteristics of the ground. Bulletin of Earthquake Research Institute, University of Tokyo, 1957, 35: 309-325.
    213.胡聿贤,周锡元.弹性体系在平稳和平稳化地面运动下的反应.地震工程研究报告集,第一集,1962.
    214. Clough, R.W., and Penzien, J. Dynamics of Structures. New York: McGraw-Hill, 1975.
    215. Kaul, M.K. Stochastic characterization of earthquakes through their response spectrum. Earthquake Engineering and Structural Dynamics, 1978, 6(5): 497-510.
    216. Shinozaka, M. Digital simulation of random processes and its applications[J]. Sound and vibration, 1972, 25(1):111-128.
    217. Kurata, N. and Kobori, T. Reliability of applied semiactive structural control system. J. Structural Engineering, ASCE, 2003, 129(7): 914-921.
    218. Zhang, YF. and Iwan, W.D. Statistical performance analysis of seismic-excited structures with active interaction control. Earthquake Engineering and Structural Dynamics, 2003, 32(7): 1039-1054.
    219.杜永峰,李慧,党育等.高烈度区采用智能隔震结构的仿真分析.第四届全国结构减震控制学术研讨会论文集,广州,2003年11月
    220.杜永峰.李慧.装有半主动控制器的智能隔震结构随机响应.第六届世界计算力学大会预备会议暨2003年全国计算力学大会论文集,北京,2003年10月:338-345.
    221.王光远,谭东耀,王东炜.失效相关工程系统的可靠度[J].地震工程与工程振动,1992,12(1):1-6.
    222.龚思礼。建筑抗震设计[M].北京:中国建筑工业出版社,1994.
    223.王光远,朱靖华.地震作用下串、并联工程系统中结构失效相关的近似处理[J].地震工程与工程振动,1998,18(4):1-7.
    224.赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000
    225.高小旺,鲍霭斌.地震作用的概率模型及其统计参数[J].地震工程与工程振动,1985,5(1):13-22
    226.周锡元,韩淼,曾德民等.具有软着陆保护的橡胶支座隔震体系[J]。建筑结构学报,2000,21(5):2-10.
    227.杜永峰,李慧,党育等.橡胶隔震支座的低温性能及对动力可靠性的影响.工程力学增刊,2003,Ⅱ:452-455.
    228.夏亚峰,杜永峰,赵宝东.基于两参数损伤模型下剪切型结构抗震可靠性分析.甘肃工业大学学报,2003,29(2):113-116.
    229.杜永峰,李慧,B.F.Spencer,Jr.(苏磐石),赵国藩.非比例阻尼隔震结构地震响应的实振型分解法.工程力学,2003,20(4):24-32.
    230.李慧,杜永峰,Spencer,Jr.,B.F.(苏磐石)等.隔震结构动力时程响应工程算法的精度对比.甘肃工业大学学报,2003,29(4):103-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700