基于MR阻尼器的半主动结构控制的理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变(MR)阻尼器是一种典型的半主动控制装置,具有构造简单、响应速度快、阻尼力大且连续可调等优点,在土木工程结构中的应用研究已经得到了国内外学者的广泛关注。本论文系统地开展了基于MR阻尼器的半主动结构控制的理论与试验研究,主要创新工作与成果包括以下几个方面:
    (1)根据剪切与阀式两种工作模式的特点,选用重庆仪器材料研究所研制生产的MRF-04K型磁流变液,设计并制作了一种剪切阀式的MR阻尼器,命名为MRF-04K阻尼器,长50cm,重约50kg;通过在不同振幅、不同频率的正弦激励并施加不同的励磁电流下,对MRF-04K阻尼器的动力性能进行了测试试验,结果表明该阻尼器的最大阻尼力达到20kN,耗电功率小于50w;进一步提出了适合MRF-04K阻尼器的修正的Bouc-Wen滞回模型,模拟与误差分析结果表明,该滞回模型能够精确的描述MRF-04K阻尼器的滞回性能。
    (2)针对应用MRF-04K阻尼器的半主动控制系统,提出了基于瞬时最优控制(IOC)、经典线性最优控制(COC)和仅用加速度作为状态反馈的线性二次高斯(LQG)算法的半主动控制律;进一步依据预测控制理论,提出了一种基于MR阻尼器且具有时滞自补偿功能的半主动多步预测控制系统;数值分析表明,MRF-04K阻尼器是一种性能卓越的半主动控制装置,而且半主动控制系统能够充分的利用MR阻尼器的性能,有效的减小结构的地震反应,取得良好的控制效果。
    (3)将基于MRF-04K阻尼器的半主动控制系统与基础隔震相结合,建立了一种基于MRF-04K阻尼器的混合控制系统,仿真分析表明该混合控制系统不仅能够大幅度地减小隔震层的水平侧移,有效地保护隔震装置,而且能够有效的控制上部结构的层间位移与加速度反应,从而提高了隔震建筑的抗震性能和可靠性。
    (4)应用MRF-04K阻尼器,在三种不同地震波激励下,分别针对基于IOC算法、COC算法和LQG算法的三种半主动控制系统以及恒定励磁电流为0A和2.0A的两种被动控制系统,对一三层钢框架模型进行了地震模拟振动台试验。试验结果表明,基于MRF-04K阻尼器的控制系统非常有效,无论是被动控制还是半主动控制,都显著地降低了模型结构各层的响应,而且半主动控制系统更能充分地利用MRF-04K阻尼器的性能,以较小的控制力达到了较好的控制效果,从而为基于MRF-04K阻尼器的半主动控制系统在土木工程结构中的应用提供了可靠的试验依据。
Magnetorheological (MR) damper, due to its mechanical simplicity, rapid response, low power requirement, large and adjustable damping force capacity and robustness, has shown to be one of the most promising realizations of semi-active dampers, and the research on its application to civil structures has been attracted lots of scholastic attention.
    In this dissertation, a systematic study on the theory and experiment of semi-active structural control based on MR damper was performed, and the primary innovative contents are included,
    (1) A kind of MR damper, named as MRF-04K damper, using the mixed mode (i.e. the valve mode combined with the shear mode) had been designed and manufactured. The used MR fluid is the type of MRF-04K provided by Chongqing Instrument Materials Research Institute of China and the completed damper is approximately 0.5m long and with a mass of 50kg. To accurately understand the performance of MRF-04K damper, the dynamic characteristics of the damper under sinusoidal excitation with different frequency and different amplitude and different applied current levels were experimentally studied. The maximum force produced by MRF-04K damper at a full magnetic field strength is about 20kN while the maximum power required is less than 50w. Further more, the modified Bouc-Wen model had been proposed according to the test data of the dynamic behavior of MRF-04K damper. Comparison with the data between the experimental and the predicted indicates that the modified Bouc-Wen model can accurate portray the behavior of the MRF-04K damper.
     (2) The semi-active control systems based on MRF-04K damper were further investigated, and the semi-active control law based on the Instantaneous Optimal Control (IOC), the Classical Linear Optimal Control (COC), and the Linear-Quadratic Gaussian (LQG) (only required the acceleration responses of structure as the feedback) algorithms was proposed. On the basis of predictive control theory, the semi-active multi-step predictive control system with the function of time delay self-compensation based on MR damper was proposed. The numerical analysis results indicate that the MRF-04K damper is a semi-active control device with good performance and the semi-active control systems can take full use of the performance of MR damper to reduce the structural responses effectively.
     (3) The hybrid control system, consisting of a passive base isolation system combined with a semi-active control system based on MRF-04K damper, was explored. Simulation analysis results indicate that the hybrid control system is able to achieve both low interstory drift and acceleration and, at the same time, limit the base displacement. The security of isolated
    
    
    structure was improved largely.
     (4) Based on the theory and the simulation analysis above, a series of shaking table tests of the semi-active structural control systems based on MRF-04K damper were carried out. Under three different seismic input, the validity of the semi-active control systems based on three different control algorithms, the Instantaneous Optimal Control (IOC) algorithm, the Classical Optimal Control (COC) algorithm and the Linear Quadratic Gaussian (LQG) control problem, and two passive control situations, in which the applied current was fixed at the minimum value of 0A and the maximum value of 2.0A respectively, was verified. The test results indicate that the control systems based on MRF-04K damper are very effective, and either two passive control situations or the semi-active control systems are all able to significantly reduce the seismic responses of the model structure, while the semi-active control systems can effectively utilize the behavior of MRF-04K damper and achieve a better control effectiveness with less control forces compared with the case of passive 2.0A. Which make the realization of the semi-active control systems based on the MRF-04K damper more simple and provide the reliable test basis for applying the semi-active control systems based on MRF-04K damper to civil structures.
引文
[1]J.T.P. Yao. Concept of Structural Control. J. Struct. Div, ASCE, Vol.98, 1972: 1567~1574.
    [2]J.N. Yang. Application of Optimal Control Theory to Civil Engineering Structures. Journal of the Engineering Mechanics Division, ASCE, Vol.101, No.EM6, December, 1975:819-838.
    [3]王光远.高耸结构风振控制.高耸结构学术交流会,1980.
    [4]H.H.E. Leipholz, M. Abdel-Rohman. Mechanics of Elastic Stability: Control of Structures. Martinus Nijhoff Publishers, the Netherlands, 1986.
    [5]瞿伟廉,袁润章,项海帆.ER智能材料—减震结构体系的研究.振动工程学报,Vol.12,No.2,Jun.1999.
    [6]瞿伟廉,李卓球等.智能材料—结构系统在土木工程中的应用.地震工程与工程振动,Vol.19,No.3,Sep.1999.
    [7]周福霖.工程结构减震控制.北京:地震工业出版社,1997.
    [8]周福霖.隔震、消能减震和结构控制技术的发展和应用(上、下).世界地震工程,1989(4),1990(1).
    [9]武田寿一.建筑物隔震防振与控制.(纪晓惠等译),北京:中国建筑工业出版社,1997.
    [10]唐家祥,刘再华.建筑结构基础隔震.武汉:华中理工大学出版社,1993.
    [11]傅育安.基础隔震工程的回顾与展望.工程抗震,1987(3)。
    [12]I.G. Buckle and R.L. Mayers. Seismic Isolation: History, Application and Performance-A World View. Earthquake Spectra, Vol.6, No.2, May, 1990.
    [13]刘季,周云.结构抗震控制的研究与应用状况(上).哈尔滨建筑大学学报,Vol.28,No.4,Aug.1995.
    [14]韦德香,崔湘玲,张元超.结构被动控制研究进展.贵州工业大学学报,Vol.30,No.6,Dec.2001:76-83.
    [15]朱力,程晓杰,何若全,张耀春.摩擦消能支撑的试验研究.哈尔滨建筑工程学院学报,Vol.25,No.4,Dec.1992:45-48.
    [16]廉晓飞,邹超英.高层建筑钢结构中带竖缝混凝土剪力墙板设计方法建议.哈尔滨建筑大学学报,Vol.29,No.2,1996.
    [17]A.S. Pall and C. Marsh. Response of Friction Damped Braced Frames. J. of Struct. Division, ASCE, Vol.108, No.ST, 1982.
    
    
    [18]Y.F. Su. Aseismic Design of Building Structures with ADAS Devices. Report to the Sinotech Engineering Consultants, Inc. Su and Structural Engineers Corporation, Taiway, Oct.1990.
    [19]C. Xia and R.D. Hanson. Influence of ADAS Element Parameters on Building Seismic Response. J. of Struct. Eng., ASCE, Vol.118, No.7, 1992.
    [20]I.D. Aiken, et al. Comparative Study on Four Passive Energy Dissipation Systems. Bull, N.Z.Nat, Soc. for Earthquake Eng. 25(3), Sept.1992.
    [21]K. Xu and T. Igusa. Dynamic Characteistics of Multiple Sub-structures Under Closely Spaced Frequencies. Earthquake Engrg. and Struct. Dyn., 21, 1992: 1059-1070.
    [22]H. Yamaguchi and N. Harnpornchai. Fundamental Characteristics of Multiple Tuned Mass Dampers for Suppressing Harmonically Forced Oscillations. Earthquake Engrg. and Struct. Dyn., 22, 1993: 51-62.
    [23]A.J. Clark. Multiple passive Tuned Mass Damper for Reducing Earthquake Induced Building Motion. Proc., 9th World Conf. on Earthquake Engrg., Vol.5, 1998: 779-784.
    [24]L.M. Sun. Semi-analytical Modeling of the Tuned Liquid Damper with Emphasis on Damping of Liquid Sloshing. Ph.D. Dissertation, University of Tokyo, Tokyo, Japan, 1991.
    [25]A. Kareem. The Next Generation of Tuned Liquid Dampers. Proc., First World Conf. on Struct. Control, FP5, 1994: 19-28.
    [26]Yu, Jinkyu and D.A. Reed. An Empirically-based Nonlinear Mechanical Model of the Tuned Liquid Damper. Proc., Second Europe and African Conf. on wind Engrg., 1997.
    [27]李桂青,霍达,邹祖军著.结构控制理论及其应用.武汉:武汉工业大学出版社,1991.
    [28]刘季,李慧.液压质量控制系统控制底层柔性结构地震反应的试验研究.地震工程与工程振动,Vol.14,No.2,1994.
    [29]Susumu Otsuka et al. Development and Verification of Active/Passive Mass Damper. First World Conference on structural Control, Los Angeles, California, USA, Aug. 1994: 3-5.
    [30]黄杰民.结构控制技术的应用开发及意义.建筑结构,1997(11).
    [31]顾仲权,马扣根,陈卫东著.振动主动控制. 北京:国防工业出版社,1997.
    
    [32]J.N. Yang, A. Akbarpour, P. Ghaemmaghami. New Optimal Control Algorithms for Structural Control. J. Engrg. Mech., ASCE, 113(EM9), 1987: 1369-1386.
    [33]T.T.Soong. Active Structural Control: Theory and Practice. Longman Scientific and Technical, Essex, England, 1990.
    [34]Mohamed Adbel-Rohman and Horst H. Leipholz. Structural Control by Pole Assignment Method. J. of Engineering Mechanics, Vol.104, 1978.
    [35]Mohamed Adbel-Rohman and Horst H. Leipholz. General Approach to Active Structural Control. J. of Engineering Mechanics, Vol.105, 1979.
    [36]André Preumont. Vibration Control of Active Structures. Kluwer Academic Publishers Dordrecht, Boston, London, 1997.
    [37]Michael George Safonov. Stability and Robustness of Multivariable Feedback Systems. The MIT Press Cambridge, Massachusetts, and London, England, 1980.
    [38]Li-Teh Lu, Wei-Ling Chiang and Jhy-Pyng Tang. LQG/LTR Control Methodology in Active Structural Control. J. Engrg. Mech. ASCE, 124(4), 1998: 446-454.
    [39]J. Suhardjo, B.F. Spencer, Jr. and A. Kareem. Frequency Domain Optimal Control of Wind Excited Buildings. J. Engrg. Mech., ASCE, Vol.118, No.12, 1992: 2463-2481.
    [40]B.F. Spencer, Jr., J. Suhardjo and M.K. Sain. Frequency Domain Optimal Control Strategies for Aseismic Protection. J. Engrg. Mech., ASCE, Vol.120, No.1, 1994: 135-159.
    [41]F. Jabbari, W.E. Schmitendorf and J.N. Yang. H( Control for Seismic-Excited Buildings with Acceleration Feedback. J. Engrg. Mech., ASCE, Vol.21, No.9, 1995: 994-1002.
    [42]I.E. Kose, W.E. Schmitendorf, F. Jabbari and J.N. Yang. H( Active Seismic Response Control Using Static Output Feedback. J. Engrg. Mech., ASCE, Vol.122, No.7, 1996: 651-659.
    [43]K. Nonami, H. Nishimura and H. Tian. H(/( Control-Based Frequency-Shaped Sliding Mode Control for Flexible Structures. Proc. 1st World Conf. on Struct. Control, Los Angeles, California, August, 1994: 110-119.
    [44]J.N. Yang, J.C. Wu and A.K. Agrawal. Sliding Mode Control for Seismically Excited Linear Structures. J. Engrg. Mech., ASCE, Vol.121, No.12, 1995: 1386-1390.
    
    [45]R. Adhikari and H. Yamaguchi. Sliding Mode Control of Gust Response of Tall Buildings. Proc. 2nd Int. Workshop on Struct. Control, HongKong, December, 1996: 11-19.
    [46]M.P. Singh, E. Matheu and C. Beattie. Output-Feedback Sliding Mode Control for Civil Engineering Structures. Proc. 2nd Int. Workshop on Struct. Control, HongKong, December, 1996: 609-620.
    [47]S. Nagarajaiah. Fuzzy Controller for Structures with Hybrid Isolation System. Proc. 1st World Conf. on Struct. Control, Los Angeles, California, August, 1994: TA2:67-76.
    [48]R.S. Subramaniam, A.M. Reinhorn, M.A. Riley and S. Nagarajaiah. Hybrid Control of Structures Using Fuzzy Logic. Microcomputers in Civil Engrg., Vol.11, No.1, 1996: 1-17.
    [49]L. Faravelli and T. Yao. Use of Adaptive Network in Fuzzy Control of Civil Structures. Microcomputers in Civil Engrg., Vol.11, 1996: 67-76.
    [50]P. Venini and Y.K. Wen. Hybrid Vibration Control of MDOF Hysteretic Structures with Neural Networks. Proc. 1st World Conf. on Struct. Control, Los Angeles, California, August, 1994: TA3:53-62.
    [51]J. Ghaboussi and A. Joghataie. Active Control of Structures Using Neural Networks. J. Engrg. Mech., ASCE, Vol.121, No.4, 1995: 555-567.
    [52]D.P. Tomasula, B.F. Spencer, Jr. and M.K. Sain. Nonlinear Structural Control for Limiting Extreme Dynamic Responses. J. Engrg. Mech., ASCE, Vol.122, No.3, 1996: 218-229.
    [53]B.F. Spencer, Jr., T.L. Timlin, M.K. Sain and S.J. Dyke. Series Solution of a Class of Nonlinear Optimal Regulators. J. Opt. Theory and Appl., Vol.91, No.5, 1996: 321-345.
    [54]J.N. Yang, A.K. Agrawal and S. Chen. Optimal Polynomial Control for Seismically Excited Non-linear and Hysteretic Structures. Earthquake Engrg. and Struct. Dyn., Vol.25, No.11, 1996: 1211-1230.
    [55]T. Kobori. Future Direction on Research and Development of Seismic-Response-Controlled Structure. Proc. 1st World Conf. on Struct. Control, Los Angeles, California, August, 1994: Panel: 19-31.
    
    
    
    [56]M. Sakamoto, T. Kobori, T. Yamada and M. Takahashi. Practical Applications of Active and Hybrid Response Control Systems and Their Verifications by Earthquake and Strong Wind Observations. Proc. 1st Word Conf. on Struct. Control, Los Angeles, California, August, 1994: WP2: 90-99.
    [57]B.F. Spencer, Jr. and Michael K. Sain. Controlling Buildings: A New Frontier in Feedback. Special Issue of the IEEE Control Systems Maganize on Emerging Technology, Vol.17, No.6, December, 1997: 19-35.
    [58]H. Cao, A.M. Reinhorn and T.T. Soong. Design of an Active Mass Damper for a Tall TV Tower in Nanjing, China. Engrg. Struct., Vol.19, 1997.
    [59]M.A. Riley, H. Cao, A.M. Reinhorn and T.T. Soong. Design of an Active Mass Damper for a 340m Transmission and Observation Tower. Proc. 8th World Conf. on Wind Engineering. Baltimore, Maryland, June, 1997.
    [60]J.N. Yang and F. Giannopoulos. Active Tendon Control of Structures. Journal of Engineering Mechanics Division, ASCE, 104, 1978: 551-568.
    [61]J. Roorda. Tendon Control in Tall Structures. Journal of Structural Division, ASCE, 101, 1975: 505-521.
    [62]S.J. Dyke, B.F. Spencer, P. Quast, M.K. Sain, D.C. Kaspari and T.T. Soong. Experimental Verification of Acceleration Feedback Control Strategies for a Active Tendon System. Nat. Ctr. For Earthquake Engrg. Res., Rep.NCEER-94-0024, Buffalo, N.Y, 1994.
    [63]Chin-Hsiung Loh, Pay-Yang Lin and Nan-Hau Chung. Experimental Verification of Building Control Using Active Bracing System. Earthquake Engrg. Struct. Dyn. 28, 1999: 1099-1119.
    [64]K. Tanida, Y. Koike, K. Mutaguchi and N. Uno. Development of Hybrid Active-Passive Damper. Active and Passive Damping, ASME, PVP-Vol.211, 1991: 21-26.
    [65]Y. Koike, T. Murata, K. Tanida, T. Kobori, K. Ishii and Y. Takenaka. Development of V-shaped Hybrid Mass Damper and Its Application to High-Rise Buildings. Proc. 1st World Conf. on Struct. Control, Los Angeles, California, August, 1994: FA2: 3-12.
    [66]S. Yamazaki, N. Nagata and H. Abiru. Tuned Active Dampers Installed in the Minato Mirai(MM) 21 Landmark Tower in Yokohama. J. Wind Engrg. and Indust. Aerodyn., Vol.43, 1992: 1937-1948.
    
    [67]S. Ohrui, T. Kobori, M. Sakamoto, N. Koshika, I. Nishimura, K. Sasaki, A. Kondo and I. Fukushima. Development of Astive-Passive Composite Tuned Mass Damper and an Application to the High Rise Building. Proc. 1st World Conf. on Struct. Control, Los Angeles, California, August, 1994: TP1: 100-109.
    [68]S. Otsuka, I. Shimoda, N. Kawai, K. Inaba, M. Kurimoto, K. Yasui and M. Mochimaru. Development and Verification of Active/Passive Mass Damper. Proc. 1st World Conf. on Struct. Control, Los Angeles, California, August, 1994: WP2: 72-79.
    [69]Morimasa Watakabe, Masanobu Tohdo, Osamu Chiba, Nobuyuki Izumi, Hiromichi Ebisawa and Takafumi Fujita. Response Control Performance of a Hybrid Mass Damper Applied to a Tall Building. Earthquake Engrg. Struct. Dyn. Vol.30, 2001: 1655-1676.
    [70]Ichiro Nagashima, Ryota Maseki, Yutaka Asami, Jun Hirai and Hisanori Abiru. Performance of Hybrid Mass Damper System Applied to a 36-Story High-rise Building. Earthquake Engrg. Struct. Dyn., Vol.30, 2001: 1615-1637.
    [71]A.M. Reinhorn and M.A. Riley. Control of Bridge Vibrations with Hybrid Devices. Proc. 1st World Conf. on Struct. Control, Los Angeles, California, August, 1994: TA2: 50-59.
    [72]M.Q. Feng, M. Shinozuka and S. Fujii. Friction-Controllable Sliding Isolation System. J. Engrg. Mech., ASCE, Vol.119, No.9, 1993: 1845-1864.
    [73]J.N. Yang, J.C. Wu, K. Kawashima and S. Unjoh. Hybrid Control of Seismic-Excited Bridge Structures. Earthquake Engrg. and Struct. Dyn. Vol.24, No.11, 1995: 1437-1451.
    [74]阎维明.房屋建筑减震控制理论和试验研究.中国地震工程局力学研究所博士后论文报告,1998.8.
    [75]T. Kobori, M. Takahashi, T. Nasu, N. Niwa and K. Ogasawara. Seismic Response Controlled Structure with Active Variable Stiffness System. Earthquake Engineering and Structural Dynamics, Vol.22, 1993:925-941.
    [76]K. Yamada and T. Kobori. Control Algorithm for Estimating Future Response of Active Variable Stiffness Structure.Earthquake Engineering and Structural Dynamics. Vol.24, 1995:1085-1099.
    [77]T. Kobori. Shaking Table Experiment of Multi-Story Seismic Response Controlled Structure with Active Variable Stiffness (AVS) System. The 8th Japan Earthquake Engineering Simposium, Dec. 1990.
    
    [78]Motoichi Takahashi, Takuji Kobori, Tadashi Nasu, Naoki Niwa and Narito Kurata. Active Response Control of Buildings for Large Earthquake-Seismic Response Control System with Variable Structural Characteristics. Smart Mater. Struct. 7, 1998: 522-529.
    [79]T. Nasu, T. Kobori, M. Takahashi and A. Kunisue. Analytical Study on Applying the Active variable Stiffness System to a High-rise Building. Journal of Structural Engineering, 41B, March 1995:33-39.
    [80]T. Nasu, T. Kobori, M. Takahashi and A. Kunisue. Analytical Study on the Active Variable Stiffness System Applied to a High-rise Building Subjected to the Records in Osaka Plain during the 1995 Hyogo-ken Nanbu Earthquake. Journalof Structural Engineering, 428, 1996: 1-8.
    [81]刘季,李敏霞.变刚度半主动结构振动控制.振动工程学报,Vol.12, No.2, 1999: 166-172.
    [82]李敏霞,欧进萍.足尺变刚度控制系统性能试验与计算模型.地震工程与工程振动,Vol.20, No.4, 2000: 96-100.
    [83]阎维明,谭平.多自由度主动变刚度控制体系的振型控制.地震工程与工程振动, Vol.19, No.1, 1999: 120-126.
    [84]何玉敖,冯德平.主动变刚度结构体系(AVS)多模态优化控制研究.建筑结构学报, Vol.21, No.3, 2000: 53-59.
    [85]冯德平.继电型半主动结构控制体系理论与试验研究.天津大学博士学位论文, Dec. 2000.
    [86]Q. Feng and M. Shinozuka. Use of a Variable Damper for Hybrid Control of Bridge Response Under Earthquake. Proc. U.S. National Workshop on Structural Control Research, USC Publication NO. CE-9013,1990.
    [87]T. Kobori, M. Takahashi, T. Nasu, N. Niwa and K. Ogasawara. Seismic Response Controlled Structure with Active Variable Stiffness System. Earthquake Engrg. and Struct. Dyn., Vol.22, 1993: 925-941.
    [88]S. Kamagata and T. Kobori. Autonomous adaptive Control of Active Variable Stiffness System for Seismic Ground Motion. Proc. 1st World Conf. on Struct. Control, Los Angeles, California, August, 1994: TA4:33-42.
    [89]M.D. Symans and M.C. Constantinou. Semi-Active Control of Earthquake Induced Vibration. 11th World Conference on Earthquake Engineering, 1996, Paper NO. 95.
    
    [90]M.D. Symans and M.C. Constantinou. Development and Experiment Study of Semi-Active Fluid Damping Devices for Seismic Protection of Structures. Report NO. NCEER 95-0011, National Center for Earthquake Engineering Research, Buffalo, NY, 1995.
    [91]Z. Akbay and H.M. Aktan. Intelligent Energy Dissipation Devices. Proc. Fourth U.S. National Conf. on Earthquake Engrg., Vol.3, No.4, 1990:427-435.
    [92]Z. Akbay and H.M. Aktan. Actively Regulated Friction Slip Devices. Proc. 6th Canadian Conf. on Earthquake Engrg., 1991: 367-374.
    [93]S. Kannan, H.M. Uras and H.M. Aktan. Active Control of Building Seismic Response by Energy Dissipation. Earthquake Engrg. and Struct. Dyn., Vol.24, No.5, 1995: 747-759.
    [94]瞿伟廉,陈朝晖,徐幼麟.被动及半主动摩擦阻尼器对合肥翡翠电视塔地震发应的控制.地震工程与工程振动, Vol.20, No.2, Jun., 2000: 101-106.
    [95]瞿伟廉,陈朝晖,徐幼麟.压电材料智能摩擦阻尼器对高耸钢塔结构风振反应的半主动控制.地震工程与工程振动, Vol.20, No.1, Mar., 2000: 94-99.
    [96]N. Kurata, T. Kobori, M. Takahashi, N. Niwa and H. Kurino. Shaking Tabel Experiment of Active Variable Damping System. Proc. 1st World Conf. on Structural Control, Vol.2, TP2, 1994: 108-117.
    [97]N. Kurata, T. Kobori, M. Takahashi and N. Niwa. Active Variable Damping System in Large Earthquakes. Proc. 3rd Int. Conf. on Motion and Vibrational Control, Vol.3, 1996: 285-290.
    [98]N. Kurata, T. Kobori, M. Takahashi, N. Niwa and H. Midorikawa. Actual Seismic Response Controlled Building with Semi-active Damper System. Earthquake Engrg. Struct. Dyn., 28, 1999: 1427-1447.
    [99]D. Hrovat, P. Barak and M. Rabins. Semi-Active Versus Passive or Active Tuned Mass Dampers for Structural Control. J. of Engineering Mechanics, ASCE, 109, NO.3, 1983.
    [100]J.M. Kelly, K. Hasegawa. Application of a Mass Damping System to Bridge Structures. Report NO. UCB/EERC 92/12, Earthquake Engineering Research Center, Berkeley, CA, 1992.
    
    
    [101]Lou TYK, Lutes LD, Li JJ. Active Tuned Liquid Damper for Structural Control. Proceedings of First World Conference on Structural Control, Los Angeles, CA, 1994:TP1: 70-79.
    [102]F. Gordaninejad, A. Ray and R. Bindu. Vibration Control of Structures Using Hybrid ER/Viscous Fluid Dampers, First World Conference on Structural and Control. Los Angeles, California, USA, August, 1994: 3-5.
    [103]W.M. Winslow. Method and Means for Translating Electrical Impulses into Mechanical Forces. US Patent No.2, 417,850, 1947.
    [104]W.M. Winslow. Induced Fibration of Suspensions. J. Applied Physics, Vol.20, 1949: 1137-1140.
    [105]欧进萍,关新春.可控流体减振驱动器的研究与应用.第一届全国结构控制会议论文集,承德,1998:179-190.
    [106]许素娟,王彪.电流变体作用机理的研究.材料导报,Vol.12,No.6,1998: 6-8.
    [107]周云,徐龙河,李忠献.智能流体减震控制技术的研究与应用.世界地震工程,Vol.15,No.4,1999: 10-19.
    [108]J. Rabinow. The Magnetic Fluid Clutch. AIEE Transactions, Vol.67, 1948: 1308-1315.
    [109]J.D. Carlson. The Promise of Controllable Fluids. Proc. of Actuator 94 (H. Borgmann and K. Lenz, eds.), AXON Technologie Consult GmbH, 1994:266-270.
    [110]J.D. Carlson and K.D. Weiss. A Growing Attraction to Magnetic Fluids. Machine Design, August, 1994: 61-64.
    [111]N. Markris, S.A. Burton, D. Hill and M. Jordan. Analysis and Design of ER Damper for Seismic Protection of Structures. Journal of Engineering Mechanics, ASCE, Vol.122, NO.10, 1996: 1003-1011.
    [112]N. Markris, S.A. Burton, D. Hill and M. Jordan. An Electrorheological Damper with Annular Duct. Proceedings of Structures Congress XIV,Chicago, IL, 1996:1197-1204.
    [113]杨大智主编.智能材料与智能系统.天津:天津大学出版社,2000.12.
    [114]B.F. Spencer, Jr., S.J. Dyke, M.K. Sain and J.D. Carlson. Phenomenological Model of a Magnetorheological Damper. J. Engrg. Mech., ASCE, Vol.123, No.3, 1997: 230-238.
    
    
    
    [115]J.D. Carlson and B.F. Spencer, Jr.. Magneto-rheological Fluid Dampers for Semi-Active Seismic Control. Proc. 3rd Int. Conf. on Motion and Vib. Control, China, Japan, Vol.III, 1996: 35-40.
    [116]B.F. Spencer, Jr., J.D. Carlson, M.K. Sain and G. Yang. On the Current Status of Magnetorheological Dampers: Seismic Protection of Full-Scale Structures. Proc. American Control Conf., Albuquerque, New Mexico, 1997: 458-462.
    [117]S.J. Dyke, B.F. Spencer, Jr., M.K. Sain and J.D. Carlson. Seismic Response Reduction using Magnetorheological Dampers. Proc. IFAC World Congress, San Francisco, CA, June 30-July 5, 1996.
    [118]S.J. Dyke, B.F. Spencer, Jr., M.K. Sain and J.D. Carlson. Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction. Smart Mat. and Struct., Vol.5, 1996: 565-575.
    [119]S.J. Dyke, B.F. Spencer, Jr., M.K. Sain and J.D. Carlson. Experimental Verification of Semi-active Structural Control Strategies Using Acceleration Feedback. Proc. 3rd Int. Conf. on Motion and Vib. Control, China, Japan, Vol.III, 1996: 291-296.
    [120]F. Yi, S.J. Dyke, S. Frech and J.D. Carlson. Investigation of Magnetorheological Dampers for Seismic Response Control. Proceedings of the Second World Conference on Structural Control, Kyoto, JAPAN, June 29-July 2,1998.
    [121]欧进萍,关新春.磁流变耗能器性能的试验研究.地震工程与工程振动, Vol.19, No.4, 1999: 76-81.
    [122]关新春.磁流变液及其智能结构减振驱动器的理论与试验研究.哈尔滨建筑大学工学博士学位论文,2000.5.
    [123]吴林林.磁流变阻尼器的构造设计与性能试验.天津大学硕士学位论文,2002.11.
    [124]Zhong-Xian LI,Long-He XU. Experimental Study on MR Damper for Semi-Active Vibration Control of Civil Infrastructures. Submitted to Transaction of Tianjin University.
    [125]《机械设计手册》联合编写组.机械设计手册.北京:化学工业出版社,1987.
    [126]邹继斌,刘宝廷,崔淑梅,郑萍编.磁路与磁场.黑龙江:哈尔滨工业大学出版社,1998.1.
    
    
    [127]R. Stanway, J.L. Sproston, and N. G. Stevens. Non-linear Modelling of an Electro-rheological Vibration Damper. J. Electrostatics, Vol. 20, 1987: 167-184.
    [128]Y.-K. Wen. Method for Random Vibration of Hysteretic Systems. J. of Engrg. Mech., ASCE, 102(2), 1976: 249-263.
    [129]Y.-K. Wen. Equivalent Linearization for Hysteretic Systems Under Random Excitations. J. Appl. Mech., Trans. ASME, 47(1), 1980: 150-154.
    [130]Zhong-Xian LI, Long-He XU. Performance Experiment and Hysteresis Model of MRF-04K Damper. Submitted to Journal of Structural Engineering, ASCE.
    [131]周云,徐龙河,李忠献. 磁流体阻尼器半主动控制结构的地震反应分析. 土木工程学报,Vol.34, No.5,2001: 10-14.
    [132]周云,徐龙河,李忠献. 两结构联系体系MRFD 半主动控制系统优化设计.振动与冲击,Vol.20, No.4, 2001: 29-32.
    [133]L.H. Xu, Z.X. Li and Y. Zhou. Optimum and Simulation of Semi-active Control System Based on MRFD. Earthquake Engineering Frontiers in the New Millennium, Oct., 2001: 317-320.
    [134]徐龙河.基于磁流变流体阻尼器(MRFD)的半主动结构控制理论的研究.天津大学硕士学位论文,2000.7.
    [135]宋雅桐,朱继澄著.结构分析程序设计. 南京:东南大学出版社, 1990.
    [136]陈国兴.结构主动减震控制研究进展.现代土木工程的新发展,1998:199-206.
    [137]Michael George Safonov. Stability and Robustness of Multivariable Feedback Systems. The MIT Press Cambridge, Massachusetts, and London, England, 1980.
    [138]Yang JN, Wu JC, Agrawal AK. Sliding Mode Control for Seismically Excited Linear Structures. Journal of Engineering Mechanics, ASCE, 121(12), 1995: 1386-1390.
    [139]J.M. Kelly. Base Isolation: Linear Theory and Design. Earthquake Spectra. Vol.6, No.2, 1990.
    [140]杨佑发,周福霖.隔震结构地震反应分析的实用计算方法.世界地震工程,Vol.16,No.1,2000: 72-76.
    [141]J.M. Kelly, G. Leitmann and A.G. Soldatos. Robust Control of Base-Isolated Structures under Earthquake Excitation. J. of Optimization Theory and Applications, 53, 1987: 159-180.
    
    [142]E.A. Johnson, J.C. Ramallo, B.F. Spencer, Jr. and M.K. Sain. Intelligent Base Isolation Systems. Proceedings of the Second World Conference on Structural Control, Kyoto, JAPAN, June 29-July 2, 1998: 367-376
    [143]Edited by T.T. Soong and M.C. Costantinou. Passive and Active Structural Vibration Control in Civil Engineering. International Centre for Mechanical Sciences, CISM Courses and Lectures-No.345,Springer Verlag Wien-New York, 1994.
    [144]刘习军,贾启芬,张文德编著.工程振动与测试技术.天津:天津大学出版社,1999.
    [145]陈海泉,李忠献,李延涛.应用形状记忆合金的高层建筑结构智能隔震.天津大学学报,Vol.35,No.6,2002: 761-765.
    [146]陈海泉,刘建涛,李忠献.应用形状记忆合金的桥梁结构振动控制研究及发展.世界地震工程,Vol.18,No.2,2002: 85-93.
    [147]李忠献,陈海泉.应用SMA复合橡胶支座的桥梁隔震.地震工程与工程振动,Vol.22,No.2,2002:143-148.
    [148]LI Zhong-Xian. Complete-Feedback Control for Tall Buildings Under Earthquake Excitations by Active Tuned Mass Damper (A-TMD). Proceedings of 2nd World Conference on Structural Control, Kyoto, Japan, June, 1998.
    [149]李忠献,张伟.高层建筑地震反应全反馈主动TMD控制理论研究. 地震工程与工程振动,Vol.17,No.3,1997:60-65.
    [150]李忠献.阻尼控制下高层建筑模态分析及试验研究.工程力学,Vol.12,No.3,1995:107-114.
    [151]李忠献,徐守泽.高层建筑水平地震反应阻尼器控制理论与试验研究. 地震工程与工程振动,Vol.14,No.3,1994:97-104.
    [152]李忠献,何玉敖.高层建筑地震反应的优化阻尼器控制.建筑结构学报,Vol.15,No.4,1994:53-61.
    [153]何玉敖,李忠献.电视塔结构地震反应最优控制. 建筑结构学报,Vol.11,No.4,1990:2-11.
    [154]李忠献,王森林.高层建筑地震反应最优多重TLD控制. 地震工程与工程振动,Vol.16,No.4,1996:68-77.
    [155]LI Zhong-Xian. Optimal Control for Tall Buildings Under Earthquake Excitations by Multiple Tuned Liquid Dampers(MTLDs), Proceedings of 12th Engineering Mechanics Conference, ASCE, San Diego, USA, May, 1998:245-248.
    [156]中华人民共和国国家标准.建筑抗震设计规范GB50011-2001.北京:中国建筑工业出版社,2001.10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700