裂缝地层提高承压能力钻井液堵漏技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
裂缝-孔隙发育地层,承压能力低,安全密度窗口很窄,导致井下容易出现井漏、溢流、井喷、坍塌等情况。怎样提高地层承压能力是本文研究的方向。
     本文首先研究了地层承压能力低的原因,发现了地层承压能力低与地层致漏裂缝和微裂缝发育有关。研究得出了裂缝开度在150微米以上就会产生漏失,漏失速度受裂缝开度、裂缝深度、裂缝宽度、压差、钻井流体排量、钻井流体粘度等因素影响。研究还发现裂缝的扩延与否取决于缝内流体压力。
     研究提出了提高地层承压能力的原理,一是堵漏浆必须对地层致漏裂缝进行有效的封堵,阻止其漏失并制止进一步扩大;二是堵漏浆必须及时有效的消除非致漏裂缝诱导作用,阻止非致漏裂缝诱导扩延而产生漏失。
     为此,本文提出了封缝即堵的钻井液堵漏技术,其机理为封堵剂在漏失量很少,很短时间内,在裂缝中架桥、填充,形成低渗透率、高强度的填塞层。由于填塞层的形成,钻井液从壁面渗滤出去而不能完全补充,裂缝诱导作用消失,裂缝不再被诱导扩延;填塞层能够承受井内流体压力、地层流体压力和缝面岩石闭合应力作用而不被破坏。根据机理优选了适合于封缝即堵技术的特殊的堵漏材料刚性颗粒封堵剂,此堵漏材料为惰性、高强度、颗粒状物质。
     通过室内实验,研究了刚性颗粒提高地层承压能力的效果。实验发现了一定量的刚性颗粒能够在很短时间内、很少漏失量的条件下,在地层模拟裂缝中形成渗透率很低的填塞层,且形成的填塞层能够承受5MPa以上的压力。从而验证了刚性颗粒能够实现封缝即堵,提高地层承压能力的要求。室内实验还验证了刚性颗粒抗高温、能酸溶、不与钻井液和地层流体反应,对钻井流体性能和录井等无较大的影响。
     在机理研究和室内实验研究的基础上提出了随钻封缝即堵技术、停钻封缝即堵技术的配方现场施工工艺,并在塔里木油田迪那地区、克拉玛依油田进行了多井次的现场试验。试验结果表明:使用随钻封缝即堵技术能提高地层承压能力,其实验井相比于邻井相同层位漏失量减少73.6%,漏失次数减少67%,停钻封缝即堵技术能提高实验井当量密度0.1g/cm3以上。
     在试验过程中完善了试验配方和工艺,形成一套完整的、可行的、有效的提高低承压地层承压能力的封缝即堵技术,为实现低承压地层安全、快速、高效钻进这一重大目标提供了理论支持和技术手段。
The formation with fracture and pore have low resistance capacity and the narrow safety window of the drilling fluid density, which will make the complex situation of mud loss, overflow, blowout, and borehole collapse happen during the drilling. So how to enhance the resistance capacity of the formation is the purpose of this paper.
     This paper firstly analyzed the cause of low resistance capacity and found the key factor was the development of the leaking-fracture and micro-fracture in the formation. It come to the conclusion that when the wideness of fracture was more than 150 micro-meter, the leakage began to happen and the rate of mud loss was affected by the depth and wideness of fracture, operating pressure, the delivery volume, the viscosity of the drilling fluid and so on. It also come to the conclusion that whether the unleaking-fracture leakoff or not was dicided by the minimum principal stress.
     The theory of enhancing resistance capacity was advanced in this study. Firstly, the leak-fracture must be plugged effectively to stop loss and prevent the fracture being enlarged. Secondly, the loss control materials must eliminate timely and effectively the induction forse of the unleak-fracture and prevent the unleak-fracture enlarged and leakoff.
     Wherefore, this paper puts forward the technology of plugging fracture immediately. Its theory was that the fracture was bridged and filled up by the blockingagent and forming a layer in the fracture with low permeability and high intensity at short time and very small loss. The drilling fluid filtered out through the borehole wall not being completely supplied so as to make the induction forse in the fracture vanish with the result that the fracture was never enlarged any more.
     The blinding layer could resisted the drilling fluid pressure, the borehole pressure and the closure stress of the rock in fracture surface. According to the mechanism,the rigid particle, a kind of special inert intensive irregular granular material,was optimized suitable for the technology of plugging fracture immediately.
     The performance of rigid particles in enhancing the resistance capacity of formation was investigated by laboratory tests. It was found that a layer of low permeability could be form in model fracture using the rigid particlse with low loss and very short time, and the layer was able to bear a pressure of 5MPa or even higher. Therefore experiments showed that the rigid particles could exactly meet the requirement of plugging fracture immediately and improved the resistance capacity of formation. It was also confirmed that the rigid particles'resistance capacity had little influence by temperature, dissolved by acid, and not react with formation fluids or drilling fluids, and its have little influence on drilling mud and the well logging.
     On the basis of the mechanism research and experiments in laboratory, it is put forward that the plugging while drilling technology and the sealing loss on stop drilling technology, and it was tested for many times in DiNa area of Tarim oilfield and Kelamayi oilfield.The results showed that compared to adjacent wells, the loss volume was reduced by 73.6% and the number of leakage was reduced by 67% happening in the same layer in experimental wells where the technology of drilling and plugging fracture immediately was applied. With the sealing loss of stopping drilling, the equivalent circulating density of experimental wells could be improved by 0.1/cm3 or higher.
     It had formed the plugging fracture technology while drilling using rigid particles added to all the recycling process of mud, the drilling-in slugging technology of preventing and controlling loss, the technology of controlling loss after stopping drilling and the technology of controlling loss before well being cemented.
     In all, A feasible and effective technology, called enhance resistance capacity immediately, which formed by research、experiment and so on, provided us a theory and tool to achieve a major purpose of the safe, rapid and efficient drilling at the formation of low resistance capacity.
引文
[1]徐同台,刘玉杰,申威,等。钻井工程防漏堵漏技术[M]。石油工业出版社,1997:91~97。
    [2]黄寒静。国内外钻井堵漏发展现状[J]。科协论坛,2009,(02):4-5。
    [3]张希文,李爽,张洁,等。钻井液堵漏材料及防漏堵漏技术研究进展[J]。钻井液与完井液,2009,26(06):74-76。
    [4]张洪利,郭艳,王志龙。国内钻井堵漏材料现状[J]。特种油气藏,2004,11(2):1-2。
    [5]林英松,蒋金宝,秦涛。井漏处理技术的研究及发展[J]。断块油气田,2005,12(2):4-7。
    [6]吕开河。钻井工程中井漏预防与堵漏技术研究与应用[D]。中国石油大学(北京),2007:1-2。
    [7]张旭,夏宏南,彭美强,等。准噶尔盆地低压地层提高承压能力研究[J].断块油气田,2006,13(5):1-3.
    [8]张静,夏宏南,冯专,等。川东鄂西地区提高地层承压能力技术研究[J].断块油气田,2007,14(6):1-2.
    [9]鄢捷年.钻井液工艺学[M].石油大学出版社,2000,143-167。
    [10]Donald L. Whitfill, Terry Hemphill. All Lost-Circulation Material and Systems Are Not Created Equal [C].SPE 84319,2003.
    [11]Zhang, G. X., Sugiura, Y., Saito,K. Failure simulation of foundation by many fold method and comparison with experiment[J]. Journal of Applied Mechanics (JSCE), 1998(1):427-436·
    [12]Guo xin Zhang, Yasuhito Sugiura, Hiroo Hasegawa. Crackpropragation by manifold and boundary ele-mentmethod [C]. proceedings of Third International Conference on Analysis of Discontinuous Deformation (ICADD-3),Colorado,USA,1999:273-282
    [13]杨新斌。太床英台地区防漏堵漏技术研究[M]。大庆石油学院工程硕士专业学位论文。2003:1-2
    [14]王书琪,唐继平,张斌等.塔里木山前构造带高密度钻井液堵漏技术[J].钻井液与完井液,2006,23(01):76~77。
    [15]伍贤柱.川渝气田深井和超深井钻井技术[J].天然气工业,2008,28(04):9-13。
    [16]狄丽丽。超强吸水树脂堵漏技术研究[D]。西南石油大学硕士论文。2007年。
    [17]梁利喜。深部应力场系统评价与油气井井壁稳定性分析研究[D]。成都理工大学,2008。
    [18]陈勉,金衍,张方清。石油工程岩石力学[M]。科学出版社,2008,110-114。
    [19]郑贵。井壁稳定问题的断裂损伤力学机理的研究[D]。哈尔滨工程大学,2005。
    [20]王业众,康毅力等.裂缝性储层漏失机理及控制技术进展[J].钻井液与完井液, 2007年,04期
    [21]胥永杰.高陡构造地应力提取方法与井漏控制机理研究[D].西南石油学院,2005
    [22]刘德胜,申威,苑旭波,等。TABNAK气田严重漏失气层随钻堵漏钻井液技术[J]。钻井液与完井液,2004,21(5):22~26。
    [23]戴军华,钟水清,熊继有。暂堵压裂技术在坪北油田的研究应用[J]。钻采工艺,2006,29(06):67-69。
    [24]熊继友,程冲.随钻防漏堵漏技术的研究与应用进展[J].钻采工艺,2007年,02期
    [25][王在明,邱正松,徐家放,等。复合堵漏中平衡区域及其在新型堵漏仪中的应用[J]。石油学报。2008,28(1):143-145。
    [26]王贵,蒲晓林高。提地层承压能力的钻井液堵漏作用机理[J]。石油学报。2010,31(6):1009-1012。
    [27]陈建平,张道成。塔河油田S105井承压堵漏技术[J]。钻采工艺,2004,27(3):101-104。
    [28]王燕,王平全,熊继有,等。物理法随钻防漏堵漏技术与钻井液研究现状[J]。断块油气藏。2008,15(1):93-94。
    [29]邹建龙,屈建省,吕光明,等。纤维水泥堵漏性能评价研究[J]。钻井液与完井液。2007,24(2):42-44。
    [30]屈东升,曾尚华。严重漏失无返型井漏的分析与治理[J]。钻采工艺,2001,24(4):18-20。
    [31]张成金,冷永红,李美平,等。聚丙烯纤维水泥浆体系防漏增韧性能研究与应用[J]。天然气工业,28(1):91-92。
    [32]亿。井下聚合堵漏技术研究[D]。西南石油大学,2010。
    [33]Larry, Dwyann Dalrymple,Reddy B.R.. Developmentof a Hydrophobically Modified Water-Soluble Polymeras a Selective Bullhead System for Water-Production Problems[C]. SPE80206,2003
    [34][34] FreddyMata, ManuelVelga. Crosslinked cements solvelost circulation problems[C]. SPE90496,200
    [35]李旭东,郭建华,王依建,等。凝胶承压堵漏技术在普光地区的应用[J]。钻井液与完井液,2008,25(01):53-56。
    [36]张歧安,先国,董维,等。延迟膨胀颗粒堵漏剂的研究与应用[J]。钻井液与完井液,2006,23(2):21-24。
    [37]聂勋勇,王平全,张新民。聚合物凝胶堵漏技术研究进展[J]。钻井液与完井液,2007,24(01):82-84。
    [38]孙金声。水基钻井液成膜技术研究[D]。西南石油大学,2006。
    [39]孙金声,唐继平,张斌,等。超低渗透钻井液完井液技术研究[J]。钻井液与完 井液,2005,22(1):1-5。
    [40]吕开河,邱正松,宋元森。保护油层自适应随钻堵漏钻井液技术研究[J]。应用基础与工程科学学报,2009,17(5):683-688
    [41]李辉,肖红章,何涛,张睿达,何刚.高密度钻井液随钻堵漏技术研究[J].钻井液与完井液,2006,(02):73~76。
    [42]张桂英。提高地层承压能力堵漏技术研究[D]。西南石油大学,2010:6-7。
    [43]蒋海军,鄢捷年等.储层裂缝有效宽度模型探讨[J].钻井液与完井液,2000年,02期
    [44]蔡利山,苏长明,刘金华。易漏地层承压能力分析[J]。石油学报,2010,31(2):311-317。
    [45]Ron Sweatman, Hong Wang, Harry Xenakis. Wellbore stabilization increases fracture gradient and controls losses/flows during drilling [C].SPE88701,2004.
    [46]周文,邓虎成,单钰铭,等。断裂(裂缝)面的开启及闭合压力实验研究[J]。石油学报,2008,29(2):277-283。
    [47]Jae H.Song, Juan C.Rojas. Preventing mud losses by wellbore strengthening [C]. SPE101593,2006.
    [48]李家学,黄进军,罗平亚,等。随钻防漏堵漏技术研究[J]。钻井液与完井液,2008,25(3):25-28。
    [49]黄进军,罗平亚,李家学,等。提高地层承压能力技术[J]。钻井液与完井液,2009,26(3):60~71。
    [50]Morita N., Black A.D. & Fuh G.F.. Theory of Lost Circulation[C]. SPE20409,1990
    [51]刘向君.岩石力学与石油工程[M].石油工业出版社,2004
    [52]张斌。山前构造复杂地层井漏控制技术[D]。西南石油大学,2010。
    [53]吉德利等著.蒋闻等译.水力压裂技术新发展[M].北京:石油工业出版社1995.252-894
    [54]Poulsen,D.K.A Comprehensive Theoretical Treatment of Fracturing Fluid Loss.[C] SPE18562,1988.
    [55]高尔夫-拉特。裂缝油藏工程基础[M]。石油工业出版社,1998,1-20。
    [56]文世鹏,李德同。储层裂缝数值模拟技术[J]。石油大学学报(自然科学版),1996,20(5):17-24。
    [57]曾海蓉,宋慧珍。碳酸盐岩储层裂缝预测系统研究及应用[J]。岩石力学与工程学报,2000,19(增):1037-1041。
    [58]黄辅琼,宋慧珍,曾海蓉,等。储层构造裂缝定量预测方法研究[J]。地震地质,1999,21(3):261-267。
    [59]刘洪,胡永全,赵金州,等。重复压裂气井诱导应力场模拟研究[J]。岩石力学与工程学报,2004,23(23):4022-4027。
    [60][60]练章华,康毅力,徐进,等。裂缝宽度预测的有限元模拟[J]。天然气工业,2001,21(3):47-50。
    [61]Ashby M F, Hallam S D.. The Failure of Brittle Solids Containing small cracks under Compressive stress states[J]. Acta Metal.1986,34(3):497~510
    [62]Horii H, Nemat-Nasser S. Compression-induced Microcrack Grouth in Brittle Solids:Axial Splitting and shear Failure[M]. J.Geophy. Res.,1985,90(B):3105~3125
    [63]易顺民.裂隙岩体损伤力学导论[M].科学出版社,2005:26-27
    [64]J.G.Williams. Fraeutre Meehanics of Polymers [J]. Ellis Ho wrood, Chiehester,1984
    [65]李贺,尹关志,许江,等。岩石断裂力学[M]。重庆大学出版社,1989。
    [66]张行。断裂力学中应力强度因子的解法[M]。国防工业出版社,1989。
    [67]王自强,陈少华。高等断裂力学[M]。科学初版社,2009。
    [68]唐辉明,晏同珍。岩体断裂理论与工程应用[M]。中国地质大学初版社,1992。
    [69]Dyke, C.G, Bailin Wu & David Milton-Tayler. Advances in Characterising Natural Fracture Permeability From Mud Log Data[C]. SPE25002,1992
    [70]Olivier Lietard, Tessa Unwin, Dominique Guillot and Mike Hodder. Fracture Width LWD and Drilling Mud/LCM Seletiong Guidelines[C]. SPE36832,1996
    [71]Sanfillippo, F.Brignoli.M. & Santarelli, F.J.Agip S.P.A & Bezzola, Characterization of Conductive Fractures While Drilling[C]. SPE38177,1997
    [72]Distart, etc. Non-Newtonian Flow in a Variable Aperture Fracrue[J]. Transport in Porous Media,1998
    [73]Giin-Fa Fuh, etc. A New Approach to Preventing Lost Circulation While Drilling[C]. SPE24599,1992
    [74]Giin-Fa Fuh, etc. Further Development, Field Testing, and Application of the Wellbore Strengthening Technique for Drilling Operations[C]. SPE103256,2006
    [75]Gangi A F. Variation of Whole and Fractured Porous Rock Permeability With Confining Pressure[J]. Int. J. RockMech. Min. Sci. Geomech Abstr.,1978,15,249.
    [76]Gale J E, Rouleau A. Witherspoon P A. Hydrogeologic characteristics of a fractured granite[C]. AWRC Conference Groundwater in Fractured Rock. Canberra,1982
    [77]Swan G. Determination of stiffness and other joint properties from roughness measurements [J]. Rock Mechanics and Rock Engineering,1983
    [78]Louis C. Rock hydraulics[C]. Muller L. Rock mechanics,1974:299-387
    [79]Wan L, Hu F S, Tian K M. Three-section water pressuretest [J]. Earth Science, 1995
    [80]Glen E.Loeppke, David A.Glowka & Elton K.Wright. Design and Evaluation of Lost-Circulation Materials for Severe Environments [J]. JPT, March,1990
    [81]Sanad M E, BP-Gupco, Arshad Waheed, Halliburton. An effective means to control lost circulation in flowing HPHT Wells-Case History from EastMed Sea Area[C]. SPE81413,2003
    [82]唐红侠,周志芳,王文远.水劈裂过程中岩体渗透性规律及机理分析[M].岩土力学,2004,25(8):1320-1322。
    [83]仵彦卿,张倬元.岩体水力学导论[M].西南交通大学出版社,1995
    [84]Louis C. Rock hydraulics (edited by muller L) [M].1974:299-387
    [85]杜春常,刘文忠。裂缝性地层漏失规律研究[J]。西南石油学院报,1992,14(8):27-34。
    [86]D.K.Poulsen, Halliburton Service.A Comprehensive Theoretical Treatment of Fracturing Fluid Loss[C],SPE18262.
    [87]唐红侠,周志芳,王文远.水劈裂过程中岩体渗透性规律及机理分析[M].岩土力学,2004,25(8):1320~1322
    [88]张金波,鄢捷年。高温高压钻井液密度预测新模型的建立[J]。钻井液与完井液,2006,23(5):1-3。
    [89]鄢捷年,李元。预测高温高压下泥浆密度的数学模型[J]。石油钻采工艺,1990,12(5):27-34。
    [90]初迎利,张丽囡,张洪大,等。水力定向最优水力参数的确定方法[J]。石油钻采工艺,1995,17(3):16-21。
    [91]吴允。水力参数的优化设计和计算[J]。钻采工艺,1997,20(2):10-12。
    [92]M.S.Aston, M.W.Alberty, M.R.Mclean, et al. Drilling fluids for wellbore strengthening[C]. SPE87130,2004.
    [93]Mark W. Alberty, Micheal R. Mclean.A physical model for stress cages[C].SPE90493,2004.
    [94]Medhat Sanad, Carl Butler, Arshad Waheed, Ron Sweat-man. A new treatment Increases the fracture gradient tocure lost circulation and control a flowing HPHT Well in the East Mediterranean Sea[C]. SPE84318,2003
    [95]Giin-Fa Fuh, Dave Beard more. Further Development, Field Testing, and Application of the Well-bore Strengthening Technique for Drilling Operations [C]. SPE/IADC 105809,2006.
    [96]Fred E. Duprist. Fracture closure stress (FCS) and lost returns practices[C].SPE/IADC92192,2005.
    [97]Giin Fa Fah, Dave Beardmore. Further development, field testing, and the application of the wellbore strengthening technique for drilling operations [C]. SPE/IADC 105809,2007.
    [98]Bernt S.Aadnoy, Mesfin Belayneh, Miguel Arriado, Roar Flateboe, Design of Well Barriers To Combat Circulation Losses[C].SPE 105449,2006
    [99]Santos Helio-No-Damage Drilling:How to Achiave This ChallengingGoa?[C] IADC/SPE 77189,2002.
    [100]Morita,N., Conoco Inc., Black.A.D.. Theory of Lost Circulation Pressure[C]. SPE20409,1990
    [101]黄立新,张光明.固相颗粒封堵孔隙喉道的机理研究[J].江汉石油学报,1996,21(2):41-43
    [102]蒂齐亚·曼诺尼.“大理石”一词的定义和历史背景[J].世界建筑,2002,(03)
    [103]朱继存,朱光,宋传中.我国天然碳酸盐类大理石资源初探[J].石材,2001,(06)
    [104]廖喜林.方解石矿床及工业利用[J].矿产与地质,1999,(01)
    [105]黄文竞.高应力条件下天然石英砂的颗粒破碎机理[J].中国水运(学术版),2007,(05)
    [106]刘建国,姜秀民,王辉,崔志刚,韩向新.石英砂热形态和表面微观结构[J].化工学报,2007,(03)
    [107]孟召平,李明生,陆鹏庆等.深部温度、压力条件及其对砂岩力学性质的影响[J].岩石力学与工程学报,2006,25(6):1178-1181
    [108]向幼策.袖珍仿真堵漏试验装置[J].钻采工艺,1995,110.
    [109]胡三清.JLX—2动态堵漏试验仪的研制[J].石油机械,2000,28(6):13-14.
    [110]王德玉,施太和,卢熙坦.DL-1型堵漏实验装置的研制设计西南石油学院学报[J].1997,19(2):51-54.
    [111]王桂华,徐同台,井壁稳定地质力学分析[J].钻采工艺.2005,28(2):7-10
    [112]吴应凯,石晓兵,陈平,聂荣国,李黔,刘保安,吴晓明,滕国权.低压易漏地层防漏堵漏机理探讨及现场应用[J].天然气工业,2004,(03):35-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700