提高地层承压能力的钻井液封堵理论与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高地层承压能力的钻井液技术是扩展窄安全密度窗口钻井液技术的重要内容。通过钻井液防漏堵漏技术手段来提高地层的承压能力,提高钻井液密度的安全使用上限,从而保证在窄(或负)安全密度窗口条件下的安全钻进,是油气勘探开发钻井的重要需求。
     论文以易漏失地层的承压能力特征研究为切入点,系统地研究提高地层承压能力的基础理论,开展提高地层承压能力的室内模拟实验和数值模拟研究,进而研究提高地层承压能力的钻井液设计理论与方法。
     首先,根据易漏失地层特征,将易漏失地层分为薄弱易破地层和致漏裂缝型地层两大类,分别研究了两类地层承压能力低的工程表现,并分析了影响地层承压能力的内因和外因,系统地揭示了提高地层承压能力的技术实质,包括提高薄弱易破地层的破裂压力及重建裂缝漏失地层的新“破裂压力”两方面。
     基于岩石力学和断裂力学理论,研究了提高薄弱地层破裂压力的力学机理。结合薄弱易漏地层水力压裂的力学机理,提出了考虑地层岩体裂纹时的地层破裂压力计算方法;分析了薄弱地层破裂压力的影响因素,并提出了防止致漏诱导裂缝形成的钻井液“阻劈裂”理论,该理论认为,改善钻井液的封堵性能可显著提高薄弱易漏地层的破裂压力,可起到一定的高承压防漏作用。
     研究了重建裂缝地层破裂压力的钻井液堵漏作用机理,包括阻止裂缝延伸扩大、提高裂缝重启压力及提高围岩的破裂压力的机理。研究表明,阻止裂缝延伸扩大是重建裂缝地层破裂压力首要任务,改善缝内压力分布是阻止裂缝延伸的有效途径。堵漏材料在裂缝入口内一定距离堵塞(“封喉”)为裂缝堵漏的最佳位置形式,且裂缝“尖端段”的流体压力小于最小水平主应力是有效阻止裂缝延伸的必要条件;诱导并维持一定大小的周向诱导应力是提高裂缝重新开启压力的关键,采用具有一定机械强度的堵漏材料支撑诱导裂缝,周向诱导应力才不随裂缝内压力降低而减小或消失,堵漏材料应发挥支撑剂的作用,堵漏材料应同时具有封堵性能和机械强度;基于井周围岩诱导应力场,研究了井周围岩形成新裂缝的力学条件及重建后的新破裂压力。
     利用压裂实验装置,开展了薄弱易破地层承压能力的室内模拟实验,研究了不同注入流体类型与性能条件下岩心的破裂压力、裂缝传播压力及重启压力。结果表明,改善钻井液体系的滤失造壁性能和封堵性能,可大幅度提高薄弱地层的承压能力,验证了防止诱导裂缝形成的“阻劈裂”理论的正确性。
     利用研制的新型裂缝型地层承压堵漏模拟实验装置,开展了裂缝型地层承压能力的堵漏室内模拟实验,研究了裂缝形态、堵漏材料类型、粒度级配及浓度与裂缝型地层堵漏效果的关系。实验结果表明,具有足够长度(深度)的裂缝实验装置能够更客观地模拟地层裂缝,粗糙壁面裂缝更容易堵住且堵塞深度比光滑裂缝更浅;棱角分明的刚性颗粒材料是较为理想的架桥材料;承压堵漏材料能否在裂缝内架桥及架桥位置由材料粒度大小决定,堵漏漏失量的多少由各粒级的比例及粒度范围决定,细小颗粒材料有利于减少漏失量。
     利用颗粒流数值模拟理论与方法,在三维颗粒流数值建模平台(PFC3D)上构建了裂缝型桥塞堵漏的颗粒流模型,研究了裂缝型桥塞堵漏的细观机理。利用建模平台的“簇”逻辑构建了不规则形状的桥塞堵漏颗粒。研究表明,不规则颗粒可以堵塞比自身筛分粒度更大的裂缝宽度,颗粒材料在裂缝内的架桥方式为“单粒架桥”;堵塞深度、速度与堵漏材料特征粒度D50及D90值密切相关;颗粒浓度对堵塞深度的影响不大,而对堵塞速度的影响较大,且在一定条件下堵漏材料应有最优浓度。
     基于室内实验和数值模拟数据,研究了提高地层承压能力的钻井液设计理论与方法,并提出了裂缝地层承压堵漏材料的粒度级配的必要条件。利用灰色关联法,开展了裂缝地层承压堵漏效果影响因素的敏感性分析,结果表明,堵漏材料粒度级配为影响堵漏效果的主要因素,而堵漏材料的浓度为次要因素。
     研究了承压堵漏钻井液密度的确定方法,为承压堵漏工艺技术提供了参考。提出设计井内堵漏钻井液密度时,必须同时考虑套管鞋等处薄弱地层的承压能力和桥接材料的抗压强度对井内压力的限制;认为提高压力敏感性裂缝地层承压能力的堵漏作业时,井口压力应不超过桥接材料的抗压强度,以保证裂缝内已形成的堵塞隔层不被破坏。
     本文研究成果将进一步提升对提高地层承压能力的钻井液理论与技术的科学认识,对钻井工程防漏堵漏技术研究与应用具有理论指导和现实借鉴意义。
Drilling fluid for wellbore strengthening is one of the most important drilling fluid techniques to extend the narrow Mud Weight Window (MWW). The wellbore pressure containment can be improved, and then the upper limit of the MWW can also be enhanced by wellbore strengthening. The technique makes it safe to drill in the narrow or negative MWW conditions, so it is the important requirement of the oil&gas exploration and development.
     This thesis took the characteristics of the leakage formations as the cut-in point, researched the basic theory of stopping lost circulation and wellbore strengthening systematically, carried out the experiment and numerical simulations for wellbore strengthening, and then researched the theory and method for optimizing the drilling fluid for stopping lost circulation.
     First, according to the characteristics, the leakage formation can be categorized into weak formation and fractured formation, and the engineering phenomena of these two types were studied, then the internal and external causes affecting the wellbore pressure containment were analyzed. The substance of wellbore strengthening was revealed, including enhance the fracture resistance of weak formation and rebuilding the fracture pressure of fractured formation.
     Aided by the linear elastic Rock Mechanics and Fracture Mechanics, the mechanisms of enhancing the wellbore pressure containment of weak formation were studied. Based on the fracturing mechanism of weak formation, the computational method for fracture pressure considering microcracks was proposed. The factors affecting the fracture pressure of weak formation were analyzed, and the theory called anti-split preventing induced fracture. This theory believes that the fracture pressure can be increased significantly by improved the sealing properties of drilling fluid, and it can pay a role in preventing lost circulation.
     The mechanism of rebuilding the fracture pressure for fractured formation was investigated. The mechanism includes preventing the induced fracture from propagating, increasing the fracture reopen pressure and the fracture pressure of the fractured formation. It holds:it is the first job to prevent the induced fracture from propagating, and improve the pressure distribution in the fracture is an effective method for rebuilding the fracture pressure. The lost circulation material (LCM) should plug at certain place near the fracture mouth, which is the best plugging way, and the fluid pressure at the fracture tip must be smaller than the minimum horizontal stress, and the smaller, the more beneficial to resist the propagation of fracture. Inducing and maintaining the induced stress field is the key factor increasing the fracture reopen pressure, the Lost Circulation Material (LCM) must act as proppant agent to maintain the induced stress field; the borehole wall will generate new fractures when the wellbore pressure is high enough, furthermore, the multifissure state must be accounted when analyzing the lost mechanism and design the LCM.
     Laboratory simulation experiments for weak formation were carried out with fracturing experimental equipment, then the fracture pressure, the fracture propagating pressure and the reopening pressure under different injecting fluid system were investigated. The results have showed that the pressure containment of weak formation can be increased significantly by improving the filtration and sealing properties of the drilling fluids, which confirms that the "anti-split" theory is correct.
     Laboratory experiments for fractured formation were carried out with the novel experimental equipment, the effect of fracture shape, the type, the granularity and the concentration of LCM on the plugging effect were investigated. It holds:the fracture in the formation should be simulated using the equipment with fracture of enough length or depth, and the plugging location in rough fracture wall was shallower than the smooth wall. Rigid particle is the ideal material to determine the plugging location. Whether the fracture can be plugged or not depends on the granularity of LCM, and the loss volume of drilling fluid depends on the proportion and scale of the LCM, which means that the small particles can decrease the loss volume.
     Based on the theory and method of particle flow numerical simulation, the particle flow model was set up with the PFC3D, and the mesoscopical mechanism of bridging and plugging was studied. The bridge particles of irregular shape were simulated with the Clump logic of the PFC. It holds:the particle of irregular shape can plug the fracture width which is wider than itself granularity and the plugging manner was "Single Particle Bridging"; the plugging location and plugging rate relating to the D50and D90of LCM. The concentration of LCM has little effect on the plugging location and should have optimum value for different condition.
     Based on the laboratory and numerical simulation results, the design theory and methods of drilling fluids for enhancing wellbore pressure containment were proposed. Gray correlation method was used to analyze the sensitivity of the factors affecting the plugging effect. The results have showed that the gradation of LCM was the main factor while the concentration of LCM was the secondary factor for fracture plugging.
     The idea that the casing shoe resistance and the crushing strength of the LCM must be considered when design the density of the drilling fluids is presented. It holds that the surface pressure should be junior to the crushing strength of LCM, in order to prevent the formed bridge plug from crushing.
     The research results in this thesis will improve the scientific cognition of the theory and technology of drilling fluids for wellbore strengthening, and they has important theoretical and practical significance for preventing and stopping lost circulation of drilling engineering.
引文
[1]徐同台,刘玉杰,申威等,钻井工程防漏堵漏技术[M].北京:石油工业出版社,1997.
    [2]蒋希文.钻井事故与复杂问题[M].北京:石油工业出版社,2002.
    [3]高德利,主编.复杂地质条件下深井超深井钻井技术[M].北京:石油工业出版社,2004.
    [4]Charlez P.A., The Concept of Mud Weight Window Applied to Complex Drilling[C]. SPE56758.
    [5]Adachi, J., Bailey, L., Houwen, O.H., Meeten G.H., Depleted Zone Drilling Reducing Mud Losses into Fractures[C]. SPE 87224.
    [6]蔚宝华,王炳印,曲从锋,等.高温高压储层安全钻井液密度窗口确定技术[J].石油钻采工艺,2005,27(3).
    [7]Davison, J.M., Leaper, R., Cauley, M.B., et al., Extending the Drilling Operating Window in Brent:Solutions for Infill Drilling in Depleting Reservoirs[C].SPE/IADC 87174.
    [8]刘加杰,康毅力,王业众.扩展钻井液安全密度窗口理论与技术进展[J].钻井液与完井液,2007,24(4):69-73.
    [9]Hubbert, M.K., Willis, D.G., Mechanics of Hydraulic Fracturing. AIME,1957.
    [10]Matthews, W.R., Kelly, J., How to Predict Formation Pressure and Fracture Gradient [J]. Oil and Gas J.,1967,65(8):92-106.
    [11]Eaton, B.A., Fracture Gradient Prediction and Its Application in Oilfield Operation [J]. JPT,1969,21:1353-1360.
    [12]Anderson, R.A., Ingram, D.S., Zanier, A.M., Determining Fracture Pressure Gradient from Well Logs [J]. JPT,1973:1259-1268.
    [13]黄荣樽.地层破裂压力预测模式的探讨[J].华东石油学院学报,1984,4:335-347.
    [14]阳友奎.地层水力压裂中的应力强度因子[J].四川建材学院学报,1993,8(3).
    [15]边芳霞,林平,王力,等.油气井压裂时地层新的破裂压力计算模型的建立[J].钻采工艺,2004,27(6):19-24.
    [16]Morita, N., Black, A.D., Guh, G-F., Theory of Lost Circulation Pressure[C]. SPE 20409.
    [17]Oort, E.V., Vargo, R., Improving Formation-strength Tests and Their Interpretation[C]. SPE 105193.
    [18]George, C.H., Scott, P.P, An Analysis and the Control of Lost Circulation[R]. SPE951171-G.
    [19]Dyke, C.G, Wu, B., Tayler, D.M., Advances in Characterizing Natural-fracture Permeability From Mud-Log Data[C].SPE25022.
    [20]Sanfillippo, F., Brignoli, M., Santarelli, F.J., et al., Characterization of Conductive Fractures While Drilling[C]. SPE38177.
    [21]Maglione, R., Marsala, A., Drilling Mud losses:Problem Analysis[R]. AGIP Internal Report,1997.
    [22]Lietard,O., Unwin, T., Guillot, D., et al., Fracture Width LWD and Drilling Mud/LCM Selection Guidelines in Naturally Fractured Reservoirs[C].SPE 36832.
    [23]Verga, F.M., Torino, P.D., Carugo, C, et al., Detection and Characterization of Fractures in Naturally Fractured Reservoirs[C].SPE63266.
    [24]Federico,V.D., Non-Newtonian Flow in a Variable Aperture Fracture [J]. Transport in Porous Media,1998,30(1):75-86.
    [25]Lavrov, A., Tronvoll, J., Modeling Mud Loss in Fractured Formations[C]. SPE88700.
    [26]Majidi, R., Miska, S,Z., Yu, M., et al., Quantitative Analysis of Mud Losses in Naturally Fractured Reservoirs:The Effect of Rheology[C]. SPE114130.
    [27]Hettema M.H.H., Bostram, B., Lund T., Analysis of Lost Circulation During Drilling in Cooled Formations[C].SPE90442.
    [28]蒲晓林.压裂实验法评价裂缝性桥塞堵漏[J].钻井液与完井液,1998,15(4):19-22.
    [29]Aadnoy, B.S., Belayneh, M., Arriado, M., et al., Design of Well Barrier to Combat Circulation Losses[C]. SPE105449.
    [30]Aadnoy, B.S., Belayneh, M., Elasto-Plastic Fracturing Model for Wellbore Stability Using Non-Penetrating Fluids [J]. Journal of Petroleum Science and Engineering, 2004(45):179-192.
    [31]蔡利山,苏长明,刘金华.易漏失地层承压能力分析[J].石油学报,2010,31(2):311-317.
    [32]杨振杰,李家芬,苏长明,等.井壁加固技术研究进展[J].断块油气田,2008,15(3).
    [33]王业众,康毅力,游利军,等.裂缝性储层漏失机理及控制技术进展[J].钻井液与完井液,2007,24(4).74-76.
    [34]许成元,康毅力,李大奇.提高地层承压能力研究新进展[J].钻井液与完井液,2011,28(5):81-85.
    [35]Ivan, C.D., Bruton, J.R., Thiercelin, M., Making a Case for Rethinking Lost Circulation Treatments in Induced Fractures[C]. SPE 77353.
    [36]Loeppke, G.E., Glowka, D.A., Wright, E.K., Design and Evaluation of Lost-Circulation Materials for Severe Environments", JPT, March,1990.
    [37]Guh, G-F., et al., A New Approach to Preventing Lost Circulation While Drilling"[C]. SPE 24599,1992.
    [38]Guh, G-F., Beardmore, D., Morita, N., Further Development, Field Testing, and Application of the Wellbore Strengthening Technique for Drilling Operations[C]. SPE105809.
    [39]Morita, N., Whitfill, D.L., Wahl, H.A., Stress-Intensity Factor and Fracture Cross-Sectional Shape Predictions from a Three-Dimensional Model for Hydraulically Induced Fractures[J].JPT,1988,1329-1342.
    [40]Morita, N., Guh, G-F., Parametric Analysis of Wellbore Strengthening Methods from Basic Rock Mechanics [C].SPE145765.
    [41]Alberty, M.W., Mclean, M.R., Formation Gradients in Depleted Reservoirs Drilling Wells in Late Reservoir Life[C]. SPE/IADC 67740.
    [42]Alberty, M.W., Mclean, M.R., A Physic Model for Stress Cages[C]. SPE90493.
    [43]Sweatman, R., Kessler,C., Hillier, J., New Solutions to Remedy Lost Circulation, Crossflows, and Underground Blowouts[C]. SPE37671.
    [44]Sweatman,R., Faul, R., Ballew, C., et al., New Solutions for Subsalt-Well Lost Circulation and Optimized Primary Cementing[C].SPE56499.
    [45]Sweatman, R., Wang, H., Xenakis, H., Wellbore Stabilization Increases Fracture Gradients and Controls Losses/Flows During Drilling[C].SPE88701.
    [46]Wang, H., Sweatman, R., Engelman, B., et al., The Key to Successfully Applying Today's Lost-Circulation Solutions[C].SPE 95895.
    [47]Wang, H., Towler, B.F, Soliman, M.Y., Near-Wellbore Stress Analysis and Wellbore Strengthening for Drilling Depleted Formations[C].SPE102719.
    [48]Wang, H., Towler, B.F, Soliman, M.Y., Fractured Wellbore Stress Analysis:Sealing Cracks to Strengthen a Wellbore [C]. SPE104947.
    [49]Wang, H., Soliman, M.Y., Towler, B.F, Investigation of Factors for Strengthening a Wellbore by Propping Fractures[C]. SPE/IADC 112629.
    [50]Whitfill, D.L., Jamison, D.E., Wang, H.M., et al., New Design Models and Materials Provide Engineered Solutions to Lost Circulation[C].SPE101693.
    [51]Whitfill, D.L., Wang, H.M., Jamison, D.E., et al., Preventing Lost Circulation Requires Planning Ahead[C]. SPE108647.
    [52]Whitfill, D.L.,Wellbore Pressure Containment[C],SPE 108811-DL.
    [53]Whitfill, D.L., Lost Circulation Material Selection:Particle Size Distribution and Fracture Modeling with Fracture Simulation Software[C].SPE115039.
    [54]Whitfill, D.L., Hemphill, T., All Lost-Circulation Materials and Systems Are Not Created Equal[C].SPE84319.
    [55]Nagel, N.B., Meng, F., What Does the Rock Mechanic Say:A Numerical Investigation of "Wellbore Strengthing" [C]. AADE-07-NTCE-65.
    [56]Dupriest, F.E., Smith, M.V., Zeilinger, C.S., et al., Method to Eliminate Lost Returns and Build Integrity Continuously with High-Filtration-Rate Fluid[C]. SPE112656.
    [57]Dupriest, F.E., Fracture Closure Stresses (FCS) and Lost Returns Practices[C]. SPE92192.
    [58]Oort, E.V., Friedheim, J., Pierce, T., et al., Avoiding Losses in Depleted and Weak Zones by Constantly Strengthening Wellbores[C]. SPE 125093.
    [59]Nair, R., Abousleiman, Y., A Porothermoelastic Wellbore Model in Oil and Gas Saturated Naturally Fractured Porous Media [C]. SPE 126096.
    [60]Sneddon, I.N., The Distribution of Stress in the Neighbourhood of a Crack in an Elastic Solid. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol.187, No.1009 (Oct.22,1946), pp.229-260.
    [61]Palmer. I.D., Induced Stresses Due to Propped Hydraulic Fracture in Coalbed Methane Wells[C]. SPE 25861.
    [62]Palmer, I.D., Luiskutty, C.T., A Model of the Hydraulic Fracturing Process for Elongated Vertical Fractures and Comparisons of Results with Other Models[C], SPE 13864.
    [63]Wang, H., Soliman, M.Y., Towler, B.F., et al., Strengthening a Wellbore with Multiple Fractures:Further Investigation of Factors for Strengthening a Wellbore [C]. ARMA 09-67.
    [64]王贵,蒲晓林.提高地层承压能力的钻井液堵漏作用机理[J].石油学报,2010,31(6):1009-1012.
    [65]王贵.提高压力敏感性地层承压能力的堵漏钻井液研究[D].西南石油大学,2009.
    [66](美)埃克诺米德斯,M.J.,诺尔蒂K.G.,著.油藏增产措施(增订本)[M].北京:石油工业出版社,1991.6.
    [67]Abrams, A., Mud Design to Minimize Rock Impairment Due to Particle Invasion [J]. JPT, 1977,29(3):586-593.
    [68]Smith, P.S., Drilling Fluid Design to Prevent Formation Damage in High Permeability Quartz Arenite Sandstones[C].SPE36430.
    [69]蒲晓林,罗向东,罗平亚,等.用屏蔽暂堵技术提高长庆油田洛河组漏层的承压能力[J].西南石油学院学报,1995,17(2):78-84.
    [70]罗平亚.钻井完井过程中保护油层的屏蔽式暂堵技术[M].北京:中国大百科全书出版社,1997:68-98.
    [71]赵正文,固相颗粒在储层孔隙中桥堵规律模拟研究[D].西南石油学院,1997.
    [72]顾军,裂缝-孔隙型储层保护机理与钻井工作液研究[D].成都理工大学,2003.
    [73]Dick, M.A., Heinz, T.J., Svoboda, C.F., et al., Optimizing the Selection of Bridging Particles for Reservoir Drilling Fluids[C] SPE58793.
    [74]Aston, M.S., Alberty, M.W., Mclean, M. R., et al. Drilling fluids for wellbore strengthening[C]. SPE87130.
    [75]鄢捷年,王建华,张金波,等.优选钻井液中暂堵剂颗粒尺寸的理想填充新方法[J],石油 天然气学报,2007,29(4).
    [76]Yan Jienian, Feng Wenqiang. Design of Drill-in Fluids Optimizing Selection of Bridging Particles[C]. SPE 104131.
    [77]Hands, N., Kowbel, K., Maikranz, S., Drilling in Fluid Reduces for Formation Damage, Increases Production Rates[J],Oil& Gas J,1998,96 (28).
    [78]Song, J.H., Rojas, J.C., Preventing Mud Losses by Wellbore Strengthening[C]. SPE 101593.
    [79]Kaageson-Loe, N., Sanders, M.W., Growcock, F., et al., Particulate-Based Loss-Prevention Material-The Secrets of Fracture-Sealing Revealed[C]. SPE112595.
    [80]崔迎春.分形几何理论在屏蔽暂堵剂优选中的应用[J].石油大学学报,2000,24(2).
    [81]张琰,崔迎春.屏蔽暂堵分形理论分析与应用研究[J].天然气工业,2000,20(6).
    [82]崔迎春.裂缝性储层屏蔽暂堵分形理论的研究[J].天然气工业,2002,22(2).
    [83]Nayberg, T.M., Laboratory Study of Lost Circulation Materials for Use in Both Oil-Based and Water-Based Drilling Muds[C].SPE14723.
    [84]Pilehvari, A.A., Venkata, R.N., Effect of Material Type and Size Distribution on Performance of Loss/Seepage Control Material[C].SPE73791.
    [85]Smith, J.R., Growcock, F.B., Rojas, J.C., et al., Wellbore Strengthening While Drilling Above and Below Salt in the Gulf of Mexico[C]. AADE-08-DF-HO-21.
    [86]Tehrani, A., Friedheim, J., Cameron J., et al., Designing Fluids for Wellbore Strengthening-Is It an Art?[C]. AADE-07-NTCE-75.
    [87]Wang, H., Towler, B.F., Soliman, M.Y., et al.. Wellbore Strengthening without Propping Fractures:Analysis for Strengthening a Wellbore by Sealing Fractures Alone[C].ITPC 12280.
    [88]Ravi, K., Savery, M., Reddy, B.R., et al., Cementing Technology for Low Fracture Gradient and Controlling Loss Circulation [C]. SPE102074.
    [89]Collins N., Kharitonov A., Whitfill D., et al., Comprehensive Approach to Severe Loss Circulation Problems in Russia[C].SPE135704.
    [90]Hutton, F., Payne, T., Jeffreys, K., et al., Fusible Particle Lost Circulation Material (FPLCM) System Successfully Controls Severe Lost Circulation While Drilling in the Elk Hills Field, Bakersfield, CA[C].SPE121111.
    [91]Slaheddine, K., Jesse,C.L., Dilip, S., et al., Optimizing in Four Steps Composite Lost-Circulation Pills Without Knowing Loss Zone Width[C]. SPE 133735.
    [92]孙金声,唐继平,张斌,等.超低渗透钻井液完井液技术研究[J].钻井液与完井液,2005,22(1):l-5.
    [93]孙金声,苏义脑,罗平亚,等.超低渗透钻井液提高地层承压能力机理研究[J].钻井液 与完井液,2005,22(5):1-3.
    [94]李家学,黄进军,罗平亚,等.随钻防漏堵漏技术研究[J].钻井液与完井液,2008,25(3):25-29.
    [95]黄进军,罗平亚,李家学,等.提高地层承压能力技术[J].钻井液与完井液,2009,26(3):69-71.
    [96]Soroush, H., Sampaio, J.H.B., Investigation into Strengthening Methods for Stabilizing Wellbores in Fractured Formations. SPE 101802.
    [97]Salehi, S., Nygaard, R., Evaluation of New Drilling Approach for Widening Operational Window:Implications for Wellbore Strengthening[C].SPE140753.
    [98]Goud, M.C., Joseph, G., Drilling Fluid Additives and Engineering to Improve Formation Integrity[C]. SPE 104002.
    [99]Suyan, K.M., Banerjee, S., Dasgupta, D., A Practical Approach for Preventing Lost Circulation While Drilling [C].SPE 105251.
    [100]Barrett,S., Cassanelii, J.P., Manescu, G., et al., Wellbore Strengthening:Where Field Application Meets Theory [C].SPE139167.
    [101]Santos, H., Increasing Leakoff Pressure With New Class of Drilling Fluid[C]. SPE/IADC 78243.
    [102]吴应凯,等.低压易漏地层防漏堵漏机理探讨及现场应用[J].天然气工业,2004,24(3).
    [103]张敬荣,齐才学.深井长裸眼堵漏技术[J].钻采工艺,2001,24(3).
    [104]张延星,等.喷漏塌卡状态下的压井与堵漏工艺技术研究[J].钻采工艺,2005,28(2).
    [105]熊继有,蒲克勇,王平全,等.物理法随钻防漏堵漏机制与试验[J].中国石油大学学报(自然科学版),2009,33(4):76-80.
    [106]熊继有,薛亮,周鹏高,等.物理法随钻防漏堵漏机理研究[J].天然气工业,2007,27(7):69-72.
    [107]陈亮,王立峰,蔡利山.塔河油田盐上承压堵漏工艺技术[J].石油钻探技术,2006,34(3):60-63.
    [108]张旭,夏宏南,彭美强,等.准格尔盆地低压地层提高承压能力研究[J].断块油气田,2006,13(5):1-3.
    [109]王书琪,唐继平,张斌,等.塔里木山前构造带高密度钻井液堵漏技术[J].钻井液与完井液,2006,23(01):76-77.
    [110]孙光明.塔河油田盐上裸眼承压堵漏技术[J].石油钻采工艺,2007,29(2).
    [111]汤连生,张鹏程,王思敬.水-岩化学作用之岩石断裂力学效应的试验研究[J].岩石力学与工程学报,2002,21(6):822-827.
    [112]陈勉,金衍,张广清.石油工程岩石力学[M].北京:科学出版社,2008,7.
    [113]梁利喜.深部应力场系统评价与油气井井壁稳定性分析研究[D].成都理工大学,2008.
    [114]王鸿勋,张士诚,编著.水力压裂设计数值计算方法[M].北京:石油工业出版社,1998.6.
    [115]Gil, I., Roegiers, J.C., Moos, D., Wellbore Cooling as a Means to Permanently Increase Fracture Gradient[C]. SPE103256.
    [116]Perkins, T.K., Gonzalez, J.A., Changes in Earth Stresses Around a Wellbore Caused by Radially Symmetrical Pressure and Temperature Gradients[C]. SPE 10080.
    [117]杨前雄,熊伟,高树生.考虑温度时碳酸盐岩地层破裂压力的确定[J].石油钻探技术,2007,35(3):12-14.
    [118]鄢捷年主编.钻井液工艺学[M].山东:石油大学出版社,2001.
    [119]王鸿勋,编著.水力压裂原理[M].北京:石油工业出版社,1987,3.
    [120]黄荣樽.水力压裂裂缝的起裂和扩展[J].石油勘探与开发,1981,5.
    [121]阿特金森.岩石断裂力学[M].尹祥础,修济刚译.北京:地震出版社,1992:231-254.
    [122]姚飞,王晓泉.水力裂缝起裂延伸机理和闭合机理的分析[J].钻采工艺,2000,23(2).
    [123]洪起超,工程断裂力学[M],上海:上海交通大学出版社,1987
    [124]中国航空研究院主编,应力强度因子手册[M].北京:科学出版社,1981,4,66-68.
    [125]徐芝纶,弹性力学[M].北京:高等教育出版社,1982.
    [126]王贵,蒲晓林,文志明,等.基于断裂力学的诱导裂缝性井漏控制机理分析[J].西南石油大学学报,2011,31(1):131-134.
    [127]Perkins, T.K., Kern, L.R., Widths of Hydraulic Fractures. JPT, SPE1961:973-949.
    [128]练章华等.井壁附近垂直裂缝宽度预测[J].天然气工业,2003,2.
    [129]兰林,裂缝性砂岩油层应力敏感性及裂缝宽度研究[D],西南石油学院,2005.
    [130]刘晓贵.桥塞堵漏技术的实践与认识[J].石油钻采工艺,1988,7(4).
    [131]练章华等.裂缝面及井眼附近的应力分析[J].西南石油学院学报,2001,23(3).
    [132]Miles, A.J., Topping, A.D., Stresses Around a Deep Well[C].SPE949186-G.
    [133]刘洪,胡永全,赵金洲,等.重复压裂气井诱导应力场模拟研究[J].岩石力学与工程学报,2004,23(23):4022-4027.
    [134]邓燕,重复压裂压新缝力学机理研究[D].西南石油大学,,2005.
    [135]刘洪.重复压裂造新缝力学机理研究[D].西南石油学院,2003:11-20.
    [136]Warpinki, N.R., Branagan, P.T., Altered-Stress Fracturing[C]. SPE17533.
    [137]Chris A.Wright等.水力压裂重定向的可能性和重要性[J].勘探地球物理进展,2002,25(1).
    [138]宁淑霞.重复压裂井裂缝周围应力的重定向[J].大庆石油学院学报,2007,31(4).
    [139]罗天雨,等.复杂裂缝产生机理研究[J].断块油气田,2008,15(3).
    [140]关义君.桥浆承压堵漏关键技术[J].西部探矿工程,2006,121(5).
    [141]刘永兵,陈纪忠,阳永荣.管道内液固浆液输送的数值模拟[J].浙江大学 学报(工学版),2006,40(5):858-863.
    [142]张政,谢灼俐.流体-固体两相流的数值模拟[J].化工学报,2001,52:1-12.
    [143]徐泳,孙其诚,张凌,等.颗粒离散元法研究进展[J].力学进展.2003(33):251-260.
    [144]王永嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社.1991.
    [145]田瑞霞,焦红光.离散元软件PFC在矿业工程中的应用现状及分析[J].矿冶,2011,20(1):79-82.
    [146]张学亮,张会军,徐刚.PFC3D数值试验及其应用[J].煤炭技术,2010,29(5):61-63.
    [147]Cundall, P.A., Strack, O.D., A Discrete Numerical Model for Granular Assembles [J] Geotechanique,1979,29(1):47-65.
    [148]罗勇,土工问题的颗粒流数值模拟及应用研究[D].浙江大学,2007.15-22.
    [149]罗勇,三维离散颗粒单元模拟无黏性土的工程力学性质[J].岩土工程学报,2008,2:292-297.
    [150]Itasca Consulting Group, Inc. PFC3D (partial flow code in 3 dimension) version 3.1 [R]. Itasca Consulting Group, Inc.,2003.
    [151]罗勇,龚晓南,吴瑞潜.颗粒流模拟和流体与颗粒相互作用分析[J].浙江大学学报(工学版),2007,41(11):1932-1936.
    [152]Wen, C.Y., Yu, Y.H., Mechanics of Fluidization[C]. Chemical Engineering Progress Symposium Series,1966.
    [153]Lu, M., McDowell, G.R., The importance of modeling ballast particle shape in the discrete element method [J]. Granular Matter,2006,9(1):69-80.
    [154]Garicia, X., Latham, J.P., Xiang, J., et al., A Clustered Overlapping Sphere Algorithm to Represent Real Particles in Discrete Element Modeling [J]. Geotechnique,2009, 59(9):779-784.
    [155]曾凡,胡永平编著.矿物加工颗粒学[M].江苏:中国矿业大学出版社,1995,8.
    [156]江朝华.水泥颗粒分布的灰色关联度分析及灰色模型[J].哈尔滨工业大学学报,2004,36(2):264-266.
    [157]周立霞,王起才.粉煤灰粒度分布及其活性的灰色关联分析[J].硅酸盐通报,2011,30(3):656-666.
    [158]林国顺,陈燕,贾智辉,等.基于数据挖掘的道路运行安全因素关联分析[J].大连海事大学学报,2011,37(3):62-65.
    [159]罗庆成,徐国新.灰色关联分析与应用[M].江苏:江苏科技出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700