交直流电力系统稳定性仿真的多速率方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代电力系统的发展使电力系统动态过程的多时间尺度特性愈发突出,这给电力系统仿真计算带来了挑战。本文对交-直流系统多速率稳定性仿真的相关问题进行了研究,主要研究内容包括:高压直流输电系统的稳定性建模和仿真,基于变量自适应分组的多速率仿真算法,十字链表稀疏矩阵技术。各部分内容的具体描述如下:
     归纳了稳定性仿真程序中高压直流输电系统的建模方式,主要可分为简单模型、响应模型和详细模型,探讨了直流系统稳定分析模型及其所包含的3种模型的适用性。分析了针对直流系统详细模型的交-直流双时步仿真算法的缺陷:该法假设在直流小步长仿真过程中换流母线的交流电压不变,这一假设可能延迟直流系统中一些具有开关特性控制器的动作时间,造成仿真结果不准确;对于多馈入直流系统,甚至可能引起直流开关特性控制的误动作,造成仿真结果失真。所提出的考虑直流系统开关特性控制的变步长仿真方法能正确计及直流开关特性控制的动作时间,从而获得准确的仿真结果,且很好地保持了传统双时步方法的计算效率。
     提出了一种基于变量自适应分组的多速率仿真方法,能够在仿真过程中自适应地给出具有较高加速比的变量分组方式,避免了传统的多速率仿真方法为进行变量分组而需要预先给定分组步长比的困难。构建了不诚实牛顿法(very dishonest Newton method, VDHN)的分组求解算法,包括预测、插值和校正三个环节,并针对VDHN法的特点给出了校正过程中电压分组计算的方法。算例证明本文多速率法能有效地提高传统电力系统和分布式发电供能微网系统的仿真计算效率。
     阐述了十字链表的构成以及检索和操作方式,说明十字链表能够高效地完成三角分解和前代-回代运算。指出了传统的十字链表内存分配方式对计算效率的影响:十字链表的存储结点通常散列于内存空间中,该内存分配方式下稀疏矩阵的运算效率低于存储结点连续分布在内存中的稀疏矩阵运算效率,这一现象是由计算机的高速缓冲存储器(cache)的工作原理造成的。针对这一问题提出了一种改进的十字链表方法。通过算例证明了本文的改进十字链表方法是一种高效的稀疏矩阵技术,既适用于传统的大规模电力系统仿真,也适用于分布式发电供能系统仿真。
Due to the development of modern power system, the multi-time scale characteristic of power system dynamics has become much more prominent than before, which has brought a great challenge to the power system simulation technique. This thesis focuses on multi-rate simulation method for AC-DC power system stability analysis, including three topics: modeling and simulation method for stability analysis of HVDC, the multi-rate simulation method based on self-adaptive grouping of variables, cross chain table based sparse matrix technique. The work is detailed as follow:
     HVDC models commonly used in stability simulation program, including simple model, response model and detailed model, are summarized. The applicability of the HVDC models for stability analysis is analyzed. The drawback of the AC-DC system two-time step simulation method for HVDC detailed model is discussed: the assumption of the AC commutating voltages being unchanged during the fast HVDC simulation may delay the action of some HVDC controls with switching characteristics, resulting in errors in simulation results. And it may even cause misoperation of the HVDC switching controls, which is the case in the study of multi-infeed HVDC system. A variable-step simulation method considering HVDC switching controls is proposed, which can make the HVDC switching controls act in time during the simulation. The proposed method can obtain a better accuracy than the conventional one, and the calculation efficiency is not eroded.
     A multi-rate simulation method based on self-adaptive grouping of variables is proposed for power system stability analysis. A high speed-up ratio is obtained by the self-adaptive grouping algorithm of variables, and there is no need to decide the grouping step ratio in advance which is the case in the conventional multi-rate simulation method. The very dishonest Newton (VDHN) method is adjusted for solving the grouped variables, including three steps: prediction, interpolation and correction. According to the characteristic of the VDHN method, a method for solving the grouped bus-voltage variables is presented which is a step of the correction process. Case study shows that the proposed multi-rate method can be well applied in both traditional large scale power system simulation and distributed generation system simulation.
     The structure and operation manner of cross chain table are presented to illustrate that its convenience and efficiency in serching, adding and deleting matrix elements can help speeding up the calculation process of factorization and forward-backward substitution. The impacts of the memory allocation manner of cross chain table on the calculation efficiency are discussed: nodes of cross chain table are always stored seperately in memory because of its memory allocation manner, which can reduce the calculation efficiency, and this phenomenon is caused by the principle of cache. To solve this problem, an improved cross chain table method is proposed. Case study proves the efficiency of the improved cross chain table, and shows that it can be well applied in both traditional large scale power system simulation and distributed generation system simulation.
引文
[1]何仰赞,温增银.电力系统分析[M].北京:中国水力电力出版社, 1995.
    [2]汤勇.电力系统数字仿真技术的现状与发展[J].电力系统自动化,2002,26(17):66~70.
    [3]倪以信,陈寿松,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [4]王成山,王守相.分布式发电供能系统若干问题研究[J].电力系统自动化,2008, 32(20): 1-4,31.
    [5]中国南方电网公司.交直流电力系统仿真技术[M].北京:中国电力出版社,2007.
    [6] P Kundur.电力系统稳定和控制[M].北京:中国电力出版社,2002.
    [7]黄家裕,陈礼义,孙德昌.电力系统数字仿真[M].北京:中国水力电力出版社,1995.
    [8]吕涛,韩祯祥.电力系统仿真软件DIgSILENT介绍[J].华东电力,2004,32(12):37~40.
    [9]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2004.
    [10]余贻鑫,陈礼义.电力系统的安全性和稳定性,北京:科学出版社,1988.
    [11]陈礼义.计算机算法与应用,天津:天津大学出版社,1990.
    [12]浙江大学发电教研组直流输电科研组.直流输电[M].北京:中国电力出版社,1985.
    [13]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社,2004.
    [14]李兴源.高压直流输电系统的运行和控制[M].北京:科学出版社,1998.
    [15]詹奕,尹项根.高压直流输电与特高压交流输电的比较研究[J].高电压技术,2001,27(4):44~46.
    [16]车孝轩.直流输电技术的动向与未来[J].高电压技术,1996,22(3):91~94.
    [17]曾南超.高压直流输电在我国电网发展中的作用[J].高电压技术,2004,30(11):11~12.
    [18]袁清云.特高压直流输电技术现状及在我国的应用前景[J].电网技术,2005,29(14):1~3.
    [19]马玉龙.高压直流输电系统的稳定性分析[D].博士学位论文,华北电力大学(北京), 2006
    [20]胡兆庆.基于VSC的HVDC控制及其动态特性研究[D].博士学位论文,华中科技大学, 2005
    [21] Taylor C W.Power System Voltage Stability[M].McGraw-Hill,1993.
    [22]徐政.联于弱交流系统的直流输电特性研究之二:控制方式与电压稳定性[J].电网技术,1997,21(3):1-4.
    [23]周双喜,吕佳丽.直流输电对电压稳定性的影响.清华大学学报,1999,39(3):4-7.
    [24]胡林献,陈学允.崩溃点法交直流联合系统电压稳定性分析[J].中国电机工程学报,1997,17(6):395-398.
    [25]吴红斌,丁明,李生虎.直流输电模型和调节方式对暂态稳定影响的统计研究[J].中国电机工程学报,2003,23(10):32-37.
    [26]樊纪超,余贻鑫.交直流并联输电系统实用动态安全域研究[J].中国电机工程学报,2005,25(23):19-24.
    [27]余贻鑫,王春成.AC/DC并联输电系统大扰动短期电压稳定PDSR[J].电力系统及其自动化学报,2007,19(5):1-7,13.
    [28]莫琦,张尧,武志刚,等.交直流互联系统暂态电压稳定问题仿真分析[J].电力系统及其自动化学报,2006,18(6):87-90,93.
    [29]张建设,张尧,张志朝,等.直流系统控制方式对大扰动后交直流混合系统电压和功率恢复的影响[J].电网技术,2005,29(5):20-24.
    [30]荆勇,杨晋柏,李柏青,等.直流调制改善交直流混联系统暂态稳定性的研究[J].电网技术,2004,28(10):1-4.
    [31]任祖怡,左洪波,吴小辰,等.用于安全稳定控制的高压直流极闭锁判据[J].电力系统自动化,2007,31(10):41-44.
    [32]白岩,陈辉祥,王仲鸿.直流双极闭锁故障下提高暂态电压稳定性策略探讨[J].电力系统自动化,2006,30(15):93-96.
    [33]庄侃沁,武寒,黄志龙,等.龙政直流双极闭锁事故华东电网频率特性分析[J].电力系统自动化,2006,30(22):101-104.
    [34]刘海峰,徐政,金丽成.基于测试信号的直流小信号调制器参数整定[J].电力系统自动化,2002,26(21):12-16.
    [35]周长春,徐政.由直流输电引起的次同步振荡的阻尼特性分析[J].中国电机工程学报,2003,23(10):6-10.
    [36]周长春,徐政.一种评价多个直流换流站系统次同步扭振相互作用的新指标[J].中国电机工程学报,2004,24(4):6-11.
    [37]周长春,徐政.具有串联电容补偿的交直流混合系统次同步振荡阻尼特性分析[J].高电压技术,2004,30(2):1-3.
    [38]戚庆如,焦连伟,严正,等.高压直流输电动态相量建模与仿真[J].中国电机工程学报,2003,23(12):28-32.
    [39]王钢,李志铿,李海锋,等.交直流系统的换流器动态相量模型[J].中国电机工程学报,2010,30(1):59-64.
    [40]周长春,徐政.直流输电准稳态模型有效性的仿真验证[J].中国电机工程学报,2003,23(12):33-36.
    [41]徐政,蔡晔,刘国平.大规模交直流电力系统仿真计算的相关问题[J].电力系统自动化,2002,26(15):4-8.
    [42] Arabi S,Kundur P,Sawada J H.Appropriate HVDC transmission simulation models for various power system stability studies[J].IEEE Transactions on Power Systems,1998,13(4):1292-1297.
    [43]毛晓明,管霖,张尧,等.含有多馈入直流的交直流混合电网高压直流建模研究[J].中国电机工程学报,2004,24(9):68-73.
    [44] Bradley K Johnson.HVDC Models used in stability studies[J].IEEE Transactions on Power Delivery,1989,4(2):1153-1163.
    [45]欧开健,任震,荆勇.直流输电系统换相失败的研究(一)——换相失败的影响因素分析[J].电力自动化设备,2003,23(5):5—8.
    [46]艾飞,李兴源,王晓丽,任永生,韦立,刘建.交流系统强度与所联直流输电系统换相失败关系研究.四川电力技术,2009,32(3).
    [47]何朝荣,李兴源,等.影响多馈入高压直流换相失败的耦合导纳研究[J].中国电机工程学报,2008,28(7):51-57.
    [48]陈树勇,李新年,余军,等.基于正余弦分量检测的高压直流换相失败预防方法[J].中国电机工程学报,2005,25(14):1-6.
    [49]何朝荣,李兴源,金小明,等.高压直流输电系统换相失败的判断标准[J].电网技术,2006,30(22):19-23.
    [50]刘之尧,唐卓尧,张文峰,等.直流换相失败引起继电保护误动分析[J].电力系统自动化,2006,30(19):104-107.
    [51]鲁德锋,毛为民,冼伟雄.直流换流站换流失败引起继电保护不正确动作的分析及防范措施探讨[J].电力设备,2006,7(1):54-56.
    [52]曹林,何金良,张波.直流偏磁状态下电力变压器铁心动态磁滞损耗模型及验证[J].中国电机工程学报,2008,28(24):141-146.
    [53]曾嵘,张波,赵杰,等.HVDC地中直流对交流系统的影响及规律分析[J].高电压技术,35(3):678-682.
    [54]曾嵘,赵杰,尚春,等.HVDC地中直流对交流系统影响的防范措施[J].高电压技术,35(4):919-925.
    [55]曹林,赵杰,张波,等.高压直流输电直线型接地极系统分析[J].高电压技术,32(2):92-94.
    [56]张波,赵杰,曾嵘,等.直流大地运行时交流系统直流电流分布的预测方法[J].中国电机工程学报,26(13):84-88.
    [57]陈红坤.交直流系统的非特征谐波分析[J].武汉水利电力大学学报,1997,30(4):51-55.
    [58]徐政.多基频交直流互联系统的谐波特性研究[J].电工技术学报,1996,11(4):22-26.
    [59]杨秀,陈陈.基于采样数据模型的高压直流输电动态特性分析[J].中国电机工程学报,2005,25(10):30-34.
    [60]余涛,沈善德,朱守真.HVDC及其控制系统动态稳定性的理论分析[J].电力系统自动化,2002,26(12):40-44.
    [61]李兴源,陈凌云,颜泉,等.多馈入高压直流输电系统非线性附加控制器的设计[J].中国电机工程学报,2005,25(15):16-19.
    [62]杨卫东,徐政,韩祯祥.多馈入交直流电力系统研究中的相关问题[J].电网技术,2000,24(8):13-17.
    [63] M D Heffernan, K S Turner, J Arrillaga, et al. Computation of AC-DC system disturbance - Part I. Interactive coordination of generator and convertor transient models[J]. IEEE Transactions on Power Apparatus and Systems, 1981,100(11): 4341~4348
    [64] K S Turner, M D Heffernan, C P Arnold, et al. Computation of AC-DC system disturbance - Part II. Derivation of power frequency variables from convertor transient response[J]. IEEE Transactions on Power Apparatus and Systems, 1981,100(11): 4349~4355
    [65] K S Turner, M D Heffernan, C P Arnold, et al. Computation of AC-DC system disturbance - Part III. Transient stability assessment[J]. IEEE Transactions on Power Apparatus and Systems, 1981,100(11): 4356~4363
    [66] J Reeve, R Adapa. A new approach to dynamic analysis of AC networks incorporating detailed modeling of DC systems. Part I : Principles and implementation[J]. IEEE Transactions on Power Delivery, 1988,3(4) : 2005~2011
    [67] R Adapa, J Reeve. A new approach to dynamic analysis of AC networks incorporating detailed modeling of DC systems. Part II : Application to interaction of DC and weak AC systems[J]. IEEE Transactions on Power Delivery, 1988,3(4) : 2012~2019
    [68] G W Anderson, N R Watson, C P Arnold, et al. A new hybrid algorithm for analysis of HVDC and FACTS systems[C]. Proc. Of EMPD’95, 1995, 2 : 462~467
    [69] M Sultan, J Reeve, R Adapa. Combined transient and dynamic analysis of HVDC and FACTS systems[J]. IEEE Transactions on Power Delivery, 1998,13(4) : 1271~1277
    [70] K W Chan, L A Snider. Electromagnetic electromechanical hybrid real-time digital simulator for the study and control of large power systems[C]. Proc. of PowerCon2000, 2000,2(2) : 783~788.
    [71] H T Su, K W Chan, L A Snider. Evaluation study for the integration of electromagnetic transients simulator and transient stability simulator[J]. Electric Power Systems Research, 2005(75) : 67~78.
    [72] H T Su, K W Chan, L A Snider. Parallel interaction protocol for electromagnetic and electromechanical hybrid simulation[J]. IEE Proc.-Gener. Transm. Distrib, 2005,152(3) : 406~414.
    [73]岳程燕,田芳,周孝信,等.电力系统电磁暂态-机电暂态混合仿真接口原理[J].电网技术,2006,30(1):23~27,88
    [74]岳程燕,田芳,周孝信,等.电力系统电磁暂态-机电暂态混合仿真接口实现[J].电网技术,2006,30(4):6~10
    [75]岳程燕,田芳,周孝信,等.电力系统电磁暂态-机电暂态混合仿真的应用[J].电网技术,2006,30(11):1~5
    [76] A Kurita, H Okubo, D B Klapper, et al. Multiple time-scale power system dynamic simulation[J]. IEEE Transactions on Systems, 1993,8(1): 216~223
    [77] J J Sanchez-Gasca, R D Aquila, J J Paserba, et al. Extended-term dynamic simulation using variable time step integration[J]. IEEE Computer Application in Power, 1993 : 23~28
    [78] J J Sanchez-Gasca, R D Aquila, W W Price, et al. Variable time step, implicit integration for extended-term power system dynamic simulation[J]. IEEE Power Industry Computer Applications Conference, 1995 : 183~189
    [79] M Stubbe, A Bihain, J Deuse, et al. STAG– A new unified software program for the study of the dynamic behaviour of electrical power systems[J]. IEEE Transactions on Power Systems, 1989, 4(1) : 129~138
    [80] J Y Astic, A Bihain, M Jerosolimski. The mixed Adams– BDF variable step size algorithm to simulate transient and long term phenomena in power systems[J]. IEEE Transactions on Power Systems, 1994, 9(2) : 929~935
    [81] J F Vernotte, P Panciatici, B Meyer, et al. High fidelity simulation of power system dynamics[J]. IEEE Computer Applications in Power, 1995 : 37~41
    [82]汤勇,宋新立,刘文焯,等.电力系统全过程动态仿真的数值算法——电力系统全过程动态仿真软件开发之一[J].电网技术,2002,26(9):7~12,28
    [83]汤勇,刘文焯,宋新立,等.电力系统全过程动态仿真的故障模拟——电力系统全过程动态仿真软件开发之二[J].电网技术,2002,26(10):1~5
    [84]汤勇,宋新立,刘文焯,等.电力系统全过程动态仿真中的长过程动态模型——电力系统全过程动态仿真软件开发之三[J].电网技术,2002,26(11):21~25,52
    [85]汤勇,刘文焯,宋新立,等.电力系统全过程动态仿真的实例与分析——电力系统全过程动态仿真软件开发之四[J].电网技术,2002,26(12):5~8
    [86] Y Zhou, V Ajjarapu. A novel approach to trace time-domain trajectories of power systems in multiple time scales[J]. IEEE Transactions on Power Systems, 2005,20(1) : 149~155
    [87] H R Fankhauser, K Aneros, A A Edris. Advanced simulation techniques for the analysis of power system dynamics[J]. IEEE Computer Application in Power, 1990 : 31~36
    [88] F P de Mello, J W Feltes, T F Laskowski, et al. Simulating fast and slow dynamic effects in power systems[J]. IEEE Computer Application in Power, 1992: 33~38
    [89]郭琦,赵晋泉,张伯明.基于变参数追踪的暂态稳定分析与预防控制方法[J].电力系统自动化,2005, 29(24): 21-26,49
    [90] M L Crow, J G Chen. The multirate method for simulation of power system dynamics[J]. IEEE Transactions on Power Systems, 1994,9(3): 1684~1690
    [91] M L Crow, J G Chen. The multirate simulation of FACTS devices in power system dynamics[J]. IEEE Transactions on Power Systems, 1996,11(1): 376~382
    [92] J J Chen, M L Crow, B H Chowdhury, et al. An error analysis of the multirate method for power system transient stability simulation[C]. Proc. IEEE Power Eng. Soc. Power Systems Conf. Expo., 2004, 2 : 982~986
    [93] J J Chen, M L Crow. A variable partitioning strategy for the multirate method in power systems[J]. IEEE Transactions on Power Systems, 2008, 23(2): 259~266
    [94]常永吉,赵刚,于继来.电力系统动态过程的柔性自校正仿真方法[J].电力系统自动化,2006, 30(10): 22-27
    [95] Y J Chang, J L Yu. Power system based on variables grouping and seceding grouping strategy[C]. Proc. DRPT2008, 2008: 1077~1081
    [96] R M Brandt,U D Annakkage,D P Brandt,et al. Validation of a two-time step HVDC transient stability simulation model including detailed HVDC controls and DC line L/R dynamics[C].2006 IEEE Power Engineering Society General Meeting, 2006: 1~6
    [97] A Semlyen, F de Leon. Computation of electromagnetic transients using dual or multiple time steps[J]. IEEE Transactions on Power Systems, 1993, 8(3): 1274~1281
    [98] S D Pekarek, O Wasynczuk, E A Walters, et al. An efficient multirate simulation technique for power-electronic-based systems[J]. IEEE Transactions on Power Systems, 2004, 19(1): 399~409
    [99] F A Moreira, J R Marti. Latency techniques for time-domain power system transients simulation[J]. IEEE Transactions on Power Systems, 2005, 20(1): 246~253
    [100] F A Moreira, J R Marti, L C Zanetta, et al. Multirate simulations with simultaneous-solution using direct integration methods in a partitioned network environment[J]. IEEE Transactions on Circuits and Systems - I: Regular papers, 2006, 53(12): 2765~2778
    [101] L J Hou, A Bose. Multi-step partitioned solution for power system transient stability analysis[C]. Proc. Power System Computation Conference, 1993: 71~77
    [102] S Esmaeili, S M Kouhsari. A distribution simulation based approach for detailed and decentralized power system transient stability analysis[J]. Electric Power Systems Research, 2006: 673~684.
    [103] E Hairer, S P Norsett,G Wanner.常微分方程的解法I非刚性问题[M].北京:科学出版社,2006.
    [104] C W Gear, D R Wells. Multirate linear multistep methods[J]. BIT Numerical Mathematics, 1984, 24(4): 484-502.
    [105] N R Watson, J Arrilaga, A P B Joosten. AC system equivalents for the dynamic simulation of HVDC convertors[C]. IEE Conference Publication No.255, 1985
    [106] N G Hingorani. Simulation of AC system impedance in HVDC system studies[J]. IEEE Transactions on PAS, 1970,89(5/6):820~828
    [107] A S Morched. Transmission network equivalents for electro-magnetic transients studies[J]. IEEE Transactions on PAS, 1983,102(9): 2984~2994
    [108]王成山,张家安.分布式暂态稳定仿真的面向对象分析与设计[J].电网技术,2003,27(12):27-30,50.
    [109]王成山,王丹,郭金川,等.基于网式链表–双层结构的电力系统时域仿真算法[J].电力系统自动化,2008,32(16):6-10.
    [110]王丹,王成山.基于数值微分法求导的分布式发电系统仿真算法[J].电力系统自动化,2009, 33(17): 81-85.
    [111]王成山,高毅,王丹,等.考虑直流系统开关特性控制的变步长仿真算法[J].中国电机工程学报,2009,29(34):16-21.
    [112]高毅,李继平,王成山.基于变量自适应分组的电力系统多速率仿真算法[J].电力自动化设备,2011,31(2):1-6.
    [113]高毅,王成山,李继平.改进十字链表的稀疏矩阵技术及其在电力系统仿真中的应用[J].电网技术,2011,35(5):33-39.
    [114] SPARSE1.3:A sparse linear equation solver [EB/OL].[2008-05-05].http://www.eecs.berkeley.edu/IPRO/Software/Description/sparse1.3.html.
    [115] C E Grund, T H Lee, S R Lightfoot, et al.Functional model of two-terminal HVDC systems for transient and steady-state stability[J]. IEEE Transactions on PAS, 1984,103(6): 1249~1255
    [116] Power Technologies Inc . Program application guide[M] . NY : Power Technologies Inc,2002.
    [117]黄莹.交直流电力系统动态特性分析方法研究[D].杭州:浙江大学,2005.
    [118] Kontek HVDC Interconnection.[EB/OL].[2011]. http://www.abb.com/industries/ap/db0003db004333/f0562b099a2e4cedc125774a0035816c.aspx.
    [119]吴红斌,丁明.用于电力系统暂态稳定仿真的可变步长牛顿法[J].中国电机工程学报,2010, 30(7): 36-41.
    [120]宋新立,汤勇,刘文焯,等.电力系统全过程动态仿真的组合数值积分算法研究[J].中国电机工程学报,2009, 29(28): 23-29.
    [121] T Kato, T Kataoka. Computer-aided analysis of a power electronic circuit by a new multirate method[C]. IEEE 29th Annual Power Elctronics Specialists Conference. Fukuoda, Jpn, 1998: 1076~1083.
    [122] A Bartel, M Gunther, et al. Multirate methods in electrical circuit simulation[R]. Progress in Industrial Mathematics at ECMI 2000. Springer, 2002: 258-265.
    [123] V Savcenco, W Hundsdorfer, J G Verwer. A multirate time stepping strategy for stiff ordinary differential equations[J]. BIT Numerical Mathematics, 2007, 47(1): 137-155.
    [124] A Martin. Multi-rate time integration for large scale multibody system models[C]. IUTAM Symposium on Multiscale Problems in Multibody System Contacts. Springer, 2007: 1-10.
    [125]张伯明,陈寿孙.高等电力网络分析[M].北京:清华大学出版社,1996.
    [126] Hakavik B,Holen A T.Power system modelling and sparse matrix operations using object-oriented programming[J].IEEE Trans on Power Systems,1994,9(2):1045-1051.
    [127] Zhu H J,Cai Z X.Object-oriented modeling of sparse matrix operation in power system software[C]//6th International Conference on Advances in Power System Control, Operation and Management.Hong Kong,China:The Institution of Electrical Engineers Hong Kong (IEE HK),2003:732-737.
    [128]毛安家,郭志忠.电力系统计算中的二维稀疏结构技术[J].继电器,2001,29(1):19-21.
    [129]朱凌志,安宁.基于二维链表的稀疏矩阵在潮流计算中的应用[J].电网技术,2005,29(8):51-54.
    [130]殷人昆.数据结构(用面向对象方法与C++语言描述)[M].北京:清华大学出版社,2007:43-181.
    [131]高速缓冲存储器的作用和工作原理[EB/OL].[2009-07-30].http://tech.watchstor.com/storage-systems-114478.htm.
    [132] Murach M,Vachranukunkiet P,Nagvajara P,et al.Optimal reconfigurable HW/SW co-design of load flow and optimal power flow computation[C]//IEEE Power Engineering Society General Meeting.Montreal,Canada:IEEE,2006:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700