海温对东亚夏季风年代际及冬季风年际变异的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从海温的异常出发,研究了其对东亚夏季风的年代际和东亚冬季风的年际变异的影响,借助大气环流模式和观测资料进行研究分析,主要得到以下结论:
     (1)用1979至1998年20年的气候月平均海温作为强迫场,来检验GFDLAM2模式对东亚冬、夏季风的模拟能力,发现该模式能较好的模拟东亚冬、夏季风的气候特征。
     (2)借助GFDLAM2模式,通过集合试验探讨了全球海温、热带海温、热带外海温变化对发生在1970s中后期的东亚夏季风的年代际变异的影响,结果显示全球海温在气候平均的变化的确能引起东亚夏季风的年代际变异和与之相关联的大气环流变化。相比热带外海温的影响,热带海温的变化对南亚高压、西北太平洋副热带高压、越赤道气流的变化的影响更为重要。
     (3)利用观测分析和AGCM试验,研究和讨论了2007/2008年强La Ni(?)a事件和前期北大西洋异常增暖对“0801”雪灾形成的影响。结果表明,强La Ni(?)a事件能部分解释“0801”南方偏冷和降水偏多及有关的部分大气环流异常,如高原南支槽加强、蒙古高压增强及西太平洋区域呈“负-正-负”西南-东北走向的异常环流型。但它不能解释乌拉尔地区的异常环流形势。进一步的分析认为,前期北大西洋的异常增暖对乌拉尔环流正异常的形成维持有重要影响。于是,“0801”雪灾的形成可能是包括强La Ni(?)a事件、北大西洋异常增暖等在内的多种因素共同作用的结果。
     (4)将ENSO的分为强、中等强度,合成分析了其对东亚冬季风环流的影响,东亚冬季风对强El Ni(?)o(La Ni(?)a)事件的响应上,数值模拟结果与已有资料的历史合成分析结果非常一致,对于中等强度的ENSO事件,东亚冬季风对其的响应要复杂的多,不能仅依赖ENSO信号来判断东亚冬季风环流情况,必须考虑其它因子的综合影响。
East Asia experienced a significant interdecadal climate shift around the late 1970s, with more floods in the valley of the Yangtze River of central-eastern China and more severe drought in North China since then. Furthermore, snow and freezing-rain in January 2008 affected the Southern China and caused very serious damage. Whether global sea surface temperature (SST) has played a role in climate shift is unclear. In the present study, statistical analysis and numerical model are employed to investigate the impact of SST variations on the East Asian Monsoon, the main results are as follows:
     (1) The GFDL AM2 model simulates both the observed East Asian Summer Monsoon (EASM) and East Asian Winter Monsoon (EAWM) well.
     (2) The model results suggest that decadal global SST variations may have played a substantial role in this climate shift. Further examination of the associated atmospheric circulation shows that these results are physically reasonable. The interdecadal variation of tropical SST has more important effects on the climate shift of South Asia High(SAH), West Pacific Subtropical High(WPSH) and cross-equator air stream than extratropical SST.
     (3) By analyzing the observational data and conducting experiments in an AGCM GFDL AM2, we investigated the influence of the La Nina event. The results suggest that the strong La Ni(?)a can explain the colder climate and more precipitation than usual in South China, as well as the associated circulation anomalies like Mongolia Cold High. But, it can't explain the enhancements of the west Pacific subtropical high and the blocking high over the Ural Mountains. Subsequently, we discussed the influence of the North Atlantic warmth using the results from a previous modeling study, and speculated that the warmth has played an important role for the maintenance of the persistent blocking over the Urals. Thus, it is concluded that the disastrous climate event happened in January 2008 may be resulted from the coordinate interaction of several factors including strong La Nina and North Atlantic warmth.
     (4) The response of EAWM to ENSO events are analyzed by using the composite method based on the Nino 3.4 Index and NCEP/NACR reanalysis data with four categories of strong El Ni(?)o (La Ni(?)a) and moderate El Nino (La Ni(?)a) events. The results suggest that when the El Ni(?)o (La Ni(?)a) events are not strong, other factors may partly have influence the response of atmosphere on ENSO events.
引文
[1] Arakawa, A., and V. R. Lamb. Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physisc, J. Chang, ED., 1977, Vol. 17, Academic Press, 173-265.
    [2] Beljaars, A. C. M., The parameterization of surface-fluxes in large-scale models under free convection. Quart. J. Roy. Meteor, Soc., 1995, 121, 255-270.
    [3] Bradley R, Dian H, Kiladis G, et al., ENSO signal in continental temperature and precipitation records. Nature, 1987, 327, 497-501.
    [4] Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider, The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 1994, 51, 2434-2460.
    [5] Chang, C. P., Zhang, Y. S., Li, T. Interannual and interdecadal variations of he East Asian summmer monsoon and tropical Pacific SSTs. Part Ⅰ: Role of the subtropical ridge. J. Climate, 2000, 13, 4310-4325.
    [6] Chen, W., Graf H F, and Huang R. H., The interannual variability of East Asian winter monsoon and its relation to the summer monsoon.. Adv. Atmos. Sci., 2000, 17, 46-60.
    [7] Clough, S. A., M. J. Iacono, and J. L. Moncet. Line-by-line calculatations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 1992, 97, 15761-15785.
    [8] Colella, P., and P. R. Woodward. The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys., 1984, 54, 174-201.
    [9] Ding, Y. , Z. Wang, and Y. Sun. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part Ⅰ: Observed evidences. International Journal of Climatology, DOI: 10. 2007, 1002/joc. 1615.
    [10] Edwards, J. M., and A. Slingo. Studies with a flexible new radiation code. Ⅰ: Choosing a configuration for a large-scale model Quart. J. Roy. Meteor. Soc., 1996, 122,689-719.
    [11] Fiedtke, M. Representation of clouds in large-scale models. Mon. Wea. Rev., 1993, 121, 3040-3061.
    [12] Fortuin, P., and H. Kelder. An ozone climatology based on ozonesonde and satellite measurements. J. Geophys. Res., 1998, 103, 31709-31734.
    [13] Freidenreich, S. M. , and V. Ramaswamy. A new multiple-band solar radiative parameterization for general circulation models. J. Geophys. Res., 1999, 104, 31389-31409.
    [14] Fu, J., S. Li, D. Luo. Impact of global SST on decadal shift of east Asian summer climate. Adv. Atmos. Sci. 2009, 26(2), 192-201, doi: 10. 1007/s00376-009-0192-z
    [15] Fu, Q. , and K. N. Liou, Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 1993, 50, 2008-2025.
    [16] Gadd, A.J , A split explicit integration scheme for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 1978, 104, 569-582.
    [17] GAMT (the GFDL global Atmospheric Model development Team), The new GFDL Atmosphere and Land Model AM2-LM2 : Evaluation with prescribed SST simulations. J. Climate, 2004, 17, 4641-4673.
    [18] Gong, D. and C. Ho. Shift in the summer rainfall over the Yangtze River Valley in the late 1970s. Geophys. Res. Lett., 2002, 29(10), doi: 10. 1007/00703-004-0081-z.
    [19] Gong, D., Wang Shaowu, Zhu Jinhong. East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 2001, 28 (10): 2073-2076.
    [20] Han, J., and H. Wang. Interdecadal variability of East Asian summer monsoon in an AGCM model. Adv. Atmos. Sci, 2007, 24 (5), 808-818. Doi: 10. 1007/s00376-007-0808-0.
    [21] Hoerling, M. P., J. W. Hurrell, T. Xu, G. T. Bates, andA. S. Phillips. Twentieth century North Atlantic climate change. Part II: understanding the effect of Indian Ocean warming. Climate. Dyn., 2004, 23, 391-405.
    [22] Hoerling, M. P., Kumar A, Zhong M. El Ni(?)o, La Ni(?)a, and the Nonlinearity of Their Teleconnections. J. Climate, 1997, 10, 1769-1786.
    [23] Huang, R. H. Decadal variability of the summer monsoon in East asia and its associated with the SST anomalies in the tropical Pacific. CLIVAR Exchange, 2001, 2 (1): 7-8.
    [24] Ji, L., Sun S, Arpe K, and Bengtsson L. Model study on the interannual variability of Asian winter monsoon and its influence. Adv. Atmos. Sci., 1997, 14, 1-12.
    [25] Jia, X., H. Lin, and J. Derome. The influence of tropical Pacific forcing on the Arctic Oscillation. Climate, Dyn., 2008, 32(4), 495-509.
    [26] Jakob, C., and S. A. Klein, A parameterization of the effects of cloud and precipitation overlap for use in general circulation models. Quart. J. Roy. Meteor. Soc., 2000, 126, 2525-2544.
    [27] Kalnay, E., and Coauthors. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 1996, 77, 437-471.
    [28] Krishna, K. K., Rajagopalan B, Hoerling M, etal. Unraveling the mystery of Indian Monsoon failure during El Ni(?)o. Science, 2006, 314, DOI: 10. 1126/science. 1131152.
    [29] Krishnamuriti, T. N. Tropical Meteorology, Comeendium of Meteorology. Vol., Part 4, WMO-NO. 1979, 364.(中译本,气象出版社,1983).
    [30] Kurihara, Y., and G. J. Tripoli. An iterative time integration scheme designed to preservea low-frequency wave. Mon. Wea. Rev., 1976, 104, 761-764.
    [31] Li, C., Interaction between anomalous winter monsoon in East Asian and El Ni(?)o events. Adv. Atmos. Sci., 1990, 7, 36-46.
    [32] Li, C., and P. Xian. Atmospheric anomalies related to interdecadal variability of SST in the North Pacific. Adv. Atmos. Sci., 2003, 20 (6), 859-874.
    [33] Lin, S. J., A finite-volume integration method for computing pressure-gradient force in general vertical coordinates. Quart. J. Roy. Meteor. Soc., 1997, 123, 1749-1762.
    [34] Li, S., Influence of the Northwest Atlantic SST anomaly on the circulation over the Ural Mountains. J. Meteor. Soc. Japan, 2004, 82 (4): 971-988.
    [35] Li, S., M. P. Hoerling, S. Peng, and K. M. Weickmann, The annular response to tropical Pacific SST forcing.. J. Climate, 2006, 19(9), 1802-1819.
    [36] Li, S., and. Bates G. T. Influence of the Atlantic Multidecadal Oscillation on the winter climate of East China. Adv. Atmos. Sci., 2007, 24 (1): 126-135. Doi: 10. 1007/s00376-007-0126-6.
    [37] Li, S., Jian Lu, Gang Huang, and Kaiming Hu, Tropical Indian Ocean basin warming and East Asian summer monsoon: a multiple AGCM study, J. Climate, 2008, 21(22), 6080-6088.
    [38] Lock, A. R. , Brown, M. R. Bush, G, M. Martin, and R. N. B. Smith. Anew boundary layer mixing scheme. Part 1: Scheme description and single-column model tests. Mon. Wea. Rev., 2000, 128: 3187-3199.
    [39] Lu , R . , Indices of the summer Western North Pacific Subtropical High. Adv. Atmos. Sci., 2002, 19 (6): 1004-1028.
    [40] Lu, R., Impact of Atlantic sea surface temperature on the warmest global surface air temperature of 1998. J. Geophys. Res., 2005, 110, D05103, doi: 10. 1029/2004JD005203.
    [41] Lu, R., and B. Dong, Impact of Atlantic sea surface temperature anomalies on the summer climate in the western North Pacific during 1997-1998. J. Geophys. Res., 2005, 110, D16102, doi: 10. 1029/2004JD005676.
    [42] Lu, R., B. Dong, and H. Ding. Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys. Res, Lett., 2006, 33, L24701, doi: 10. 1029/2006GL027655.
    [43] Ma, Z., The interdecadal trend and shift of dry/wet over the central part of North China and their relationship to the Pacific Decadal Oscillation, Chinese Science Bulletin, 2007, 52 (15), 2130-2139.
    [44] Menon, S., J. Hansen, L. Nazarenko, and Y. F. Luo. Climate effects of black carbon aerosols in China and India. Science, 2002, 297, 2250-2253.
    [45] Mesinger , F . , Forward-backward scheme , and its use in a limited area model. Contrib. Atmos. Phys., 1977, 50, 186-199.
    [46] Moorthi, S., and M. J. Suarez. Relaxed AraKawa-Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 1992, 120, 978-1002.
    [47] Nitta, T., and S. Yamada. Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J. Meteor. Soc. Japan, 1989, 67, 375-383.
    [48] Palmer T N, and Sun Z. A modeling and Observational study of the relationship between sea surface temperature in the North-west Atlantic and the atmospheric general circulation. Quart. J. Roy. Meteor. Soc. , 1985, 111, 947-975.
    [49] Peng, S., W. A. Robinson, and S. Li. Mechanisms for the linear and nonlinear NAO responses to the North Atlantic SST tripole. 2003, J. Climate, 16,1987-2004.
    [50] Pierrehumbert, R. T., An essay on the parameterization of orographic gravity wave drag. Proc. ECMWF 1986 Seminar, Vol. 1, Reading, United Kingdom, ECMWF, 1986, 251-282.
    [51] Ramaswamy, V., and M. M. Bowen. Effect of changes in radiatively active species upon the lower stratospheric temperatures.J. Geophys. Res., 1994, 99, 18909-18921.
    [52] Rayner, N. A., E. B. Horton, D. E. parker, C. K. Folland, and R. B. Hackett., Version 2. 2 of the global sea surface temperature data set, 1903-1994. Climate Research Technical Note 74, 1996, Hadley Center for Climate Prediction and Research, UK Meteorological Office.
    [53] Renwick, J, A., Southern Hemispheric circulation and relations with sea ice and sea surface temperatures. J. Climate, 2002, 15, 3058-3068.
    [54] Robert T W, Daniel L A, Terry B, et al. Climate change 2001: Synthesis Report Cambridge:Cambridge University Press. 2001, 1-46.
    [55] Ropelewski, C., Halpert. M. Precipitation patterns associated with the high index hpase of the Southern Oscillation. J. Climate, 1989, 2, 268-284.
    [56] Rotstayn, L. D. , On the "tuning" of autoconversion parameterizations in climate models. J. Geophys. Res., 2000, 105: 15495-15507.
    [57] Saji, N. H., B. N. Goswami, P N Vina Yachandran, etal., A dipole mode in the India Ocean. Nature, 1999, 401: 360-363.
    [58] Schwarzkopf, M. D., and V. Ramaswamy: Radiative effects of CH_4, N_2O, halocarbons and the foreign-broadened H_2O continuum: A GCM experiment. J. Geophys. Res., 1999, 104, 9467-3488.
    [59] Shapiro, R., Smoothing, filtering and boundary effects. Rev. Geophys. Space Phys., 1970, 8, 359-387.
    [60] Slingo, A. A. GCM parameterization for the shortware radiative properties of water clouds. J. Atmos. Sci., 1989, 46, 1419-1427.
    [61] Simmons, A. J., and D. M. Burridge. An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 1981, 109, 758-766.
    [62] Simth, T.M., and Reynolds, R.W., Improved extended reconstruction of SST(1854-1997). J. Climate, 2004, 17, 2466-2477.
    [63] Stern, W. F., and R. T. Pierrehumbert. The impact of an orographic gravity wave drag parameterization on extended range predictions with a GCM. Preprints Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 1998: 745-750.
    [64] Tao, S. Y, and Staff Members of Academia Sinica. On the general circulation over the Eastern Asia I. Tellus, 1957, 9, 432-446.
    [65] Tao, S. Y, and Chen, L. X., Summer monsoon in East Asian, Proc. International Conference on Monsoon in the Far East. Tokyo, 1985, 5-8 Nov. 1-11.
    [66] Tao, S. Y, and Chen, L. X., A revies of recent research on the East Asian Summer Monsoon in China. In: Krishnamuri ed. Monsoon Meteorology. Oxofrd University Press, 1987, 60-92.
    [67] Taylor, J. P., J. M. Edwards, M. d. Glew, P. Hignett, and A. Slingo. Studies with a flexible new radiation code. Part 2: Comparisons with aircraft short-wave observations. Quart. J. Roy. Meteor., 1996, 122, 839-861.
    [68] Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose. The equatorial 30-60 day oscillation and the Arakawa-Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 1988, 66, 883-901.
    [69] Tomita, T., and Yasunari, T., Role of the northeast winter monsoon on the biennial oscillation fo the ENSO/monsoon system. Quart. J. Roy. Meteor. Soc., 1996, 74, 399-413.
    [70] Upplal, S., and Coauthors. ERA-40: ECMWF 45-years reanalysis of the global atmosphere and surface conditions 1957-2001. ECMWF Newsletter Meteorology, 2004, 101, 2-21
    [71] Wang, B., Wu Renguang, Fu Xiouhua. Pacific-East Asian teleconnection: How does ENSO effect East Asian climate? J. Climate, 2000, 13: 1517-1536.
    [72] Wang, B., Wu Renguang, Li Tim. Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation. J. Climate, 2003, 16: 1195-1211.
    [73] Wang, H., The weakening of the Asian monsoon circulation after the end of 1970s, Adv. Atmos. Sci. , 2001, 18, 376-386.
    [74] Wang, H., The instability of the East Asian Summer Monsoon-ENSO relations, Adv. Atmos. Sci., 2002, 19, 1-11.
    [75] Wang, H., The interannual variability of the East Asian monsoon and its relationship with SST in a coupled atmosphere-ocean-land climate model. Adv. Atmos. Sci., 2000, 17: 31-47.
    [76] Wang, H., Zhang Renhe, Cole J., et al. El Nino and the related phenomenon Southern Oscillation (ENSO): The largest signal in interannual climate variation. Proceedings of the National Academy of Sciences, U. S. A, 1999, 96: 11071-11072.
    [77] Webster, P. J., Magana V O, Palmer, T N, et al. Monsoon: Processes predictability and the prospects for prediction. J. Geophys. Res., 1998, 103: 14451-14510.
    [78] Webster, P. J., A. M. Moore, J. P. Loschnigg, & R. R. Leben, Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98. Nature, 1999, 401, 356-359.
    [79] Wolter K, Timlin M S. Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proc. of the 17th Climate Diagnostics Workshop, Norman, OK, NOAA/N MC/CAC, NSSL, Oklahoma Clim. Survey, CIMMS and the School of Meteor., Univ. of Oklahoma, 1993, 52-57.
    [80] Wu, B., and R. Zhang. Interdecadal shift in the western North Pacific summer SST anomaly in the late 1980s. Chinese Science Bulletin, 2007, 52(18): 2559-2564.
    [81] Wu, B., Wang Jia, Walsh J. Possible feedback of winter sea ice in the Greenland and the Barents Sea on the local atmosphere. Mon. Wea. Rev., 2004, 132 (7): 1868-1876
    [82] Wu, B., Zhang Renhe, R, D'Arrigo. Distinct modes of East Asian winter monsoon. Mon. Wea. Rev., 2006, 134 (8): 2165-2179.
    [83] Wyman, B. L., A step-mountain coordinate general circulation model: Description and validation of medium-range forecasts. Mon. Wea. Rev., 1996, 124, 102-121.
    [84] Xie, P., and P. A. Arkin. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull. Amer. Meteor. Soc., 1997, 78: 2539-2558.
    [85] Xu, Q., Abrupt change of the mid-summer climate in central east China by the influence of atmospheric pollution. Atmos. Environ., 2001, 35: 5029-5040.
    [86] Xue, F., Interannual to interdecadal variation of East Asian summer monsoon and its association with the global atmospheric circulation and sea surface temperature. Adv. Atmos. Sci., 2001, 18 (4): 567-575.
    [87] Yang, H., and Q. Zhang. On the decadal and interdecadal variability in the Pacific Ocean, Adv. Atmos. Sci., 2003, 20 (2), 173-184.
    [88] Yang, J., Q. Liu, S. Xie, Z. Liu, and L. Wu. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 2007, 34, L02708, doi:10. 1029/2006GL028571.
    [89] Zeng, G., Z. Sun, W. Wang, and J. Min. Interdecadal variability of the East Asian summer monsoon and associated atmospheric circulations, Adv. Atmos. Sci., 2007, 24 (5): 915-926. doi: 10. 1007/s00376-007-0915-y.
    [90] Zhang, R., Sumi A, Kimoto M. Impact of El Nino on the East Asian monsoon: A diagnostic study of the 86/87 and 91/92events. J. Meteor. Soc. Japan, 1996, 74: 49-62.
    [91] Zhang, J., Sun Zhaobo, Zhang Banglin. An objective scheme for long-range forecasts. ACTA of Meteorology Science, 1987, 1 (1): 26-33.
    [92] Zhang, Y., J. M. Wallace, and D. S. Battisti. ENSO-like interdecadal variability: 1900-93. J. Climate, 1997, 10: 1004-1020.
    [93] Zhang, Y., Li, T., Wang, B. Decadal change of the spring snow depth over the Tibetan Plateau: The Associated circulation and influence onthe East Asian summer monsoon. J. Climate, 2004, 17, 2780-2793.
    [94] Zhao, C., X. Tie, and Y. Lin. A possible positive feedback of reduction of precipitation and increase in aerosols over eastern central China. Geophys. Res. Lett., 2006, 33, L11814, doi: 10. 1029/2006GL025959.
    [95] Zhao, P., and L. Chen. Interannual variability of atmospheric heat source/sink over the Qinghai-Xizang (Tibetan) Plateau and its relation to circulation. Adv. Atmos. Sci., 2001, 18 (1), 106-116.
    [96] Zhao, P., X. Zhang, X. Zhou, M. Ikeda, andY. Yin. The sea ice extent anomaly in the North Pacific and its impact on the East Asian summer monsoon rainfall. J. Climate, 2004, 17: 3434-3447.
    [97] Zhou, T., and R. Yu. Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 2006, 19, 5843-5858.
    [98] 布和朝鲁,纪立人.东亚冬季风活动异常与热带太平洋海温异常.科学通报,1999,44(3):252-259.
    [99] 陈烈庭.东太平洋区海水温度异常对热带大气环流及我国汛期降水的影响.大气科学,1977,1(1),1-12.
    [100] 陈佩燕,倪允琪,殷永红.近50年来全球海温异常对我国东部地区冬季温度异常影响的诊断研究.热带气象学报.2001,17(04):371-380.
    [101] 陈文.El Ni(?)o和La Ni(?)a事件对东亚冬、夏季风循环的影响.大气科学,2002,26(5):595-610.
    [102] 崔晓鹏,孙照渤.东亚冬季风强度指数及其变化的分析.南京气象学院学报,1999,22:321-325.
    [103] 丁一汇,戴晓苏.中国近百年来的温度变化.气象.1994,20(12):19-26.
    [104] 方之芳.北半球副热带高压与北极海冰的相互作用.科学通报,1986,31(4):286-290.
    [105] 高登义,黄荣辉,武炳义.北极海冰的厚度和面积变化对大气环流影响的数值模拟研究.气象学报,2001,59(4):414-428.
    [106] 郭其蕴,王曰升.东亚冬季风活动和厄尔尼诺的关系.地理学报,1990,45:68-87.
    [107] 郭其蕴,蔡静宁,邵雪梅,等.1873-2000年东亚夏季风变化的研究.大气科学,2004.28(2):206-215.
    [108] 何溪澄,丁一汇,何金海.东亚冬季风对ENSO事件的响应特征.大气科学,2008,32(2):335-344.
    [109] 黄荣辉,李维京.夏季热带西太平洋上空的热源异常对东亚上空副热带高压的影响及其物理机制.大气科学,1988(特刊),107-116.
    [110] 黄荣辉.我国气候灾害的特征、成因和预测研究进展.中国科学院院刊,1999,(3):188-191.
    [111] 黄荣辉,徐予红,周连童.我国夏季降水的年代际变化及华北干旱化趋势.高原气象,1999,18(4):456-476.
    [112] 黄荣辉,陈际龙,周连童,张庆云.关于中国重大气候灾害与东亚气候系统之间关系的研究.大气科学,2003,27(4):770-787.
    [113] 黄荣辉,陈文,丁一汇等. 关于季风动力学以及季风与ENSO循环相互作用的研究.大气科学,2003,27(4):484-502.
    [114] 黄荣辉,蔡榕硕,陈际龙等.我国旱涝气候灾害的年代际变化与东亚气候系统变化的关系.大气科学,2006,30(5):730-743.
    [115] 李崇银.中国东部地区的暖冬和厄尼诺.科学通报,1989,34(4):283-286.
    [116] 李崇银,咸鹏.北太平洋海温年代际变化与大气环流和气候的异常.气候与环境研究,2003,8(3),258-273.
    [117] 李东辉,张瑰,朱益民 等.热带印度洋秋季偶极子模态与南海夏季风强度变化的关系.燕带气象学报,2006,22(5),439-446.
    [118] 李峰,何金海.北太平洋海温异常与东亚夏季风相互作用的年代际变化.热带气象学报,2000,16(3),260-271.
    [119] 李双林,纪立人,倪允琪.夏季乌拉尔地区大气环流持续异常.科学通报,2001,46(19):1652-1656.
    [120] 李忠贤,孙照渤.秋季黑潮海温与东亚冬季风的相互联系.南京气象学院学报,2004,27(2),145-152.
    [121] 穆明权,李崇银.东亚冬季风年际变化的ENSO信息.Ⅰ:观察资料分析.大气科学,1999,23(3):276-285.
    [122] 倪东鸿,孙照渤,陈海山,等.夏季黑潮区域SSTA及其与中国夏季降水的联系.南 京气象学院学报,2004,27(3):310-316.
    [123] 仇永炎,王为德.寒潮中期预报研究的进展全国寒潮.中期预报文集,北京大学出版社,1984,1-10.
    [124] 谭桂容,孙照渤.我国东部夏季降水型与北半球大气环流和北太平洋海温的关系.南京气象学院学报,1998,21(1),1-7.
    [125] 陶诗言,张庆云.亚洲冬夏季风对ENSO事件的响应.大气科学,1998,22(4):399-407.
    [126] 涂长望,黄仕松.夏季风进退.气象杂志,1944,18:1-20.
    [127] 王会军,薛峰.索马里急流的年际变化及其对半球间水汽输送和东亚夏季降水的影响.地球物理学报,2003,46:18-25.
    [128] 王遵娅,丁一汇,何金海等.近50年,来中国气候变化特征的再分析.气象学报.2004,62(2):228-236.
    [129] 武炳义,黄荣辉,高登义.冬季北极喀拉海、巴伦支海海冰对东亚冬季风的影响.大气科学,1999,23(3):267-275.
    [130] 武炳义,张人禾.20世纪80年代后期西北太平洋夏季海表温度异常的年代际变化.科学通报,2007,52(10):1190-1194.
    [131] 薛峰,刘长征.中等强度ENSO对中国东部夏季降水的影响及其与强ENSO的对比分析.科学通报,2007,52(23):2798-2805.
    [132] 晏红明,杨辉,李崇银.赤道印度洋海温偶极子的气候影响及数值模拟研究.海洋学报,2007,129(15),31-39.
    [133] 杨素雨,严华生.冬季北太平洋南北海温异常对我国汛期雨带类型的影响研究.应用气象学报,2007,18(2),193-201.
    [134] 杨修群,朱益民,谢倩等.太平洋年代际振荡的研究进展.天气科学,2004,28(6):979-992.
    [135] 杨修群,谢倩,朱益民 等.华北降水年代际变化特征及相关的海气异常型.地球物理学报,2005,48(4),789-797.
    [136] 叶笃正,陶诗言,朱抱真等.北半球冬季阻塞形势的研究.北京:科学出版社,1962.220pp.
    [137] 张庆云,卫捷,陶诗言.近50年华北干旱的年代际和年际变化及大气环流特征.气候与环境研究,2003,8(3),307-318.
    [138] 张庆云,王媛.冬夏东亚季风环流对太平洋热状况的响应.气候与环境研究,2006,11(4),487-498.
    [139] 张琼,吴国雄.长江流域大范围旱涝与南亚高压的关系.气象学报,2001,59(5),569-577.
    [140] 张顺利,陶诗言.青藏高原积雪对亚洲夏季风影响的诊断及数值研究.大气科学,2001,25(3),372-390.
    [141] 赵平,周秀骥.近40年我国东部降水持续时间和雨带移动的年代际变化.应用气象学报,2006,17(5),548-556.
    [142] 曾刚,孙照渤,王维强,等.东亚夏季风年代际变化-基于全球观测海表驱动NCARCam3的模拟分析.气候与环境研究,2007,12(2),201-214.
    [143] 朱抱真,丁一汇,罗会邦.关于东亚大气环流和季风的研究.气象学报.1990,48,4-16.
    [144] 竺可桢.东亚季风与中国之雨量.地理学报.1934,1,1-27.
    [145] 朱益民,杨修群.太平洋年代际振荡与中国气候变率的联系.气象学报,2003,61(6).641-654.
    [146] 宗海锋,张庆云,布和朝鲁,纪立人,陈烈庭,黑潮和北大西洋海温异常在2008年1月我国南方雪灾中的可能作用的数值模拟.气候与环境研究,2008,13(4),491-499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700